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Abstract

Background: Moose (Alces alces) are a culturally and economically valued species in Minnesota. However, the moose
population has experienced a sudden, marked decline in their range, including extirpation in the northwest and a 66%
decline in the last decade in the northeast portions of the state. Although the exact cause of this decline is unclear,
parasitic metastrongylid and filarioid nematode infections are known causes of morbidity and mortality in moose
across North America.

Methods: To determine if these parasitic nematodes could be contributing to the Minnesota moose population
decline, we molecularly examined banked tissues obtained from moose that died of known and unknown causes for
the presence of nematode DNA. Extracted brain DNA of 34 individual moose was amplified utilizing primers targeting
the 18S rRNA gene and internal transcribed spacer regions of nematodes.

Results: DNA sequencing revealed that PCR products obtained from 15 (44.1%) of the moose were 99% identical to
Parelaphostrongylus tenuis, a metastrongylid known to cause neurological disease and death. Additionally, brain tissue
from 20 (58.8%) individuals yielded sequences that most closely aligned with Elaeophora schneideri, a parasite associated
with neurological impairment but previously unreported in Minnesota. Setaria yehi, a common filarioid parasite of deer,
was also detected in the brain tissue of 5 (14.7%) moose. Molecular screening of 618 captured tabanid flies from four
trapping sites revealed E. schneideri was present (6%) in the Minnesota environment and transmission could occur locally.
Prevalence rates among the flies ranged between 0–100% per trapping site, with Chrysops spp. and Hybomitra spp.
implicated as the vectors.

Conclusions: Ultimately, these data confirm that P. tenuis is widespread in the Minnesota moose population and raises
the question of the significance of E. schneideri as a contributing factor to morbidity and mortality in moose.
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Background
The moose (Alces alces) population in Minnesota has
exhibited a recent, rapid decline, raising concerns for the
future of the species in the state. Between the mid 1980’s
and early 2000’s, the northwestern moose population
collapsed from > 4000 moose to less than 100 animals [1].
Similarly, the northeast population has decreased by
approximately 66%, from 8840 animals in 2006 to 3030 in
2018 [2]. Predation, climate change, habitat alternation and
disease, particularly from parasites, have all been impli-
cated as factors contributing to the decline [3–7].
Nematode parasites, particularly lungworms (Dictyocau-

lus spp., Protostrongylus spp.) and filarioids (Onchocercidae
spp.), are known to cause morbidity and mortality in moose
and other cervids. A recent study of Minnesota moose car-
casses that died from unknown causes or were euthanized
due to perceived illness found that 45% of the animals had
lesions consistent with nematode neural migration within
central nervous system (CNS) tissues [7]. Based on histo-
logical appearance, the authors concluded the pathogenic
nematode species was Parelaphostrongylus tenuis (Meta-
strongyloidea: Protostrongylidae), a common nematode
parasite of white-tailed deer (Odocoileus virginianus) dis-
tributed throughout the eastern USA [8]. Infections by P.
tenuis in atypical hosts, including moose, can result in se-
vere neurological disease and mortality due to an aberrant
migration of the nematode through CNS tissues [9–14].
Parelaphostrongylus tenuis infections are common

among cervids of Minnesota [15–17]; however, with the
sudden decline in moose numbers, it is possible a newly in-
troduced pathogen is circulating in the moose population.
Recent observations have raised suspicions that Elaeophora
schneideri (Spirurida: Onchocercidae), another pathogenic
nematode of moose [18–20], may be present in the Minne-
sota cervid population. Reports of white-tailed deer in Min-
nesota exhibiting facial swellings consistent with oral food
impactions and cropped ears (E. Butler, personal communi-
cation) are similar to what have been previously described
in E. schneideri-infected deer [21]. In addition, there were
multiple reports of moose in the northeast region of the
state with poor antler development or impaired vision due
to unknown causes (E. Butler, personal communication)
but consistent with clinical signs and lesions previously
observed in moose infected with E. schneideri [18]. Histor-
ically, this parasite was thought to be limited to the western
half of North America and small pockets of the southeast-
ern USA; however, it is possible the range of E. schneideri
has extended into Minnesota, which could explain the
lesions observed in deer and moose.
The life-cycle of E. schneideri involves a cervid host and

a hematophagous insect vector. Mule deer (Odocoileus
hemionus) and black-tailed deer (Odocoileus hemionus
columbianus) are definitive hosts [22–25], and transmis-
sion occurs via the bite of a tabanid horse fly or deer fly

