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Abstract

Background: The objectives of this study were to evaluate the prevalence and infection intensity of intestinal
parasites in different dog and cat populations in Crete, Greece, estimate the zoonotic risk and identify risk factors.

Methods: Faecal samples from shelter, household and shepherd dogs and shelter and household cats were
analyzed using sedimentation/flotation techniques. Giardia and Cryptosporidium were detected by a quantitative
direct immunofluorescence assay (IFA). PCR and sequencing was performed to evaluate the zoonotic potential of
Giardia and Cryptosporidium positive samples.

Results: Totals of 879 dog and 264 cat faecal samples were examined. In dogs, the overall prevalence was 25.2%
(Cl: 22.4-28.1) for Giardia spp.; 9.2% (Cl: 7.3-11.1) for Ancylostoma/Uncinaria spp.; 7.6% (Cl: 5.9-9.4) for Toxocara
spp.; 5.9% (Cl: 4.4-7.5) for Cryptosporidium spp.; 4.6% (Cl: 3.2-5.9) for Cystoisospora spp.; 2.7% (Cl: 1.7-3.8) for Toxascaris
leonina; 1.7% (Cl: 0.9-2.6) for Capillaria spp.; 0.8% (Cl: 0.2-1.4) for taeniid eggs; 0.2% (Cl: 0-0.5) for Dipylidium caninum;
and 0.1% (Cl: 0-0.3) for Strongyloides stercoralis. In cats, the prevalence was 20.5% (Cl: 15.6-25.3) for Giardia spp.; 9.5%
(Cl: 5.9-13.0) for Cystoisospora spp.; 8.3% (Cl: 5.0-11.7) for Toxocara spp.; 7.6% (Cl: 44-10.8) for Ancylostoma/Uncinaria
spp.; 6.8% (Cl: 3.8-9.9) for Cryptosporidium spp.; 4.2% (Cl: 1.8-6.6) for Capillaria spp.; 0.8% (Cl: 0-1.8) for taeniid eggs; and
04% (Cl: 0-1.1) for Hammondia/Toxoplasma. Concerning the risk factors evaluated, there was a negative association
between age and Giardia infection and between age and T. leonina infection intensity for dogs. Sequencing results
revealed the presence of mainly animal-specific G. duodenalis assemblages C and D in dogs and assemblages F,
C and BIV-like in cats, with only a limited number of (co-)infections with assemblage A. As for Cryptosporidium,
the dog-specific C. canis and the pig-specific C. scrofarum were detected in dogs and the cat-specific C. felis was
detected in cats.

Conclusions: High levels of parasitism in both dogs and cats were recorded. Giardia was the most prevalent
parasite in all dog and cat populations except for shepherd dogs. Genotyping results suggest a limited zoonotic
risk of Giardia and Cryptosporidium infections from dogs and cats in Crete. Taeniid eggs were more prevalent in
shepherd dogs suggesting access to carcasses and posing a threat for cystic echinococcosis transmission.
Infection rates of Toxocara spp. in both dogs and cats show that companion animals could be a significant
source of infection to humans.
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Background

Intestinal parasite infections are still abundant in com-
panion animals, despite all the highly efficient drug
formulations available and the control measures taken
by owners and veterinarians [1-8]. Moreover, parasites
are responsible for some of the most important and
well-recognized zoonoses transmitted from companion
animals to man globally such as Giardia spp., Crypto-
sporidium spp., Toxocara spp., hookworms and Echino-
coccus granulosus [9-13].

Nowadays, changes due to climate alterations and so-
cial behaviour that affect humans’ lives and consequently
the lives of the animals which live close to them [14, 15],
alter the interactions between humans and pathogens
leading to (re)emergence of several diseases, including
zoonotic ones [16, 17].

The distribution of zoonoses associated with companion
animals is highly affected by animals’ movements (be-
tween regions, countries and continents) which in fact are
the means to relocate pathogens and vectors they harbour.
The above is becoming more and more important since
human travel continues to increase in parallel with the
population and financial status increase, and when
humans travel, they often take their companion animals,
particularly dogs.

All the above is in fact unfolding the reasons why it is
crucial to fill the gaps on the current distribution of
these diseases in a constantly changing environment and
to describe the risks associated with pet infection in
order to assure their well-being and to prevent the free
movement of zoonotic pathogens.

The aim of our study was to investigate the presence
and infection intensity of intestinal parasites in dogs and
cats, the risk factors (such as lifestyle, veterinary care,
etc.) that influence those infections and their zoonotic
potential. This was done by performing a cross-sectional
epidemiological study within a defined animal/human
community, i.e. the island of Crete, as a case scenario.
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Methods

Populations studied

Faecal samples were collected from different dog popula-
tions (shelter, household and shepherd) as well as shelter
and household cats in Crete Island in Southern Greece
(Fig. 1), from October 2011 to January 2015.

