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Abstract

Background: Silent information regulator 2 (SIR2) proteins are a family of NAD + -dependent protein deacetylases
that are considered potential targets for anti-parasitic agents. In this study, we cloned and characterized SIR2A of
the protozoan parasite Eimeria tenella (EtSIR2A) and investigated its protective efficacy as a DNA vaccine.

Methods: The EtSIR2A gene encoding 33.37 kDa protein from E. tenella second-generation merozoites was cloned, and
recombinant EtSIR2A protein (rEtSIR2A) was produced in an Escherichia coli expression system. The rEtSIR2A was used to
immunize rabbits. Anti-rEtSIR2A antibodies were used to determine the immunolocolization of EtSIR2A in the parasite
by immunofluorescence assay (IFA). Transcript and protein expression of EtSIR2A in different development stages of E.
tenella were observed by quantitative real-time PCR (qPCR) and western blot (WB) analysis, respectively. The recombinant
plasmid pCAGGS-EtSIR2A was constructed and its efficacy against E. tenella infection in chickens was evaluated.

Results: gPCR and WB analysis revealed EtSIR2A expression was developmentally regulated at both the mRNA and
protein levels. EtSIR2A mRNA levels were higher in unsporulated oocysts than at other developmental stages, including
sporulated oocysts, sporozoites and second-generation merozoites. In contrast, EtSIR2A protein expression levels
were highest in second-generation merozoites, moderate in unsporulated oocysts and sporulated oocysts and
lowest in sporozoites. Immunostaining with anti-rEtSIR2A antibody indicated that EtSIR2A was mainly located in
the cytoplasm of sporozoites and second-generation merozoites, and was strongly expressed during first stage
schizogony. Animal-challenge experiments demonstrated that immunization with pCAGGS-EtSIR2A significantly
increased average body-weight gain, and decreased mean lesion score and oocyst output in chickens.

Conclusions: These results suggest that EtSIR2A may play an important role in parasite cell survival and may be
an effective candidate for the development of new vaccines against E. tenella infection in chickens.
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Background

Avian coccidiosis is an intestinal disease caused by in-
fection with any of several species of the proto-
zoan genus Eimeria, and represents an economically
important parasitic infection for the poultry industry
worldwide [1]. The main methods for controlling
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coccidiosis in recent decades have been prophylactic
chemotherapy, using ionophores and synthetic drugs
[2]. However, the development of resistance to anti-
coccidial drugs and increasing public pressure to limit
the use of chemicals in animal feed continues to drive
the development of anti-coccidial vaccines [3], includ-
ing live vaccines. However, there are disadvantages to
live vaccines including environmental contamination,
high production expenses and an atavistic possibility of
coccidiosis [4, 5]. These drawbacks have driven the devel-
opment of new control strategies.
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Silent information regulator 2 (SIR2) enzymes, or sir-
tuins, comprise a family of NAD + -dependent deacety-
lases that are evolutionarily conserved in all phyla, from
bacteria to higher eukaryotes [6, 7]. In the past few years,
sirtuins have been shown to be involved in numerous bio-
logical processes, including heterochromatin formation,
gene silencing, DNA repair, development, longevity,
metabolism, adipogenesis and apoptosis [8, 9]. SIR2 has
already been identified in various parasites, including api-
complexans (Plasmodium, Toxoplasma, Cryptosporidium),
kinetoplastids (Leishmania, Trypanosoma), and an amoe-
bozoan (Entamoeba) [10]. Previous results showed that
SIR2 promoted parasite survival under various conditions
[11-16], and it has thus emerged as a novel anti-parasitic
therapeutic target [10, 17]. Most apicomplexans possess
two sirtuins, SIR2A and SIR2B, both of which are included
in the Eimeria tenella (Et) genome database (GeneDB)
[18]. The SIR2A gene of E. tenella (EtSIR2A) was first
identified by Yan et al. [19], but its role in E. tenella and
its regulation during the life-cycle of the parasite remains
poorly known. In the present study, we cloned and char-
acterized EtSIR2A and investigated its protective efficacy
as a DNA vaccine.