(Diptera: Tabanidae) [26, 27]. Tabanid flies become
infected when they ingest microfilariae (L1) in a blood
meal. After metamorphosis in an infected fly, third-stage
larvae (L3) migrate from the fly mouthparts into the host’s
circulatory system, where they eventually migrate to the
carotid or leptomeningeal arteries and mature into adults
(L5) [27–29]. Microfilariae progeny generally reside within
the smaller capillaries of the head and neck, where they
can be acquired by a feeding tabanid fly to complete the
parasitic life-cycle [23].
Although infections in definitive mule deer and

black-tailed deer hosts are generally subclinical, atypical
hosts, including moose, white-tailed deer, elk (Cervus
canadensis), sheep (Ovis spp.) and goats (Capra hircus),
can develop elaeophorosis [25]. Elaeophorosis is character-
ized by obstructed blood flow, endothelial damage, throm-
bosis, and infarction due to the presence of nematodes in
the carotid and cephalic arterial system [18, 30, 31]. This
disruption in arterial circulation can lead to blindness;
ischemic necrosis of the brain, ears, muzzle and other
cephalic tissues; poor antler development; oral food impac-
tions; and death [18–21, 30, 32].
We investigated the potential for non-endemic parasitic

nematodes, particularly E. schneideri, to be associated with
CNS disease in Minnesota moose. Our objective was to
determine if filarioid parasites were detectable in CNS
tissue samples of moose from Wünschmann et al. [7] and
tabanid flies in Minnesota. Our data reveal that E. schnei-
deri is indeed present in the Minnesota moose herd and
tabanid horsefly vectors, suggesting the parasite could
contribute to morbidity and mortality in moose and trans-
mission can occur locally. This study serves as the first
documentation of E. schneideri in Minnesota and the
Midwest, as well as provides new insight into the potential
causes of morbidity and mortality in the Minnesota moose
population with implications for future population
management.

Methods
Moose sample collection and tissue histology
Carcasses from 62 Minnesota moose were necropsied and
CNS tissues examined histologically for any pathological
changes [7]. Briefly, tissues were collected from carcasses
of moose that died of unknown causes, vehicular collisions,
or were euthanized by tribal or Department of Natural
Resources personnel due to various clinical signs. Sections
of central nervous system (CNS) tissues were preserved in
10% neutral buffered formalin, embedded in paraffin,
sectioned, and stained with H&E for microscopic examin-
ation. Specimens were categorized as histologically positive
(HP) if migration tracts, larvae, morulae, or cross-sections
of adult nematodes were visible, whereas specimens with
no pathological changes evident in the CNS were
categorized as histologically negative (HN). Based on these
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results, 34 animals (22 HP; 12 HN) were selected for fur-
ther molecular analysis.

Molecular testing of moose tissues
To screen the preserved moose CNS tissues for the pres-
ence of pathogenic nematodes, two separate 10 μm shavings
were obtained from the formalin-fixed, paraffin-embedded
tissue blocks for molecular analysis. Duplicate shavings were
examined to increase sensitivity. Each shaving was subjected
to DNA extraction according to manufacturer’s instructions
(DNEasy Blood & Tissue Kit, Qiagen, Valencia, CA, USA).
DNA extraction control was included to detect contamin-
ation during the DNA extraction process. Purified DNA
was first screened for the presence of P. tenuis using a
nested polymerase chain reaction (PCR) with the primary
primer pair PTP1 (5'-CCG TCG AAT ACA TGT CAT
CC-3') and PTP2 (5'-TCG TCA AGA CGA TGA TTC
CC-3'); and the secondary primer pair PtIntITSF (5'-AGA
ATT ACG ACA ATG GCA AC-3') and PtIntITSR (5'-ATG
ATA CCC ATT GAT AAT C-3'), as previously described
[13, 14, 33]. This assay is designed to selectively amplify a
110 bp portion of the second internal transcribed spacer re-
gion (ITS2) of Parelaphostrongylus spp. [33]. To screen for
the presence of other nematodes in the moose CNS tissues,
the Nematoda-wide primers Nem18SF (5'-CGC GAA TRG
CTC ATTACA ACA GC-3') and Nem18SR (5'-GGG CGG
TAT CTG ATC GCC-3') that targets a 508 bp segment of
the 18S rRNA gene were utilized as previously described
[34]. All positive PCR products were purified using the Qia-
gen PCR Purification Kit (Qiagen, Valencia, CA, USA) and
sequenced at the University of Tennessee Genomics Core
(Knoxville, TN, USA).