Crete is the largest and most densely populated island
of Greece (623,000 residents recorded in 2011) with a
population well distributed in urban and rural areas. The
island is also a highly popular tourist destination (ap-
proximately 3.5 million international tourist passengers’
arrivals in 2013) (Region of Crete: www.crete.gov.gr).
Moreover in Crete, in addition to the high number of
companion animals, there is a significant livestock and
wildlife population (Hellenic Ministry of Rural Develop-
ment and Food: http://minagric.gr).

Since data on the precise population of pets in the
location were not available, the sample size was deter-
mined estimating the dog and cat population size as
“infinite”. The prevalence of intestinal parasitism in dif-
ferent dog and cat studies in Europe varies enormously
depending on the sampled animal population and the
diagnostic techniques that were used [3, 6, 18-24]. In
this study, in order to calculate the sample size (with a
precision of 5% and a 95% confidence interval) we se-
lected to relate our “expected prevalence” values to re-
cent reports of Giardia prevalence in Europe. Therefore,
the targeted sample size was defined as follows: for
household dogs up to 200 dogs (reported prevalence
10-20%); for shelter dogs up to 400 dogs (reported
prevalence 20-50%); for household cats 138 cats (re-
ported prevalence < 10%) and for shelter cats 385 cats
(reported prevalence 10-50%) [3, 5, 18, 19, 25-28]. For
shepherd dogs there is little information available and
given the difficulties in approaching and handling such
dogs we aimed at collecting the maximum feasible num-
ber of samples. In order to achieve the most accurate
coverage of the whole island, the animals enrolled in our
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Fig. 1 Map of Crete demonstrating the locations of different sample points per animal population category. Key: triangles: shelter dogs/cats;
rhombi: shepherd dogs; gray ellipses: household dogs/cats with the number of animals sampled
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study were allocated proportionally to the four different
counties of the island according to the inhabitant’s popu-
lation density (Fig. 1).

Individual rectal faecal samples were randomly collected
from dogs and cats of all ages with or without intestinal
symptoms from 561 households, 11 shelters and 29 sheep
and goat farms. After collection, the samples were imme-
diately transported under vacuum [29] to the laboratory
where they were stored at 4 °C and examined within
2 days. When a sample was found to be positive by
coproscopic analysis for Giardia spp. or Cryptosporid-
ium spp., it was stored at -20 °C until DNA extraction
was performed and molecular genotyping followed.

For every animal/sample, a data-form was completed
by interviewing the owner or in case of shelters the person
who was responsible for the animals, providing informa-
tion on age, sex, breed, living conditions (indoors or out-
doors), presence of other animals, the presence or absence
of diarrhoea (up to maximum 1 month before sampling),
if the animal had travelled recently and the antiparasitic
treatment plan followed (including time of last treatment).
Faecal consistency was recorded for all faecal samples.
The consistency of individual faecal samples was scored
using the following scale: 1, formed; 2, soft; 3, diarrhoea,
4, haemorrhagic diarrhoea.

Parasitological techniques

The presence of worm eggs and protozoan oocysts was
determined by applying two different methods, ie. a
sedimentation (acid/ether) and a sedimentation/flotation
technique (using a saturated sugar salt solution as a
flotation fluid with 1.28 specific gravity) [30]. For the
detection of Giardia spp. and Cryptosporidium spp.
(oo)cysts a quantitative direct immunofluorescence
assay (IFA) based on the commercial MERIFLUOR
Cryptosporidium/Giardia kit (Meridian Diagnostics
Inc., Cincinnati, Ohio) was used [31, 32].

Molecular analyses

DNA was extracted from the positive Giardia spp. and
Cryptosporidium spp. faecal samples using the QIAamp®
Stool Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. For the amplification
of the Cryptosporidium 18S ribosomal RNA gene
(rDNA18S) and HSP70 gene, previously described PCR
protocols were used [33, 34]. For the identification of
Giardia DNA, the Giardia rRNA 18S gene (rDNA 18S)
[35], the B-giardin gene [36], the triose phosphate isom-
erase (TPI) gene [37] and the glutamate dehydrogenase
(GDH) gene [38] were used. Amplification products
were visualised on 1.5% agarose gels with ethidium
bromide. A positive (genomic DNA from a positive fae-
cal sample) and negative (PCR water) control sample
were included in each PCR reaction.
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PCR products were purified and sequenced from both
strands. PCR products were purified using the Qiaquick
PCR purification kit (Qiagen) and fully sequenced using
the Big Dye Terminator V3.1 Cycle sequencing Kit
(Applied Biosystems, California, USA). Sequencing was
performed by an external company (GATC Biotech)
using the Big dye Terminator V3.1 Cycle sequencing
Kit (Applies Biosystems) and the reactions were ana-
lyzed using a 3730x] DNA Analyzer (ThermoFisher
Scientific). Sequences were assembled using Seqman
5.0 Software (Lasergene DNASTAR) and were aligned
using the Basic Local Alignment Search Tool (BLAST)
as well as compared with reference sequences using
MegAlign (Lasergene DNASTAR) (Additional file 1).
For multilocus genotyping Clustal X, 2.0.11 software
was used and reference sequences were selected ac-
cording to Caccio et al. [39].

