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Abstract

Background: Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via
insecticide treated nets (ITNs) or indoor residual spraying (IRS). Four classes of insecticide are approved for IRS but
only pyrethroids are available for ITNs. The rapid rise in insecticide resistance in African malaria vectors has raised
alarms about the sustainability of existing malaria control activities. This problem might be particularly acute in
Côte d’Ivoire where resistance to all four insecticide classes has recently been recorded. Here we investigate
temporal trends in insecticide resistance across the ecological zones of Côte d’Ivoire to determine whether
apparent pan-African patterns of increasing resistance are detectable and consistent across insecticides and areas.

Methods: We combined data on insecticide resistance from a literature review, and bioassays conducted on
field-caught Anopheles gambiae mosquitoes for the four WHO-approved insecticide classes for ITN/IRS. The data
were then mapped using Geographical Information Systems (GIS) and the IR mapper tool to provide spatial and
temporal distribution data on insecticide resistance in An. gambiae sensu lato from Côte d’Ivoire between 1993
and 2014.

Results: Bioassay mortality decreased over time for all insecticide classes, though with significant spatiotemporal
variation, such that stronger declines were observed in the southern ecological zone for DDT and pyrethroids than
in the central zone, but with an apparently opposite effect for the carbamate and organophosphate. Variation in
relative abundance of the molecular forms, coupled with dramatic increase in kdr 1014F frequency in M forms
(An. coluzzii) seems likely to be a contributory factor to these patterns. Although records of resistance across
insecticide classes have become more common, the number of classes tested in studies has also increased,
precluding a conclusion that multiple resistance has also increased.

Conclusion: Our analyses attempted synthesis of 22 years of bioassay data from Côte d’Ivoire, and despite a
number of caveats and potentially confounding variables, suggest significant but spatially-variable temporal trends
in insecticide resistance. In the light of such spatio-temporal dynamics, regular, systematic and spatially-expanded
monitoring is warranted to provide accurate information on insecticide resistance for control programme management.
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Background
Preventing malaria transmission by targeting the main
vectors remains a challenge for national malaria control
programmes [1]. Only four classes of insecticides, pyre-
throids, organochlorines (DDT), carbamates and organo-
phosphates are currently approved for indoor residual
spraying (IRS) and only pyrethroids for insecticide treated
bednets (ITNs) and long-lasting insecticidal nets (LLINs).
High coverage with IRS and especially ITNs has contrib-
uted to the decrease in the number of malaria cases
throughout sub-Saharan Africa over the past decade [2,3].
However, resistance to pyrethroids and DDT is now wide-
spread in many African countries [4]. Though currently
less common, resistance to carbamates and organophos-
phates, the available alternatives for IRS, is also being re-
ported [5-8], and resistance to all four classes has now
been found in wild mosquitoes from southern Côte
d’Ivoire [7]. In recognition of this alarming situation, the
WHO recently launched the Global Plan for Insecticide
Resistance Management [3] with five strategic pillars, the
first two of which are (i) planning and application of in-
secticide resistance management strategies; and (ii) sur-
veillance of resistance. Both of these pillars require data
on the presence and dynamics of insecticide resistance at
country level.
In Côte d’Ivoire, malaria incidence is monitored rou-

tinely at six sentinel sites distributed across the country;
insecticide resistance, however, is not monitored regularly.
Resistance was monitored only one time in Man [9] and
Abengourou [9], respectively; two times in Yamoussoukro
[9,10] and San Pedro [9,11] and four times in Abidjan
[9,10,12,13] and five times in Korhogo [9,10,12-14].
The strategy of the National Malaria Control Programme

towards decreasing and eliminating malaria following the
recent civil war period is to integrate approaches targeting
both malaria parasites and vectors. This strategy includes
malaria diagnostic testing and treatment with artemisinin
combination therapy (ACT), increased coverage of and ac-
cessibility to LLINs, treatment of larval breeding sites, and
more regular monitoring and surveillance of insecticide
resistance. In Côte d’Ivoire, where IRS is not currently
implemented, ITNs and more recently LLINs remain the
main control measure. In 2012, estimated coverage of
LLINs had risen to approximately 60% from near-zero just
six years earlier [2].
Côte d’Ivoire has a relatively long history of insecticide

resistance studies. Indeed, the first cases of pyrethroid
and carbamate resistance in wild malaria vectors were
reported from Central Côte d’Ivoire in the early 1990s
and early 2000s, respectively [15,16]. Recent studies have
reported resistance to other insecticide classes across the
country [13,17] and even to all WHO-approved classes
[7]. Such observations can give the perception that re-
sistance is increasing ubiquitously across insecticides
and regions, and effects of temporal variation in research
effort and reporting biases are rarely considered. In this
study we aimed to use relatively extensive historical pub-
lished and unpublished literature, and recent field tests
on insecticide resistance in Anopheles gambiae s.l. mos-
quitoes, to investigate whether over the last 20 years in
Côte d’Ivoire: (1) insecticide resistance has increased;
(2) whether any trends are consistent across insecticides
and ecological zones; (3) multiple insecticide resistance
(across insecticide classes) has increased.