Tabanid fly collection and molecular screening
To survey for the presence of cervid nematode parasites
in tabanid flies, 618 flies were collected from four loca-
tions in Minnesota (Fig. 1) using a canopy trap [35]. Sites
were chosen based on their proximity to known moose
habitat, remoteness and ease of access. Three of the four
sites fall within the current Minnesota moose range and
the fourth site, located in the Carlos Avery Wildlife Man-
agement Area in Anoka County, serves as an outside rep-
resentative. Traps were operated intermittently in
June-September of 2013. Captured specimens were stored
at ~20 °C until they could be sorted, identified to genus,
and then preserved in 70% ethanol for later DNA extrac-
tion. DNA was extracted using the Qiagen DNeasy Blood
and Tissue Kit (Qiagen, Valencia, CA, USA) following
manufacturer's instructions. Flies were divided into groups
of 10, and 5 μl of DNA from each fly was pooled into the
corresponding group’s microcentrifuge tube. To screen for
nematode DNA within pooled fly DNA, a PCR reaction
with the Nem18S primers described above were utilized.
Individual flies in PCR-positive DNA pools were subjected

to an additional PCR reaction using the same Nem18S
primers. All positive reactions were purified using the Qia-
gen PCR Purification Kit (Qiagen, Valencia, CA, USA) and
sequenced at the University of Tennessee’s Genomics
Core (Knoxville, TN, USA).

Phylogenetic analysis of parasite sequences
All 18S and ITS2 consensus sequence chromatograms were
trimmed and edited by hand using Sequencher 5.3 (Gene
Codes Corporation, Ann Arbor, MI, USA). Edited
sequences were compared against the NCBI GenBank data-
base. Due to the scarcity of published genetic data for para-
sitic nematodes known to infect cervids, we also compared
our genetic data with sequences obtained from adult refer-
ence nematodes (Additional file 1: Table S1) that we identi-
fied morphologically and subjected to DNA extraction and
PCR amplification as described above. Alignment and
construction of neighbor-joining trees of 18S nematode
sequences were done using MEGA 6.0 [36]. All consensus
sequences were deposited in the GenBank database under
the accession numbers KT020850, KT031393, KT878970,
KT878971, KT878974, KT878980-KT878988, KT885226,
KT885227, KT907501-KT907509 and KT93494.

Parasite prevalence estimates and statistical analysis
To estimate the prevalence of infected fly vectors, we
compared the percentage of infected flies with each
nematode species that was identified through DNA se-
quencing and phylogenetics. Our analysis also included
a comparison of parasite prevalence among trapping
sites, as well as among different fly genera using Dunn’s
multiple comparisons test (P ≤ 0.05). Statistical analyses
were performed with GraphPad Prism v.6 (GraphPad
Software, La Jolla, CA, USA).