Methods

Parasites, cells, plasmids, and animals

The Shanghai strain of E. tenella was isolated from a sam-
ple collected on a chicken farm in Shanghai, China, in the
1980s and subsequently maintained in our laboratory [20].
Parasites were propagated by passage through coccidia-
free 2-week-old chickens, as described previously [21].
Unsporulated and sporulated oocysts were obtained and
purified using standard procedures [22, 23]. Sporozoites
were prepared from cleaned sporulated oocysts by in vitro
excystation, and purified by chromatography over columns
packed with nylon wool and DE-52 cellulose [24]. Second-
generation merozoites were collected and purified from
the caecal mucosa of chickens at 112 h post-inoculation
(p.i.) with 1 x 10° sporulated oocysts per bird [22].

The chicken embryo fibroblast cell line DF-1 was cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)
(Invitrogen, Carlsbad, USA) supplemented with 10% fetal
bovine serum (FBS). The eukaryotic expression vector
pCAGGS was kindly provided by Dr. G.Z. Tong (Shanghai
Veterinary Research Institute, Shanghai, China).

Yellow feathered broilers at 1 day old were kept in
wire cages under coccidia-free conditions and provided
with coccidiostat-free feed and water ad libitum. The
chickens were moved to an animal-containment facility
prior to challenge with virulent oocysts.

Cloning and sequence analysis of EtSIR2A
The open reading frame of EtSIR2A was amplified
by polymerase chain reaction (PCR) from cDNA of
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E. tenella second-generation merozoites using a pair of
primers designed based on the sequence obtained from
E. tenella GeneDB (http://www.genedb.org/Homepage/
Etenella) (ID: ETH 00033350).

The specific PCR primers were: forward primer, 5'-
GCG AAT TCA TGG GCC AGT GGT TAA CAT-3';
reverse primer, 5'-GCC TCG AGT CAT TCA TTT TCC
CCT GGG-3’, containing EcoRI and Xhol restriction sites
(underlined), respectively. The PCR mixture (50 pl) con-
tained 25 ul of 2x Taq PCR Master Mix (Tiangen Bio-
tech, Beijing, China), 2 pl of cDNA template, 2 ul of
forward and reverse primers (10 M) each, and deionized
water up to 50 pl. The amplification conditions were
95 °C for 3 min; 35 cycles of 95 °C for 30 s, 50 °C for
30 s, 72 °C for 1 min, and 10 min at 72 °C. The PCR
products were gel purified (Tiangen) and subcloned
into the PMDI18-T vector (TaKaRa, Dalian, China).
TIANprep Mini Plasmid Kit (Tiangen) preparations of
the recombinant plasmid were analyzed by gel electro-
phoresis. Positive recombinant clones were subjected to
DNA sequencing by Invitrogen (Shanghai, China).

Analyses of the ¢cDNA and deduced amino acid se-
quences of EtSIR2A were carried out as described previ-
ously [25]. Briefly, the full-length cDNA sequence of
EtSIR2A gene was analyzed for similarity using the
BLAST programs at the National Center for Biotechnol-
ogy Information (http://www.ncbi.nlm.nih.gov/BLAST/)
and the genome sequence of E. tenella (http://www.ge
nedb.org/Homepage/Etenella). The deduced amino-acid
sequence and molecular mass were obtained using
translate tool software at the ExPASy server of the
Swiss Institute of Bioinformatics (http://www.expasy.
org/tools/protparam.html). The signal peptide, trans-
membrane (TM) regions and protein motifs were pre-
dicted using SignalP (http://www.cbs.dtu.dk/services/
SignalP/), TMHMM (http://www.cbs.dtu.dk/services/
TMHMM-2.0/), and Motifscan (http://hits.isb-sib.ch/
cgi-bin/motif_scan), respectively. Multiple sequence
alignment was performed used the program Clustal W
(http://www.ebi.ac.uk/Tools/msa/clustalw2/).

Expression and purification of recombinant EtSIR2A

The PCR product of EtSIR2A was digested with the re-
striction endonucleases EcoRI and Xhol, and cloned into
the prokaryotic expression vector pET-28a (+) (Novagen,
Merck KGaA, Darmstadt, Germany). The recombinant
plasmid was confirmed by DNA sequencing and trans-
formed into Escherichia coli BL21 (DE3) (Promega,
Madison, USA). Bacteria with the recombinant pET-28a
(+) plasmid were induced with 1 mM isopropyl-p-D-
thiogalactopyranoside (IPTG; Sigma, Louis, USA) at 37 °C
for 6 h, collected by centrifugation at 10,000x g for
15 min, and sonicated on ice. The supernatant was
collected, and recombinant protein was purified using a
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His Bind Purification kit (Novagen). Purified protein
lysate was analyzed by 12% sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS-PAGE) and its
concentration was determined using a BCA protein
assay kit (Novagen). The purified protein was stored in
aliquots at -20 °C until further use.