Statistical analysis
Descriptive statistical analyses and multivariate meth-
odologies were performed using the statistical language
R [40] and the pscl package [41]. Two approaches were
applied as follows.

Multivariate binary logistic models

The effect of the independent variables (age in months,
gender, food, travel, neutering, living conditions, living
with other animals, antiparasitic treatment, time be-
tween treatment and sampling date, diarrhoea during
the last month, faecal score and type) on a sample being
or not infected by a parasite was studied through the
utilization of multivariate logistic models with forward
LR selection. Initially, a test of the full model against a
constant only model was performed in order to assess
whether there was a statistically significant effect of the
examined independent predictors on the response vari-
able through the utilization of the Omnibus Tests of
Model Coefficients, which uses the Chi-square test to
see if there is a significant difference between the log-
likelihood (-2LL) of the baseline model (constant
model) and the model with the predictors. In addition,
the Hosmer & Lemeshow (H-L) test was performed to
test whether the model provides a good fit to the data
(Additional file 2: Table S1).

Multivariate zero-inflated models

The effect of the independent variables on the parasitic
infection intensity (egg/(oo)cyst counts per gram) was
studied through the utilization of a zero-inflated nega-
tive binomial model [42] due to the excess of zero
counts and overdispersion of the data. In this analysis
the group of shepherd dogs were not included due to
the limited number of samples examined (Additional
file 2: Table S2).
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Results

Dogs

A total of 879 faecal samples from dogs were investi-
gated for the presence of intestinal parasites. Of these
samples, 278 were derived from shelter dogs, 529 from
household dogs and 72 from shepherd dogs (Table 1). In
total, 38.3% of dogs were found harbouring at least one
intestinal parasite. Precisely 25.5% were harbouring one
parasite, 8.9% two and the rest 3—6 different species.
The overall infection rate was 25.2% (CI: 22.4—28.1) for
Giardia spp.; 9.2% (CL: 7.3-11.1) for Ancylostoma/
Uncinaria spp.; 7.6% (Cl: 5.9-9.4) for Toxocara spp.;
5.9% (CI: 4.4-7.5) for Cryptosporidium spp.; 4.6% (CL:
3.2-5.9) for Cystoisospora spp.; 2.7% (1.7-3.8) for Tox-
ascaris leonina; 1.7% (CI: 0.9-2.6) for Capillaria spp.;
0.8% (CIL: 0.2—1.4) for taeniid eggs, 0.2% (CI: 0-0.5) for
Dipylidium caninum; and 0.1% (CI: 0-0.3) for Strongy-
loides stercoralis. The results for the different dog pop-
ulations are shown in Table 1.
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Among the different canine populations studied, shel-
ter dogs had the highest infection rates. In particular,
62.9% of the shelter dogs were infected with at least
one species of endoparasite compared to 51.4% of the
shepherd dogs and 23.8% of the household dogs.
According to the multivariate binary logistic model
analysis, the odds ratio (OR) of Giardia infection was
higher in shelter dogs than household dogs (11.24 times
higher) and shepherd dogs (15.63 times higher). How-
ever, based on the multivariate zero-inflated model,
among Giardia-infected individuals, household dogs had
generally higher cyst counts than shelter dogs (OR =
1.602). Regarding Cryptosporidium, and according to
the multivariate zero-inflated model, the odds ratio in
favour of zero Cryptosporidium OPG for household
dogs was 8.248 times higher than that for shelter dogs,
suggesting that household dogs were less prone to
Cryptosporidium infection than shelter dogs. However,
Cryptosporidium-positive household dogs shed more

Table 1 Prevalence of intestinal parasites and factors associated with this prevalence in different dog populations. Percentages
given for specific parasites refer to percentage of dogs that were found positive for an infection within a category of risk factor

Dog Parasite species Prevalence (%) Infection intensity History of diarrhoea

population (95% Ch Median? (Range) With diarrhoea Without diarrhoea

Shelter Al 62.9 (57.3-68.6) 46.0 54.0
Giardia 543 (48.5-60.2) 4,450 (100-222,800) 516 56.7
Cryptosporidium 14.7 (106-18.9) 200 (100-1,400) 7.8 20.7
Toxocara spp. 12.2 (84-16.1) 79 (1-12,000) 39 193
T. leonina 6.1 (3.3-8.9) 153 (2-3,330) 0.8 10.7
Hookworms 9.7 (6.3-132) 31 (3-588) 3.1 153
Capillariidae 0.7 (0.0-1.7) 150 &2) 08 0.7
Cystoisospora 76 (44-10.7) 26 (1-1,800) 78 73