Results
Multiple nematode species detected in CNS tissues of
free-ranging Minnesota moose
Using Nematoda-wide 18S primers, nematode DNA was
successfully amplified and sequenced from 24 (68.6%)
individual moose. When compared against GenBank,
sequences most closely aligned with 18S sequences from
nematode species of the family Onchocercidae, including
Setaria digitata (GenBank: DQ094175.1), with a 98–99%
maximum identity. Despite the high percent identity, S.
digitata is not commonly associated with cervids and is
not endemic to North America [25, 37–39]. Due to the
highly conserved nature of the 18S rRNA target, we con-
cluded the sequences from the Minnesota moose tissues
indeed belonged to filarioid nematodes; however, they
were most likely not S. digitata.
A phylogenetic comparison of 18S sequences from the

Minnesota CNS moose tissues and reference specimens
revealed the presence of 3 distinct species of filarioids in
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the moose CNS tissue samples (Fig. 2): Setaria yehi, E.
schneideri and Rumenfilaria andersoni. The arterial worm,
E. schneideri, was detected in 20 individual moose, 10
(50%) of which had no histological evidence of CNS nema-
tode infections, and 10 moose had either migration tracts
or nematodes visible in the CNS sections (Table 1). A sec-
ond nematode species, S. yehi, was detected in one
histologically-negative moose and four moose with migra-
tion tracts in the CNS. Two animals were positive for E.
schneideri and S. yehi. Rumenfilaria andersoni was detected
in a single moose. All nematode sequences obtained were
deposited into GenBank (Additional file 2: Table S2).

Elaeophora schneideri present in Minnesota tabanid flies
A total of 618 tabanid flies in three genera were trapped
from four locations (Table 2) and molecularly screened

for the presence of filarioid nematodes. In order of de-
scending abundance, the flies identified were Chrysops
spp., Hybomitra spp. and Tabanus spp. Representatives
from all three genera were collected at each of the trap-
ping sites except for the St. Louis County location, where
only Chrysops spp. were obtained.
PCR screening and sequencing with

Nematoda-specific 18S rRNA primers revealed 5.8%
(95% CI: 4.0–7.6%) of the flies tested were positive
for E. schneideri (Fig. 3). The majority of E. schnei-
deri-sequence-positive flies were Chrysops spp. (86.2%;
95% CI: 74.9–97.5%), with Hybomitra spp. represent-
ing only 13.9% (95% CI: 2.6–25.2%) (Fig. 4). Elaeo-
phora schneideri was not detected in the Tabanus
spp. tested. Although prevalence of E. schneideri var-
ied slightly across fly genera, these differences were

Fig. 1 Geographical location of tabanid fly trapping sites and MN moose mortality sites. Four individual trapping sites were chosen for fly
collection during June-August of 2013. Sites of moose mortalities are marked with circles. The shaded region represents the current MN
moose range
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not statistically significant (Friedman test with Dunn’s
correction for multiple comparisons, adjusted P-value
< 0.05 used to indicate a significant difference).
Prevalence of E. schneideri across trapping sites varied
greatly, ranging from 0% (0 of 110) at Grand Portage
to 2.3% (95% CI: 0.9–3.7%) at Anoka County, to 9.3%
(95% CI: 1.5–17.1%) at Lake County, and 100% (21 of
21) at the St. Louis County location (Fig. 4). However,
these differences were not statistically significant
(Friedman test with Dunn’s correction for multiple
comparisons, adjusted P-value > 0.05).

Other filarioid species detected in Minnesota tabanid flies
In addition to E. schneideri, two other species of filarioid
worms were detected in the Minnesota horse flies (Fig.
3). Rumenfilaria andersoni was detected in 9 Chrysops
spp. flies from the Grand Portage site. Furthermore, add-
itional unique filarioid sequences were detected in three
Chrysops spp. flies. When compared against GenBank,
the unknown filarioid sequences most strongly aligned
with 18S sequences from Dipetalonema spp. (GenBank:
DQ531723.1) and Loa loa (GenBank: DQ094173.1) with
99% identities. Based on the sequence data, we were

Fig. 2 Phylogenetic analysis of partial nematode18S sequences (508 bp) obtained from formalin-fixed paraffin-embedded CNS tissues of various
ruminants. Tree was constructed using the maximum likelihood method and the evolutionary distances computed using the Kimura 2-parameter
method. Bootstrap values ≥ 50% are shown above the branches. The tree is drawn to scale. Reference nematodes are labeled with their respective
NCBI GenBank accession number. Markers indicate the detection of double infections (triangles, P. tenuis + E. schneideri; circles, S. yehi + E. schneideri;
squares, P. tenuis + S. yehi)
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unable to definitively identify the genus or species of
these unknown nematode(s).