Production of polyclonal sera against recombinant EtSIR2A
Two-month-old rabbits were immunized subcutaneously
with 0.2 mg of purified rEtSIR2A emulsified in an equal
volume of Freund’s complete adjuvant (Sigma), followed
by three booster injections with proteins emulsified in
equal volumes of Freund’s incomplete adjuvant at 2-week
intervals. Serum was separated from the rabbit blood
7 days after the final immunization. Serum collected be-
fore protein injection was used as negative control serum.
The anti-sera were stored at -80 °C for subsequent use.

EtSIR2A transcript levels in different developmental
stages of E. tenella

Total RNA was extracted from parasites in four stages
(unsporulated oocysts, sporulated oocysts, sporozoites,
and second-generation merozoites) using TRIzol (Invi-
trogen) and treated with DNase I (Invitrogen) to exclude
interference from DNA. The RNA was quantified by
spectrophotometry with a BioPhotometer (Eppendorf,
Hamburg, Germany) and its integrity was verified by
agarose gel electrophoresis. Two micrograms of total
RNA was reverse transcribed to ¢cDNA using Super-
Script II reverse transcriptase (Invitrogen) and random
primers. Quantitative real-time PCR (qPCR) was per-
formed with SYBR-Green I fluorescence (TaKaRa) using
a Bio-Rad iQ5 instrument (BioRad, Hercules, USA). The
PCR primers for EtSIR2A were as follows: 5'-AAA AGA
AAC TTC CTC CCA-3'and 5'-AAT CCT GTC TCC
TCC AAA-3'. Three housekeeping genes of E. tenella,
18S rDNA, f-actin and gapdh, were used as reference
genes for the purposes of normalization [26-28]. The
qPCR reaction mixture (20 pl) contained 10 ul SYBR®
Premix Ex Taq™ (2x) (TaKaRa), 1 pl (0.2 pM) of each
primer, 1 pl of cDNA template and 7 ul RNase-free dis-
tilled H,O. Reactions were conducted under the follow-
ing conditions: 95 °C for 15 s, 40 cycles of 95 °C for 5 s,
60 °C for 10 s, and 72 °C for 15 s. All assays were done
in triplicate and the relative expression of EtSIR2A in
different developmental stages was calculated using the
2788C method [29].

EtSIR2A protein expression in four development stages
of E. tenella

Total protein was prepared from unsporulated oocysts,
sporulated oocysts, sporozoites and second-generation
merozoites using cell-lysis buffer for western blotting
and immunoprecipitation (IP) (Beyotime, Haimen, China).
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Protein concentrations were determined using a BCA
Protein Assay Kit (Beyotime). Thirty micrograms of each
sample were subjected to SDS-PAGE on a 12% gel and
then transferred to polyvinylidene difluoride transfer
membranes (Millipore, Bedford, USA) at 0.28 A for 2.5 h
at 4 °C. Membranes were blocked with 5% (w/v)
skimmed milk powder in phosphate-buffered saline
(PBS) overnight at 4 °C, rinsed three times for 10 min
with PBS containing 0.1% Tween 20 (PBST), and incu-
bated in either rabbit polyclonal anti-rEtSIR2A (1:100)
or mouse monoclonal anti-tubulin (Beyotime, 1:2,000)
diluted in PBS for 2 h at room temperature. After three
washes in PBST, membranes were probed with IRDye
800CW goat anti-rabbit IgG (LI-COR Biosciences,
Lincoln, USA, 1:10,000) or IRDy 680RD donkey anti-
mouse IgG (LI-COR Biosciences, 1:10,000) diluted in
PBS for 1 h at room temperature in a dark chamber.
After a further three washes in PBST, the membranes
were washed three times in PBS and scanned using an
Odyssey® Infrared Imaging System (LI-COR Biosci-
ences). For comparative quantitative protein expression
profile analysis, the resulting images were analyzed by
the software program as specified by Odyssey. Tubulin
was used as an internal reference for protein extracts at
each stage.