Household All 23.8 (20.2-27.4) 255 74.5
Giardia 129 (10.0-15.7) 10,400 (100-75,800) 205 104
Cryptosporidium 1.9 (0.7-3.1) 300 (100-40,300) 4.5 13
Toxocara spp. 51 (3.2-70) 29 (2-4,284) 6.8 46
T. leonina 0.9 (0.1-1.8) 51 (15-223) 0 1.0
Hookworms 53(34-72) 9 (1-423) 15 6.6
Capillariidae 1.9 (0.7-3.1) 4.5 (1-1,246) 23 18
Cystoisospora 25 (1.1-38) 7 (1-8,400) 38 20

Shepherd All 514 (39.8-62.9) 0 100
Giardia 4.2 (0.0-88) 11,800 (3,000-122,700) 0 4.2
Cryptosporidium 14 (0.0-4.1) 1,200 (1,200) 0 14
Toxocara spp. 83 (1.9-14.7) 1185 (27-2543) 0 83
T. leonina 2.8 (0.0-6.6) 282.5 (109 & 456) 0 2.8
Hookworms 333 (224-442) 19 (1-894) 0 333
Capillariidae 4.2 (0.0-8.8) 20 (1-36) 0 42
Cystoisospora 83 (1.9-14.7) 3.5 (1-41) 0 83
Taeniid 69 (1.1-12.8) 16 (3-72) 0 6.9

“Median number of cysts/oocysts/eggs per gram of faeces
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oocysts than infected shelter dogs (OR =12.182). No
statistically significant correlations between infection
with the other parasites and their living conditions were
detected in both models (Table 2).

The mean age of the sampled dogs was approximately
3 years (39.5 months +41.8, SD). The majority of the
dogs were adults (> 12 months, n = 642), while 229 of
them were younger than 12 months and 8 were of
unspecified age. There was a significant correlation
between age and Giardia infection (Fig. 2) and between
age and T. leonina infection intensity. According to the
multivariate binary logistic model analysis, as age in-
creased by one month, the odds of detecting Giardia
cysts decreased by 1.9% =[(0.981-1) x 100] which is
also confirmed by the multivariate zero-inflated model,
according which the odds of absence of Giardia cysts
are increased by one unit increase of age. Similarly, ac-
cording to the multivariate zero-inflated model, as age
increased by one month, the odds of detecting T. leo-
nina eggs decreases by 7% =[(0.93—-1) x 100]. Regard-
ing the other parasites studied, their correlation with
age was not statistically significant.

Of the dogs which had a history of recent diarrhoea,
43.1% were positive for at least one intestinal parasite.
However, faecal consistency was not significantly associ-
ated with parasitic infection. The statistical analyses
showed that signs of diarrhoea (based on faeces
consistency) were significantly more often present in
younger animals (U =100,667, P=< 0.001). Moreover,
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there was a statistically significant association between
the factors “recent record of diarrhoea” and “live with
other animals”, (x(s, x = 1138) = 29495, P = < 0.001).

On average, all of the dogs sampled received 2.1 an-
thelmintic treatments/year (range 0—6). The arithmetic
mean of anthelmintic treatments/year was 2.3 for house-
hold dogs, 2.2 for shelter dogs and 0.5 for shepherd
dogs. Information about anthelmintic treatments was
not defined in 48 cases (5.5%). The frequency of antipar-
asitic treatment was also associated with diarrhoea and
more specifically, the effect of the odds of one treatment
per year increase resulted in a decrease by 0.828 times in
the trace of “recent record of diarrhoea”, implying diar-
rhoea to be caused by parasite infestation. However, the
number of antiparasitic treatments/year received was
not statistically associated with parasitic infection.

The risk analyses of all the other factors which were
evaluated in this study, such as the gender of the ani-
mals, their living conditions (indoors/outdoors), the type
of food, and recent travelling, showed no statistically sig-
nificant correlation with parasitic infection. Since almost
all shelter dogs had access to the external environment
and the shepherd dogs were also living outside, the risk
factor “living indoors/outdoors” was assessed only for
household dogs. The risk factor “recent travelling” was
also not analysed since only 4.2% of the dogs had been
travelling during the last months before sampling, in-
cluding within counties. The same applied for the “type
of food” factor, since the majority of the dogs were

Table 2 Prevalence of intestinal parasites and factors associated with this prevalence in different cat populations. Percentages given
for specific parasites refer to percentage of cats that were found positive for an infection within a category of risk factor