Multiple E. schneideri 18S haplotypes identified in hosts
and vectors of Minnesota
A comparison of all E. schneideri 18S sequences amplified
from tabanid and moose hosts revealed the presence of

four distinct 18S haplotypes (Additional file 2: Table S2,
Additional file 3: Table S3). Two 18S haplotypes were
observed among the tabanid E. schneideri sequences, with
94% (34 of 36) representing a single haplotype we denoted
as “ES-1”; the other haplotype had a single representative
and was labeled as “ES-2.” The sequence quality was poor
for one isolate, F-369, and was therefore not included in

Table 1 Summary of demographics, histology, and sequence results for Minnesota moose CNS tissues (n = 34; 2004–2013).
Negative histology results refer to animals with no pathological changes in the CNS tissues consistent with a nematode infection

Moose ID Sex (M/F) Agea Histology results P. tenuis (+/-) E. schneideri (+/-) S. yehi (+/-) R. andersoni (+/-)

MO-32 F Adult Migration tracts present + - - -

MO-19 F Calf Migration tracts present + - + -

MO-27 F Adult Migration tracts present + - + -

MO-6 F Adult Migration tracts present - + - -

MO-2 M Adult Migration tracts present - + - -

MO-17 F Yearling Migration tracts present - + - -

MO-3 F Adult Migration tracts present - + - -

MO-25 M Calf Migration tracts present - + - -

MO-29 F Adult Migration tracts present - + - -

MO-15 F Yearling Migration tracts present - + + -

MO-21 M Yearling Migration tracts present - + + -

MO-10 F Yearling Migration tracts present - - - -

MO-18 F Yearling Morulae present + - - -

MO-7 M Yearling Morulae present + - - -

MO-1 F Calf Larvae present + - - -

MO-13 F Adult Larvae present + - - -

MO-4 M Yearling Adult, morulae present + - - +

MO-5 F Yearling Adult, morulae present + + - -

MO-35 F Calf Adult present + - - -

MO-26 M Calf Adult present + - - -

MO-33 F Yearling Adult present + - - -

MO-30 M Adult Adult present + - - -

MO-31 M Adult Adult present + + - -

MO-8 M Yearling Negative + - + -

MO-9 M Yearling Negative - + - -

MO-11 F Adult Negative - + - -

MO-12 F Yearling Negative - + - -

MO-14 F Adult Negative - + - -

MO-16 F Calf Negative - + - -

MO-20 M Adult Negative - + - -

MO-22 M Adult Negative - + - -

MO-23 F Adult Negative - + - -

MO-24 M Calf Negative - + - -

MO-28 M Adult Negative - + - -

Total number of mooseb 15 20 5 1
aMoose were categorized as adults (> 2 years-old), yearlings (12–23 months-old), or calves (< 1 year-old)
bTotal number of moose refers to the total number of animals that were sequence-positive for each parasite species
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Table 2 Fly counts per genus and trapping location used in the molecular survey for filarioid nematodes. Trapping locations
correspond to the locations detailed in Fig. 1. Number of flies that were PCR-positive for E. schneideri are listed first, followed by the
total fly count. Prevalence values (% PCR-positive for E. schneideri) are listed in parentheses

Fly genus Anoka County Grand Portage Lake County St. Louis County Total no. of flies per
genus (% prevalence)

Chrysops spp. 5/364 (1.4) 0/103 (0) 5/18 (27.8) 21/21 (100) 31/506 (6.1)

Hybomitra spp. 5/62 (8.1) 0/6 (0) 0/34 (0) 0/0 (0) 5/102 (4.9)

Tabanus spp. 0/7 (0) 0/1 (0) 0/2 (0) 0/0 (0) 0/10 (0)

Total no. of flies per
location (% prevalence)

10/433 (2.3) 0/110 (0) 5/54 (9.3) 21/21 (100) 36/618 (5.8)