Immunolocalization of EtSIR2A in parasites by indirect
immunofluorescence assay

EtSIR2A protein localization was performed by immuno-
fluorescence assay (IFA), as described previously [25],
with slight modification. Briefly, DF-1 cells (3 x 10° cell
per well) were seeded in six-well plates (Corning, Corning,
USA) with pre-coated sterile coverslips and cultured in
complete medium (CM, DMEM containing 10% FBS,
100 U/ml penicillin/streptomycin, 2 mM L-glutamine)
at 37 °C, 5% CO, for 24 h. Freshly excysted sporozoites
were incubated for 1 h at 41 °C in CM or PBS. Sporozo-
ites in CM were added to adherent cells at a ratio of one
sporozoite per cell. Infected DF-1 cells were collected at
different times (1272 h) p.i. for fixation. Sporozoites in
PBS or infected DF-1 cells were washed with PBS for
10 min, fixed in 2% paraformaldehyde for 20 min,
permeabilized with 1% Triton X-100 in PBS for 15 min,
and then blocked with 2% bovine serum albumin in PBS
overnight at 4 °C. The coverslips were then incubated
with rabbit anti-rEtSIR2A antibody at a dilution of 1:100
for 1 h at 37 °C, and further incubated for 1 h with goat
anti-rabbit IgG fluorescein isothiocyanate-conjugated
antibody (1:500 dilution; Sigma) in a moist, dark cham-
ber. Cell nuclei were labeled with 10 pg/ml 4,6-diami-
dino-2-phenylindole (DAPI, Beyotime) for 10 min. The
coverslips were washed three times in PBST after every
step. The coverslips were finally mounted on glass
slides using 60 pl of Fluoromount Aqueous Mounting
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Medium (Sigma) and observed under a fluorescence
microscope (Nikon, Tokyo, Japan). Second-generation
merozoites purified from the ceca of chickens were in-
cubated for 1 h at 41 °C in CM and were prepared for
immunofluorescence observation using the same way
as described above.

Construction of pCAGGS-EtSIR2A DNA vaccine and its
expression in vitro

The EtSIR2A PCR products were cloned into the
pCAGGS vector and designated as pCAGGS-EtSIR2A.
The constructed plasmid was identified to have the cor-
rect orientation by sequencing and was purified using a
Qiagen Plasmid Giga Kit (Qiagen Biotech, Beijing,
China). The plasmid concentration was determined by
spectrophotometry at 260 nm.

A monolayer of 80-90% confluent DE-1 cells in six-well
plates was transfected with 4 pg of pCAGGS-EtSIR2A or
pCAGGS using Lipofectamine 2000 (Invitrogen). Briefly,
DNA and the transfection reagent were mixed (10 ml
lipofectamine 2000 and 4 pg DNA), incubated at room
temperature for 30 min, and added to the cells. Six hours
later, the DNA-transfection reagent mixture was replaced
by DMEM containing 10% FBS. At 48 h post-transfection,
the expression of encoded EtSIR2A protein from these
plasmids was confirmed by indirect IFA and western blot-
ting of transfected DF-1 cells.

DNA vaccination and challenge infection in chickens

One hundred 1-week-old chickens were randomly divided
into four groups of 25 chickens each. Groups 1 and 2 were
immunized with 100 pg of pCAGGS-EtSIR2A and
pCAGGS diluted in TE buffer (10 mM Tris-HCI pH 7.6,
1 mM EDTA), respectively. Groups 3 and 4 were injected
with sterile TE buffer at the same injection site and were
used as a challenged control (positive control) and unchal-
lenged control group (negative control), respectively. All
the groups were inoculated twice at 1-week intervals by
intramuscular injection in the leg. At 21 days old, all
chickens except the unchallenged control group were in-
oculated orally with 1x10* sporulated oocysts of E.
tenella Shanghai strain. All chickens were slaughtered at
day 8 post-challenge to evaluate the lesion score, as
described previously [30]. Chicken body weights were
measured at days 0 and 8 post-challenge. Faeces from
each group were collected separately at days 6-8 post-
challenge. Oocyst shedding per bird was determined using
a McMaster chamber [31, 32]. Each faecal sample was
counted three times using the same methods. Oocyst de-
crease ratio (%) was calculated as follows: (the average
number of oocysts per bird from challenged control
group-the average number of oocysts per bird from vacci-
nated group)/the average number of oocysts per bird from
challenged control group x 100.
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Statistical analysis

All data were presented as the mean + standard deviation
(SD). The significance of differences among the groups
was evaluated by one-way ANOVA with SPSS 13.0
software (SPSS Inc., Chicago, IL, USA). The Duncan’s
multiple range test was used to analyze differences
between the mean values and a value of P<0.05 was
considered significant.