Cat Parasite species Prevalence Infection intensity History of diarrhoea
population (%0)(95% Cl) Median® (Range) With diarrhoea Without diarrhoea
Shelter All 55.9 (43.3-68.6) 153 84.7
Giardia 39.0 (26.5-514) 5,700 (100-700) 333 400
Cryptosporidium 119 (3.6-20.1) 100 (100-700) 222 100
Toxocara spp. 10.2 (2.5-7.9) 3 (1-63) 222 80
T. leonina 0 0 0 0
Hookworms 5.1 (-0.5-10.7) 7 (5-22) 0.0 6.0
Capillariidae 5.1 (0.0-10.7) 38 (17-84) 0.0 6.0
Cystoisospora 8.5 (1.4-15.6) 42 (2-2,330) 0.0 10.0
Household All 33.2 (26.7-39.6) 359 64.1
Giardia 15.6 (10.6-20.6) 5,800 (100-248,100) 164 13.1
Cryptosporidium 54 (2.3-85) 400 (100-1,800) 55 46
Toxocara spp. 78 (4.1-11.5) 278.5 (1-2,500) 27 100
T. leonina 0 0 0 0
Hookworms 83 (45-12.1) 72 (1-523) 55 10.0
Capillariidae 3.9 (1.3-6.6) 85 (1-1,161) 41 38
Cystoisospora 9.8 (5.7-13.8) 845 (1-6,114) 82 9.2

“Median number of cysts/oocysts/eggs per gram of faeces
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eating industrial/cooked food and only 28 were fed with
raw meat/offal, 64% of these being shepherd dogs.
Giardia spp. was the most prevalent parasite in all
dogs (25.2%) and also in shelter (54.3%) and household
(12.9%) dogs in particular. The range of the cysts being
shed by the infected animals varied from 100 to 275,800
cysts per gram of faeces with 6,855 cysts shed on average.
In the samples derived from shelter and household dogs,
the dog-specific assemblages C and D were dominating,
either alone (#=72) or in mixed infections (1 =15). A
limited number of dogs were infected with assemblage A
(n=2), assemblage AI (n=1), assemblage AIl (n=1) or a
mixture of A with C or D (n=5) or BIV-like and C (n=1)
(Table 3). Regarding shepherd dogs, no positive PCR
products were sequenced successfully. Multilocus geno-
typing was performed from one dog sample which was
classified as sub-assemblage Al using 3 genetic loci (bg,
TPIGEN and GDH). Alignment analysis of the isolate
showed 100% homology when compared to reference
sequences A5 for bg; Al for TPIGEN and Al for GDH
[39], resulting in multilocus genotype MLGA1 [43].
The PCR results for Cryptosporidium positive samples
showed that the HSP70 gene amplified 23.6% of the sam-
ples, whereas the 18S rDNA gene amplified 5.6%. Sequen-
cing revealed the presence of Cryptosporidium canis in 2
household dogs and C. scrofarum in a shelter dog.

Cats

In total, 264 faecal samples from cats were collected; 59
samples from shelters and 205 from owned cats. Unfor-
tunately, it was not possible to reach the target of 385
shelter cats. Overall, 38.1% of the cats were harbouring
at least one intestinal parasite. Precisely 26.4% were har-
bouring one parasite, 8.3% two and the rest 3—4 different
species. The prevalence was 20.5% (CL: 15.6-25.3) for
Giardia spp.; 9.5% (CIL: 5.9-13.0) for Cystoisospora spp.;

8.3% (CL: 5.0-11.7) for Toxocara spp.; 7.6% (CL: 4.4-10.8)
for Ancylostoma/Uncinaria spp.; 6.8% (CI: 3.8-9.9) for
Cryptosporidium spp.; 4.2% (CI: 1.8-6.6) for Capillaria
spp-; 0.8% (CI: 0.0—1.8) for taeniid eggs; and 0.4% (CI: 0—
1.1) for Hammondia/Toxoplasma. The results among
different feline populations are shown in Table 4.

The mean age of the sampled cats was 3.4 years
(40.8 months + 48.9, SD). The majority of the cats were
adults (> 12 months, 7 =161), while 97 of them were
younger than 12 months and 6 were of unspecified age.

Among the different feline populations studied, shel-
ter cats had the highest infection rates. Specifically,
55.9% of the shelter cats were infected with at least one
species of intestinal parasite compared to 33.2% of the
household cats. However, infection rates of the different
parasites were not statistically different between differ-
ent cat populations.

Of the cats which had a history of diarrhoea (30.9%),
32.9% were infected with at least one parasite. On average,
all cats sampled received 2.3 anthelmintic treatments/year
(range 0-6). The mean number of anthelmintic treat-
ments/year was 1.9 for household cats and 2.7 for shelter
cats. Information about anthelmintic treatments was
unknown in one case. Only 1.5% of the cats had been
travelling during the last months including within coun-
ties. No significant associations were found between
parasite infections and risk factors or between parasite
infections and diarrhoea.