Fig. 3 18S rRNA gene sequencing and phylogenetic analysis reveals the presence of multiple filarioid nematodes in Minnesota tabanid horseflies.
Fifty-four nematode 18S rRNA gene sequences (796 bp) were used in the analysis. Fly isolate F-369 was not included in the analysis due to poor
quality sequence data. The evolutionary history was inferred using the maximum likelihood method and evolutionary distances computed using
the Kimura 2-parameter method. The tree is drawn to scale. Bootstrap values are shown above the branches. Colored markers correspond to fly
species and trapping location. Reference nematodes are labeled with their respective NCBI GenBank accession number
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this analysis. Analysis of the 18S rRNA gene sequences
from the moose CNS tissues revealed 90 ± 13.2% (95% CI:
76.8–100%) of the sequences were identical to the ES-1
haplotype found in the flies. Two additional unique haplo-
types, each with a single representative (“ES-3,” “ES-4”;
Additional file 2: Table S2) were also observed.

Discussion
To our knowledge, this study is the first to report the
presence of the arterial worm E. schneideri in the Midwest
of the USA, specifically Minnesota, indicating E. schnei-
deri could be an emerging pathogen in moose. Historic-
ally, E. schneideri was thought to be primarily found in the
western half of North America, presumably in conjunction
with the geographical range of the well-adapted mule deer
and black-tailed deer definitive hosts. In these hosts,
prevalence of E. schneideri is high, reaching levels of
78–100% [26, 32]. However, the parasite has also been
reported in white-tailed deer in Florida, Georgia, South
Carolina and Texas with a much lower prevalence of
2–10% [24, 40]. It is speculated that the emergence of E.
schneideri in the southeastern USA is a consequence of
the translocation of infected deer from endemic areas in

the West [25, 31, 40]. At this time, it is uncertain if the
emergence of E. schneideri in Minnesota is due to an im-
portation event(s) or a natural expansion of the parasite’s
geographical range. Alternatively, E. schneideri could be
endemic in Minnesota moose but remained undetected
due to low prevalence. Future comparative genetics stud-
ies of various geographical isolates may provide insight
into the origin of Minnesota E. schneideri.
Our surveillance of tabanid flies for the presence of filar-

ioid nematodes further confirms the presence of E. schnei-
deri in Minnesota and suggests the nematode is being
transmitted and maintained in the environment. An over-
all prevalence of 5.8% in the Minnesota flies was relatively
high compared to the 0.3% reported in South Carolina
[41] and 0.8% in Montana [42]; however, prevalence rates
as high as 20% have been reported in New Mexico [26,
43]. Interestingly, we were able to sequence E. schneideri
from Chrysops spp. and Hybomitra spp. flies (Fig. 2). Pre-
vious surveys implicated Hybomitra spp. as an intermedi-
ate host for E. schneideri [42–44], but this is the first time
the parasite has been detected in Chrysops spp. flies. Al-
though we failed to detect E. schneideri in Tabanus spp.
flies, we recognize our sample size was low, and thus, it

Fig. 4 Detectable E. schneideri in Minnesota tabanid horseflies varies among fly species and trapping sites. Number of flies tested (a) and
prevalence (number of positive flies / total number of flies) (b) that were PCR-positive (blue) or negative (black) for E. schneideri was determined
based on 18S sequencing results for each trapping location and each of the fly genera tested
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remains undetermined if Tabanus spp. contribute to the
eco-epidemiology of E. schneideri in the Minnesota system.
The presence of E. schneideri could have significant