Results

Cloning and sequence analysis of EtSIR2A

The EtSIR2A gene was isolated by PCR using cDNA
from second-generation merozoites from the E. tenella
Shanghai strain. After cloning and sequencing, a predicted
909-bp product was obtained and analyzed by BLASTn.
The sequence displayed 100% identity with the known
NAD"-dependent deacetylase (SIR2) gene from the E.
tenella Houghton strain (GenBank: XM_013377851),
suggesting that the EtSIR2A gene from the E. tenella
Shanghai strain had been successfully amplified (Gen-
Bank: KU871068).

Sequence analysis of the EtSIR2A open reading frame
identified a polypeptide of 302 amino acid residues with
a predicted molecular mass of 33.37 kDa. In a search
against the GenBank database, the protein showed 100%
(query cover 100%) identities with the putative NAD
“-dependent deacetylase of E. tenella (Fig. 1). No signal
peptide or transmembrane helix was present. The pre-
dicted motif structure indicated that EtSIR2A contained
a SIR2 domain (residues 36-213) and contained
GXGXS, FR, TQNXDXL, HG and GXS motifs respon-
sible for NAD-binding and acetyl-lysine binding, as
found in most eukaryotic sirtuins. In addition, EtSIR2A
included a conserved C4 zinc-finger domain (Cys140,
Cys143, Cys167 and Cysl69) essential for zinc binding,
and the 20 residues perfectly conserved within apicom-
plexan parasites.

Expression and purification of recombinant EtSIR2A protein
rEtSIR2A was expressed in E. coli after induction with
1 mM IPTG at 37 °C for 6 h. rEtSIR2A was equally
expressed in the sediment and supernatant. Purified pro-
tein was obtained from the supernatant using a His Bind
Purification kit. The molecular mass of rEtSIR2A was
about 37 kD (containing the His-tag), corresponding to the
predicted molecular mass (Additional file 1: Figure S1).

Transcriptional levels of EtSIR2A at different
developmental stages of E. tenella

The mRNA levels of EtSIR2A at different developmental
stages (unsporulated oocysts, sporulated oocysts, sporo-
zoites and second-generation merozoites) were deter-
mined by qPCR. The transcriptional level was highest
in unsporulated oocysts (F(3g) = 50.02, P <0.0001), with
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Fig. 1 Alignment of silent information regulator 2 (SIR2) amino acid sequences from five Eimeria species. Numbers on the right refer to the last
amino acid in each corresponding line. Strictly conserved and conserved residues are shaded in black and gray, respectively. The identities and
query cover between the SIR2 sequence of E. tenella Shanghai strain and the other species are listed at the end. Multiple alignments were made
using ClustalX [51] and shaded using Boxshade 3.21 (http://www.ch.embnet.org/software/BOX_form.html). GenBank accession numbers for the
Eimeria species are as follows: E. maxima Weybridge strain SIR2: CDJ59951; E. acervulina (Ea) Houghton strain SIR2: CDI78174; E. praecox (Ep)
Houghton strain SIR2: CDI74590; E. tenella (Et) Shanghai strain SIR2A: KU871068; E. tenella Houghton strain SIR2: CDJ42555; E. necatrix (En)
Houghton strain SIR2: CDJ65355. Red boxes indicate the conserved catalytic domain of a canonical sirtuin. Black boxes indicate the highly
conserved regions within parasitic protozoa. Asterisks indicate the perfectly conserved residues within Apicomplexa [18]

no differences among sporulated oocysts, sporozoites
and second-generation merozoites (Fig. 2) (F(o,6) = 1.282,
P =0.344).

Protein levels of EtSIR2A at different developmental
stages of E. tenella

We determined if EtSIR2A protein expression differed
among different developmental stages of E. tenella by
western blot analysis of extracts from unsporulated
oocysts, sporulated oocysts, sporozoites and second-
generation merozoites. EtSIR2A was detected in all
extracts using a specific serum produced against
rEtSIR2A. However, the protein expression levels dif-
fered significantly, with highest expression in second-
generation merozoites, and weakest expression in spo-
rozoites (Fig. 3).