Giardia spp. was the most prevalent parasite (20.5%),
both in shelter cats (39.0%) and household cats (15.6%).
When targeting the 18S rRNA gene, assemblage A was
identified in 10 cat samples. In 6 of these samples, no
amplification was obtained with the other genes, while
in 4 samples only assemblage F was detected in at least
one of the other loci. Assemblage F was also found alone
in 2 samples. Also, in two different cases, the typing



Kostopoulou et al. Parasites & Vectors (2017) 10:43 Page 7 of 12

Table 3 Genotyping results of samples from dogs infected by Table 3 Genotyping results of samples from dogs infected by

Giardia duodenalis (at all different loci) Giardia duodenalis (at all different loci) (Continued)

No. Host species Assemblage type 43 Household Dog C C
185 bg TPI gdh 4y Household Dog D D

1 Shelter Dog C 45 Household Dog C C

2 Shelter Dog ¢ 6 Shelter Dog C C+D C

3 Shelter Dog C D C+D 47 Household Dog «

4 Shelter Dog 48 Shelter Dog o D D

5 Shelter Dog C BlV-like 49 Shelter Dog C

6 Shelter Dog C 50 Shelter Dog C

7 Shelter Dog c c Al 51 Shelter Dog c D

8 Shelter Dog C c 52 Shelter Dog D D

9 Shelter Dog C 53 Shelter Dog D C+D D

10 Household Dog A 54 Shelter Dog C C

Il Household Dog C C+D 55 Shelter Dog C @

12 Shelter Dog b D 56 Shelter Dog C C+D C

13 Shelter Dog C Al 57 Shelter Dog C D D C

14 Shelter Dog C 58 Shelter Dog

15 Shelter Dog D 59 Shelter Dog D D

16 Shelter Dog c Al+C+D c 60 Shelter Dog C C

17 Shelter Dog C C+D 61 Shelter Dog C

18 Household Dog C C 62 Shelter Dog C

19 Shelter Dog 63 Shelter Dog C C

20 Shelter Dog 64 Shelter Dog C

21 Shelter Dog D D D D 65 Shelter Dog C

2 Shelter Dog C+D 66 Shelter Dog C C

23 Household Dog C 67 Shelter Dog C C C

24 Household Dog 68 Shelter Dog C

25 Household Dog [B) D 69 Shelter Dog C

26 Household Dog D D 70 Shelter Dog C C

27 Household Dog C 71 Shelter Dog C

28 Household Dog C ¢ c c 72 Household Dog

29 Household Dog A Al Al+C+D Al 73 Shelter Dog D D

30 Household Dog C 74 Shelter Dog

31 Household Dog D D D D 75 Shelter Dog D D

32 Household Dog D D D D 76 Shelter Dog

33 Shelter Dog C C C+D C 77 Shelter Dog D

34 Shelter Dog C C C C 78 Shelter Dog

35 Shelter Dog D D D D 79 Shelter Dog C

36 Shelter Dog C C C+D C 80 Shelter Dog C

37 Shelter Dog C 81 Shelter Dog C

38 Shelter Dog C « C ¢ 82 Shelter Dog C C

39 Shelter Dog C C+D C 83 Shelter Dog D

40 Shelter Dog C ¢ 84 Household Dog C

41 Shelter Dog D 85 Shelter Dog Al

42 Household Dog D

86 Shelter Dog C
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Table 3 Genotyping results of samples from dogs infected by
Giardia duodenalis (at all different loci) (Continued)

87 Household Dog C C @
88 Household Dog

89 Household Dog

90 Household Dog D C+D

91 Household Dog D

92 Shelter Dog All

93 Shelter Dog

94 Shelter Dog D

95 Shelter Dog

96 Shelter Dog D
97 Household Dog

98 Shelter Dog D
99 Shelter Dog

100 Shelter Dog D

101 Shelter Dog

102 Shelter Dog

103 Household Dog

104 Household Dog D D
105 Household Dog D All
106 Household Dog C

Table 4 Genotyping results of samples from cats infected by
Giardia duodenalis (at all different loci)

No. Host species Assemblage type
185 bg TPI gdh

Shelter Cat A

Shelter Cat
Shelter Cat
Shelter Cat

> > > >

Shelter Cat
Household Cat F F F
Shelter Cat BIV-like

Household Cat A F F

O 0 N O U M W N

Household Cat

o

Household Cat
Household Cat

N —

Household Cat

> > T >
l
il
l

w

Household Cat

~

Household Cat F

wul

Household Cat no result

Household Cat C

(o)
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revealed the presence of assemblage BIV-like (n=1) or
the dog specific assemblage C (n = 1) (Table 4).

Genotyping of Cryptosporidium positive samples showed
the presence of the feline specific species Cryptosporidium
felis (n = 4).