health implications for Minnesota moose. Reported clinical
signs of elaeophorosis in moose include sloughed ear tips
[19], blindness [18, 20], neurological impairment and death
[45]. Typically, this is due to the nematodes restricting
blood flow in the carotids and other cephalic arteries, lead-
ing to the development of ischemic lesions [18, 20, 30].
Interestingly, neither ischemic cerebrocortical necrosis nor
the presence of intra-arterial nematodes in the brain,
including meninges, were observed in any of the cases.
Instead, animals with abnormal histological findings
exhibited lesions consistent with the metastrongylid para-
site, P. tenuis. All moose with observed nematodes were
sequence-positive for P. tenuis, which is expected since this
organism is a common CNS pathogen in Minnesota moose
[7]. However, E. schneideri was detected in moose with
both normal histology and lesions consistent with
nematode migration tracts. Aberrant migration has not
been reported with E. schneideri, thus the observed migra-
tion tracks are most likely caused by coinfection with P.
tenuis. Although these samples were PCR-negative for P.
tenuis, amplification of DNA from FFPE samples lacking
visible nematodes can have limited success [46]. We sus-
pect the E. schneideri detected in the Minnesota moose
CNS tissues originated in the arteries, most likely of the
leptomeninges, of the cranium, and may have been dis-
lodged during necropsy. Under these conditions, the para-
sites may not have caused overt gross or histological
lesions. This suggests infection with E. schneideri may not
necessarily result in clinical CNS disease.
Previous studies surveying hunter-killed moose for E.

schneideri implied elaeophorosis is relatively mild in these
animals, with many exhibiting subclinical infections [45,
47]; however, both surveys took place in endemic regions
(Colorado and Wyoming) and only examined seemingly
healthy individuals. We would predict co-infections with
E. schneideri and P. tenuis or other parasite species would
negatively impact overall moose health. We speculate that
these infections could lead to a compromised immune
state, allowing greater susceptibility to other pathogens,
predation, or result in decreased reproductive rates. In
Minnesota, where the moose population is already im-
pacted negatively by parasites, including P. tenuis, liver
flukes (Fascioloides magna) and winter ticks (Dermacentor
albipictus) [7], the emergence of E. schneideri could fur-
ther repress an already struggling population.
In addition to E. schneideri, we also detected the pres-

ence of other filarioid species in the moose CNS tissues
and tabanid flies. Sequences from unidentified species of
filarioid nematodes were amplified from three Chrysops
spp. flies from the Grand Portage trapping site (Fig. 2). We
were unable to determine the identity or the significance, if

any, of these findings. Future studies examining the flies
for infectious third stage larvae may allow these species to
be differentiated based on morphological characters.
Screening of the CNS tissue samples revealed S. yehi and
R. andersoni were present in a select number of Minne-
sota moose (Table 1). Setaria yehi is a common parasite of
white-tailed deer and found in the peritoneal cavity. No
associations with disease in moose have been reported, al-
though other Setaria species, namely Setaria digitata and
Setaria cervi, have documented neurotropism in cattle
and deer, respectively [25, 48]. Rumenfilaria andersoni,
another filarioid nematode, infects moose, caribou (Rangi-
fer tarandus) and white-tailed deer [49–52]. Adult R.
andersoni reside within the lymphatic vessels of the
rumen and microfilariae can be observed in the general
circulatory system [49, 50]. It is unknown if infections
with R. andersoni can lead to clinical or subclinical dis-
ease; only macroscopic inflammatory changes within the
ruminal vessels of infected reindeer have been described
[51]. Microfilariae identified as S. yehi and R. andersoni
have been observed in blood samples from live-captured
moose of Minnesota [52], so detection of these microfilar-
iae in these samples is not surprising.

Conclusions
To our knowledge, this study is the first to document the
presence of the pathogenic nematode E. schneideri in
moose and tabanid fly populations of Minnesota, USA,
indicating the occurrence of local transmission and
expanding the current known distribution of E. schneideri.
A better understanding of the distribution of E. schneideri
is essential to help prevent the spread of this parasite to
other non-endemic locations through human-mediated
translocation of infected cervids, as well as its potentially
negative economic impact on domestic farmers (loss of
livestock, cost of treatment, etc.) or state and local govern-
ments (loss of hunting and ecotourism revenues). Further-
more, we were able to enhance our understanding of E.
schneideri eco-epidemiology by implicating another genus
of tabanid flies as a newly discovered vector of E. schnei-
deri. These data will help set the foundation for future
research investigating E. schneideri, particularly with
regards to elaeophorosis and the potential impact it may
have on moose and other cervid populations.
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