Immunofluorescence localization of EtSIR2A during first
schizogony

The localization of EtSIR2A in sporozoites, second-
generation merozoites, and during first schizogony was
investigated by an indirect immunofluorescence assay
using anti-rEtSIR2A as a probe. EtSIR2A protein was
mainly located in the cytoplasm of free sporozoites
(Fig. 4a) and intracellular ones (Fig. 4b, c). Labeled

EtSIR2A was distributed throughout the whole cytosol
in trophozoites, except in the refractile bodies (Fig. 4d).
EtSIR2A protein was strongly expressed in immature and
mature first-generation schizonts (Fig. 4e-g), and was
mainly concentrated in cytoplasm in second-generation
merozoites after culture in CM (Fig. 4h).

15+

104

Relative expression

0-

uo SO

Spz Mrz

Fig. 2 gPCR analysis of EtSIR2A mRNA transcript levels in different
developmental stages of E. tenella. Bars not sharing the same
letters indicate significantly different expression levels (P < 0.05).
Abbreviations: UO, unsporulated oocysts; SO, sporulated oocysts;
Spz, sporozoites; Mrz, second-generation merozoites
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33kDa

Fig. 3 Immunoblot of native protein of EtSIR2A in different
developmental stages of E. tenella. Abbreviations: UO,
unsporulated oocysts; Spz, sporozoites; SO sporulated oocysts;
Mrz, second-generation merozoites

EtSIR2A

Tubulin

\

Characterization of constructed plasmids in vitro
Expression of encoded EtSIR2A protein by the plasmids
was confirmed by IFA and western blotting after trans-
fection of DF-1 cells for 48 h. The intensive fluorescence
detected in DF-1 cells transfected with pCAGGS-
EtSIR2A indicated successful expression of the EtSIR2A
protein (Additional file 2: Figure S2). Western blotting
of lysates of DF-1 cells transfected with the EtSIR2A-
encoding plasmids produced a band with the expected
size of 37 kDa, while no band was present in the cells
transfected with pCAGGS (Additional file 3: Figure S3).
These results demonstrated that pCAGGS-EtSIR2A pro-
tein could be expressed in vitro.
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Protective efficacy of pCAGGS-EtSIR2A vaccination against
E. tenella in chickens

The protective efficacy of pCAGGS-EtSIR2A following
virulent E. tenella infection were determined. As shown
in Table 1, the body-weight gain, caecal-lesion score, and
oocyst output among the different groups were differed
significantly (F306)=53.394, P <0.0001; F396)=48.477,
P <0.0001; and F3g)=626.943, P <0.0001, respectively).
After challenge, chickens vaccinated with pCAGGS-
EtSIR2A gained significantly more body weight, and
had significantly fewer caecal lesions (Additional file 4:
Figure S4) and oocysts compared with chickens vacci-
nated with pCAGGS or TE-challenged controls. Oocyst
shedding in the pCAGGS group was significantly lower
than in the TE-challenged control groups, but there
were no significant differences in terms of body weight
and caecal lesions.

Discussion

Sirtuin family members share a catalytic domain that
allows them to function as NAD + -dependent protein
deacetylases [18]. The sirtuin core domain includes
several short motifs of conserved amino acids, including
GAGISXXXGIPXXR, PXXXH, TQNID, HG, two sets of
CXXC that may be a zinc-finger domain [33], FGE, GTS
and (I/V)N [7]. Sirtuin proteins have been classified into

Spz in PBS

Tropho

10 um

36 h p.i.