Discussion

The infection rates of intestinal parasites detected in this
study, revealed a high prevalence of parasitic infections
(38.2%) and the presence of different species of endopara-
sites in both dogs and cats. These infection rates were
equally distributed within animal species (38.3% for dogs
and 38.1% for cats) involved in the study. With the excep-
tion of shepherd dogs, Giardia spp. was the most preva-
lent parasite detected in the dog and cat populations
followed by significant prevalences of ascarids, hook-
worms and taeniid infections. These results are also re-
ported in other studies which consider Giardia the most
common enteric parasite of dogs and cats in developed
countries [2, 3, 23, 28, 44—48]. In shepherd dogs, hook-
worms were the most prevalent parasite species detected.

Among the targets of this study was to investigate the
potential effect of animal lifestyle to parasitism so animals
living in households, shelters or farms were included. The
results showed that more than half of the shelter dogs and
cats were infected with at least one species of endopara-
site, which was more or less expected, taking into consid-
eration the less hygienic conditions that those animal are
living in combined with a high population density that
usually exists in shelters. A high level of parasitism has
been previously reported in shelter dogs [3, 5, 22, 24]
while in shelter cats the prevalence observed in other
studies was lower [49, 50].

More than half of the shepherd dogs (51.4%) were
positive for at least one species of intestinal parasite.
The infection rate of intestinal parasites estimated in
shepherd dogs in this study was higher than in a previ-
ous record from Greece (26.0%) [27]. Such differences
are expected in cross-sectional studies especially given
time and region differences. However, our results were
in agreement with a study conducted in farm dogs in
Portugal (57.4%) [51]. Shepherd/farm dogs often receive
less veterinary care and preventive treatments. Com-
pared to a general average of more than 2 anthelmintic
treatments per year, shepherd dogs in our study received
only 0.5 treatments per year.

Although the prevalence of intestinal parasites in
household dogs was lower than in shelters, although not
statistically significant for many species, the percentage
of individuals infected was still noteworthy (23.8%). In
similar studies conducted in Italy the prevalence of in-
testinal parasites in household dogs was even higher,
reaching 57.0% of the animals [6, 23]. In our study there
was no difference in the risk of infection between dogs
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living in an apartment with no access to a yard or a gar-
den and dogs living in a house with access to outdoors.
A reason for that could be that even dogs that are kept
permanently indoors are regularly being walked by their
owners in public places getting in close contact with
other dogs (including stray ones) or their contaminated
faeces. Similar results were recorded in the household
cats studied, but this was probably due to the fact that
the majority of them also live partially outdoors. The
parasitism reported in household cats in this study is in
agreement with the infection rates reported in Austria,
Belgium, the Netherlands, France, Hungary, Italy, Romania
and Spain [6, 8, 21].

Although both household and shelter dogs received
regular anthelmintic treatments (i.e. an average of 2.3
for household dogs and 2.2 for shelter dogs per year),
this seemed not to control parasitism efficiently. This is
in agreement with the general recommendation by ESC-
CAP for roundworms in which it is suggested that an-
nual or twice yearly treatments do not have a significant
impact on the prevalence of patent infections within a
population, and therefore a treatment frequency of at
least 4 times per year is recommended (Worm Control
in Dogs and Cats - ESCCAP, www.esccap.org). Recent
modeling indicated that the environmental Toxocara
contamination by dogs can only be reduced significantly
if compliance to the four times a year treatment advice
is sufficiently high (90%) or if at least half of the dog
owners consistently remove their dog’s faeces [52]. In
cats, the frequency of anthelmintic treatment differed
between categories, with shelter cats being more fre-
quently treated (i.e. an average of 1.9 for household cats
and 2.7 for shelter cats per year). This could be explained
by a misconception of the cat owners that indoor cats do
not need preventive treatments [53].

Despite the high prevalence of parasitic infections,
most animals were healthy with no obvious signs of suf-
fering probably due to the low parasitic burden, as at
least suggested by the low number of egg/(oo)cyst out-
put recorded in most cases (even if usually there is not
a clear correlation between numbers of eggs/(oo-)cysts
and clinical signs). It was not statistically proven that
recent records of diarrhoea were correlated to parasitism
as also shown previously [54, 55] although there was
evidence that anthelmintic treatment had a positive ef-
fect on reducing such records. A supporting argument
for the absence of clinical disease could be that the
majority of animals were adults at the time of sampling.
Young animals are more sensitive to parasitism [56]
but although in this study there was a tendency of older
animals (> 2 year-old dogs and > 1 year-old cats) to be
less infected, this was not statistically significant for
most parasites. The only statistically proven facts were
that the chance to get infected by Giardia spp. and the
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infection intensity of 7. leonina was negatively corre-
lated to age in dogs.

Given the high prevalence and the potential zoonotic
importance, Giardia and Cryptosporidium positive sam-
ples were further investigated by PCR and sequencing of
the positive PCR products. In dogs, the host-specific as-
semblages C and D dominated, which has been described
before in various studies [23, 24, 36, 57-62]. Few dogs
were (co)- infected with assemblage A, and the majority
of these were identified as sub-assemblage AI. Sub-
assemblage Al is frequently found in animals, while
humans are most frequently infected with sub-assemblage
All [63, 64]. The sequence analysis in one G. duodenalis
sample further revealed a multilocus genotype (MLGQG)
which was previously described in calves in China [43].
Together, these results suggest that there is no significant
risk for zoonotic transmission of Giardia infections from
dogs in Crete.