Fig. 4 Localization of EtSIR2A in infected DF-1 cells by indirect immunofluorescence. Details of parasites immunostained with anti-retSIR2A
antibodies visualized with fluorescein isothiocyanate (green) and counterstained with DAPI (blue). a Sporozoites (Spz) incubated in PBS.
Infected DF-1 cells were collected at different times post-infection (p.i.). b 12 h p.i., intracellular sporozoites (iSpz); ¢ 24 h p.i, intracellular
sporozoites (iSpz); d 36 h p.i, trophozoites (Tropho); e 48 h p.i,, immature first-generation schizonts (iSc); f 68 h p.i,, developing first-generation
schizonts (dSc); g 72 h p.i, mature first-generation schizonts (mSc); h 112 h p.i, second-generation merozoites (sMz) purified from caeca.
Abbreviations: N: nucleus; pRB, posterior refractile body; fMz, first generation merozoites
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Table 1 Protective effects of pCAGGS-EtSIR2A against experimental Eimeria tenella infection in chickens

Group Average body Reduced rate of

Oocyst shedding Oocyst decrease (%) Lesion scores

weight gain (g) weight gain (%) per bird (10)
pCAGGS-EtSIR2A 9742 +6.56° 23.62 193 +0.15° 62.96 109 + 067°
pCAGGS 7561 +11.79° 40.72 402+0.26° 22.84 220+042°
TE challenged 6493 +1853" 4909 521+038 0 230+ 068°
TE unchallenged 127.54 +15.55° 0 00 000° 100 00 0.00°

Values are expressed as mean + standard deviation (SD). Means in the same column with different letters were significantly different between treatment

groups (P < 0.05)

five different classes (I, IL, III, IV and U), depending on the
presence of specific conserved motifs in their core
domain. In class III sirtuins, the GAGISXXXGIPXXR and
PXXXH motifs are usually GAGISAESGIPTFR and
PNXXH, respectively. The presence of GIPT within the
former motif is indicative of a class III sequence [7]. Most
apicomplexans possess two sirtuins, SIR2A and SIR2B.
SIR2A sirtuin domains can be assigned to class III or class
U, and SIR2B domains to class IV. Twenty residues were
found to be perfectly conserved within apicomplexan
parasite sirtuins [18]. The E. tenella genome may encode
two SIR2-like proteins, though the current genome as-
sembly status only allows the confident assignment of one
of them to SIR2A type (ETH 00033350), while the other
resembles a SIR2B type, based on the small portion of
available sequence (ETH 00041870) [18].

In the present work, we cloned and characterized
the SIR2A gene from E. tenella Shanghai strain. The
obtained sequence showed 100% identity with the
published NAD"-dependent deacetylase (SIR2) sequence
from E. tenella. The putative NAD"-dependent deacety-
lase genes of E. maxima, E. acervulina, E. praecox and E.
necatrix have also been deposited in the GenBank data-
base, and the primary amino acid sequences of these five
Eimeria species showed 76-99% homology, demonstrat-
ing that SIR2A is conserved among different Eimeria spe-
cies. Sequence analysis showed that EtSIR2A was broadly
conserved at the most invariant motifs of class III sirtuin,
with only two substitutions: GAGISAESGIPTFR/GAGV
SAESGIPTFR and TQNI/D/TQNVD. EtSIR2A also con-
tained the 20 residues perfectly conserved within apicom-
plexan parasites. The most common sirtuin inhibitor
nicotinamide was also an effective inhibitor of EtSIR2A
[19]. Phylogenetic analysis showed that EtSIR2A was
closer to those of Toxoplasma and Neospora than Plasmo-
dium [19], which agrees with Eimeria spp. having closer
evolutionary relationships with T. gondii and N. caninum
than with other apicomplexan species [34]. EtSIR2A
showed low identity (25%) with chicken SIR, indicating
different kinetic and structural properties, and suggesting
that EtSIR2A may represent a novel anti-coccidial thera-
peutic target [19].

The life-cycle of E. tenella involves endogenous (schi-
zogamy and gametogony) and exogenous (sporogony)

developmental stages [35]. qPCR and western blotting
demonstrated that EtSIR2A mRNA and protein were
expressed in unsporulated oocysts, sporulated oocysts,
sporozoites and second-generation merozoites in E.
tenella, suggesting that it performs an important cellular
function. However, the expression levels were significantly
different; the highest transcript levels were detected in
unsporulated oocysts, with lower levels in sporulated
oocysts, sporozoites and second-generation merozoites,
while the highest protein levels occurred in second-gen-
eration merozoites, with the lowest levels in sporozoites.
The fact that the transcript and protein expression levels
of EtSIR2A were not in accordance suggests that EtSIR2A
protein expression may be controlled by post-
transcriptional regulation of translation. Overall, these
results indicate that the gene and protein expression
levels of EtSIR2A are developmentally regulated. Similar
results were obtained for sirtuins from other parasites.
Five sirtuins (SmSirt) are encoded in the Schistosoma
mansoni (Sm) genome, all five of which are expressed
throughout the parasite’s life-cycle (miracidia, sporo-
cysts, cercariae, schistosomula and adult worms), but
with distinct patterns of expression [36]. Trypanosoma
cruzi (Tc) has two sirtuins, TcSir2rpl and TcSir2rp3.
TcSir2rpl was shown to be highly expressed in replica-
tive parasite forms (epimastigotes and amastigotes) and
less in metacyclic trypomastigotes and trypomastigotes
derived from infected mammalian cells, while TcSir2rp3
was largely expressed in epimastigotes and cell-derived
trypomastigotes, and much less in intracellular amasti-
gotes and metacyclic trypomastigotes [37].

SIR2 proteins present a broad spectrum of intracellular
localizations. Some occur in the nucleus, while others
seem to be mainly cytoplasmic, such as yeast Hst2p [38],
Leishmania SIR2 proteins [39] and human SIRT2 [40,
41]. A mitochondrial localization has also been described
for human SIRT3 [42]. Different sirtuins thus function
differently in line with their different intracellular locali-
zations. Immunolocalization studies in E. tenella showed
that EtSIR2A protein was mainly located in the cytoplasm
of free sporozoites incubated in PBS and intracellular spo-
rozoites. EtSIR2A protein was strongly expressed during
first schizogony and was mainly located in cytoplasm of
second-generation merozoites after culture in CM. These
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results suggest that EtSIR2A may play an important
role in parasite cell survival, but further studies are
needed to confirm this.

Previous studies showed that SIR2 promoted parasite
survival under various conditions [11-16], and may thus
serve as a therapeutic target for developing novel anti-
parasitic drugs [10, 17]. Leishmania sirtuins from L. major
and L. infantum have demonstrated roles in parasite
growth in vitro and in vivo. Involvement of the protein in
parasite virulence and survival [11, 12] suggests that it
may be exploited as a novel vaccine target against leish-
maniasis [43]. Recombinant SIR2 protein was reported to
be capable of inducing the activation and differentiation of
B cells, thus producing specific antibodies [44], and
demonstrated a protective function in BALB/c mice by
reducing the parasite load after L. infantum infection
[45]. In the present study, we generated a recombinant
chimeric subunit vaccine, consisting of EtSIR2A and a
eukaryotic expression vector, and evaluated its efficacy
against E. tenella infection in chickens.

The eukaryotic expression vector used in this study
was pCAGGS, which contains the cytomegalovirus
enhancer and chicken f-actin promoter sequence in the
upstream of its multiple cloning site. pPCAGGS vectors
have been widely used in the development of DNA vac-
cines, for example in relation to reticuloendotheliosis
virus [46], infectious bursal disease virus [47], avian in-
fluenza virus [48], swine influenza virus [49] and duck
tembusu virus [50]. We confirmed the expression of
EtSIR2A protein by in vitro methods before carrying out
in vivo experiments. Intensive fluorescence in DF-1 cells
transfected with pCAGGS-EtSIR2A and the presence of
a 37-kDa band in the cell lysates indicated that the re-
combinant plasmid pCAGGS-EtSIR2A was successfully
constructed and expressed in eukaryotic cells. The re-
sults of the challenge experiments showed that chickens
treated with the DNA vaccine gained significantly more
weight, and had significantly fewer caecal lesions and
oocysts, compared with infected chickens treated with
the control vaccine. The results of this study thus sug-
gest that EtSIR2A might be an effective candidate anti-
gen for the development of a new vaccine against E.
tenella in chickens.

Conclusions

The present study showed that the mRNA and protein
levels of EtSIR2A were developmentally regulated at
different developmental stages of E. tenella. EtSIR2A was
located mainly in the cytoplasm of free sporozoites and
intracellular sporozoites. EtSIR2A protein was strongly
expressed during first schizogony and was mainly lo-
cated in cytoplasm in second-generation merozoites.
The recombinant plasmid pCAGGS-EtSIR2A induced a
partial protective immunity the immunized chickens.
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Our results suggested that EtSIR2A may play an import-
ant role in parasite cell survival and may be an effective
candidate for the development of new vaccines against
E. tenella infection in chickens.
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