In cats, the genotyping results seemed to indicate the
dominance of the potentially zoonotic assemblage A in
shelter animals and the co-infection of assemblages A
and the feline specific assemblage F in household cats.
However, the zoonotic assemblage A was identified only
at the 18S rDNA locus, while only assemblage F was
identified at the other loci. Since no distinction could be
made between assemblages A and F in the amplified re-
gion of the conserved rRNA 18S gene, it cannot be ex-
cluded that (some of) the samples that were amplified
with rDNA 18S gene were assemblage F instead of A.
Therefore, no conclusion can be drawn on the zoonotic
risk associated with Giardia infections in cats.

Regarding Cryptosporidium, the dog specific C. canis
was identified in only two household dogs and the pig spe-
cific C. scrofarum in one shelter dog. Cryptosporidium
canis has been also detected in household dogs in other
studies [48, 65, 66] and isolated in humans, mainly children
and immunocomprimised individuals in developing coun-
tries [67, 68], suggesting its potential public health impact.
To our knowledge, this is the first case of C. scrofarum
infection reported in a dog. Since keeping backyard pigs is
quite a common practice in the area, it is possible that this
dog ingested the oocysts before being transferred to the
shelter. In such a scenario this could be a case of pseudo-
parasitism, given that this dog was 2.5 month-old and only
recently introduced to the shelter. In cats, sequencing was
not efficient; nevertheless, it revealed the presence of the
feline-specific C. felis. Since our genotyping results revealed
the presence of host-specific Cryptosporidium species in
both dogs and cats which have been implicated in very few
human infections and mainly in developing countries,
we could suggest that the zoonotic potential of Crypto-
sporidium from dogs in the study area is low.

Apart from Giardia and Cryptosporidium, ascarids,
hookworms and taeniids are also considered to be
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zoonotic [13, 69-72]. The two major ascarid species T.
canis and T. cati (to a lesser extent) are responsible for
human infections [13, 72]. In our study the prevalence
of Toxocara spp. in dogs and cats was 7.6 and 8.3%, re-
spectively. In dogs, we characterised all Toxocara eggs
found as Toxocara spp. since those infections were only
microscopically diagnosed and as previously suggested
they could either belong to T. canis or T. cati since
coprophagy is not unusual for dogs and the presence of T.
cati eggs in dog faeces might in fact relate to pseudopara-
sitism [73, 74]. The infection rates found in the present
study are similar to those reported in Europe which vary
from 3.5 to 34.0% for T. canis in dogs from different epi-
demiological environments and from 7.2 to 76.0% for T.
cati in cats [8, 10, 18, 52, 75-79]. The Toxocara infection
was high, especially in shelter dogs and cats, as also re-
ported before [24, 80, 81]. Although mainly 7. canis is
considered responsible for human toxocarosis [82], the
role of T. cati in human toxocarosis should not be
underestimated [82-84]. In Greece, toxocarosis in
humans has not been studied extensively since published
data are restricted only to some sporadic cases [85, 86]
and one study regarding the seroprevalence of T. canis in
children [87]. Our results combined to all European stud-
ies presented above strongly suggest that more informa-
tion is needed.

Hookworm infection rates were 9.2% in dogs and 7.6%
in cats. The highest infection rates of hookworms were
identified in shepherd dogs (33.3%) similar to the study
of Mateus et al. [51] in Portugal (31.0%). Since different
hookworm species were not differentiated, the zoonotic
risk associated with hookworm infections could not be
determined.

The detection of taeniid eggs in shepherd dogs is worth
mentioning. Unlike shelter and household dogs, shepherd
dogs seem to be more prone to taeniid infection, which
possibly is due to the frequent consumption of raw
meat and carcasses [2, 88]. Echinococcosis is still endemic
in Greece with a high prevalence reported in livestock
[89-91]. However, there are no recent reports regarding
the prevalence of taeniids in dogs. Taking into consider-
ation our results in combination with the high prevalence
of E. granulosus in livestock, which is transmitted through
dogs, we could assume that shepherd dogs in Greece
could be a reservoir for human infections.

Conclusions

In conclusion, we have recorded high levels of (multi)-
parasitism in both dogs and cats in the study area. Most
of the animals were harbouring different species of para-
sites sometimes in high numbers according to the egg/
(oo)cyst counts. This is a proof that those parasites are
greatly abundant within animal populations regardless of
lifestyle. Thus, the results of our study, stress the need
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for better anthelmintic control schemes in dogs and cats
tailored to their individual needs in order to safeguard
animal and public health.
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