Methods
Study sites
Côte d’Ivoire is a West African country of 322,462 square
kilometres and 22 million inhabitants. It is bordered by
Burkina Faso and Mali in the North, Liberia and Guinea
in the West, Ghana in the East and the Atlantic Ocean
in the South. Seasons are distinguishable by rainfall and
temperature. The average temperature increases from
25°C in the South to 30°C in the North [18]. The average
humidity increases from 71% in the North to 85% in the
South. The climate is equatorial in the southern coasts
and tropical in the centre to semi-arid in the far north and
there are three seasons: warm and dry (November to
March), hot and dry (March to May), hot and wet (June
to October). The country is divided into four ecological
zones (Figure 1) based on climate data [19]. The first eco-
logical zone (involving all of the southern region) is char-
acterized by equatorial transition climate (Guinean or
Attiéan climate) with annual rainfall between 1,300 and
2,400 mm. Dense moist forest is the characteristic vegeta-
tion found in this zone. In ecological zone 2 (the centre,
and central north), there is an attenuated equatorial tran-
sition climate (Baoulean climate). The annual rainfall
ranges between 1,500 and 2,200 mm. Vegetation is charac-
terized by Guinean forest-savannah mosaic belt (forest
and southern part of the savannah). The third ecological
zone (the North) belongs to tropical transition climate
(Sudanian climate) with annual rainfall between 1,100 and
1,700 mm. Vegetation is represented by savannah. In the
fourth ecological zone (the West), there is a mountain cli-
mate (A subequatorial climate) with two seasons and an-
nual rainfall between 1,500 and 2,200 mm. Vegetation is
characterized by evergreen forest.

Literature review
A systematic search of all published and non-published
papers on insecticide resistance in Côte d’Ivoire was car-
ried out. All studies carried out within the period covering
1993 to 2014 in which insecticide resistance was moni-
tored using WHO tube assays in An. gambiae s.l. [20]
were selected for analysis. We used various sources in-
cluding IR mapper, PubMed, MSc and PhD theses from li-
braries of research institutes and national universities.



Figure 1 Map of Côte d’Ivoire showing the distribution of main ecological zones. Modified from “Ecoregions of Côte d’Ivoire”. Source:
World Wildlife Fund. Encyclopaedia of earth: http://www.eoearth.org/view/article/151626/.
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Data were obtained from 52 published materials, 1 MSc
thesis, and unpublished data from the AvecNet programme
(www.avecnet.eu) collected between May 2013 and May
2014 (Additional file 1). The following variables were
recorded from each source: collection sites; latitude and
longitude; collection date; insecticides tested; An. gambiae
M and S molecular forms (An. gambiae s.s. and An. coluzzii,
respectively); target–site mutation frequencies; temperature
and relative humidity data.

New bioassay data
Within the AvecNet programme, An. gambiae mosqui-
toes were collected as larvae and reared to adults as
described previously [7]. Mosquitoes were exposed to
five insecticides representing all four insecticide clas-
ses used for ITN and IRS control (the carbamate bendio-
carb, the organophosphate fenitrothion, the pyrethroids
permethrin and deltamethrin, and the organochlorine
DDT) using the standard WHO insecticide susceptibility
test [20]. However, for fenitrothion the WHO protocol
has very recently been changed to a two hour rather than
the one hour exposure we applied [20]. Mortality was re-
corded 24 hours after insecticide exposure at 25°C and
70–80% relative humidity. For each insecticide it was
aimed to have 100 (in batches of 25 mosquitoes per cy-
linder) females of the age between 2 and 5 days and
50 (in batches of 25 mosquitoes per cylinder) mosqui-
toes were exposed to non-treated papers as a negative
control alongside the test exposures. Data are shown in
Additional file 1.

Data analysis
Geographic coordinates provided in publications were
double-checked through the Directory of Cities and

http://www.avecnet.eu
http://www.eoearth.org/view/article/151626/
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Towns in the World (1996–2010) website [21]. Data was
imported into ArcGIS (ESRI, Redlands, CA) software
version 10.2. Generalized Linear Models with a binary
logistic link function were run in SPSS 20 to test the
effect of year of sample, ecological zone and their inter-
action on bioassay mortalities. For permethrin and car-
bamates we also included insecticide concentration
and formulation, respectively, as additional factors (see
below). For each model we only included data from eco-
logical zones 1 and 2 because of a paucity of temporal
variance in data points in zones 3 and 4. For DDTall stud-
ies used the standard WHO diagnostic dose of 4% and for
deltamethrin only those studies using the standard con-
centration of 0.05% were included for analysis. For per-
methrin, older studies tended to use a 1% concentration,
whereas, newer studies used the WHO standard of 0.75%.
Therefore, we included bioassay data using each of these
two concentrations but when analysing permethrin alone
we included concentration as an additional factor in the
model. Data were more limited for carbamates and organ-
ophosphates, and for the former we included both bendio-
carb and propoxur, but excluded carbosulfan owing to
much lower mortality, and included insecticide formu-
lation as a factor in the carbamates model. For organ-
ophosphates we included both fenitrothion and malathion
owing to comparable mortalities, though inclusion of
malathion had little impact on results because of very few
data points. SPSS 20 was used to calculate Pearson correl-
ation coefficients to illustrate plots of mortality vs. time
for each ecological zone; Spearman rank correlations were
also calculated but are only reported if they provided a
S
M

Figure 2 Distribution of An. gambiae M (black) and S (red) molecular
recording is shown by a separate point and mean frequency prevalen
sites in each form in early samples (from 1998) and more recent samples (2
shown at the top of the plot (B).
better fit to the data. Statistics for kdr data are based on
unweighted frequencies from each study site, with t-tests
used to compare frequencies.

Results
Bioassay data and species distributions
A total of 323 data points were obtained from studies
conducting insecticide resistance bioassays using WHO
tubes [20], originating from 57 collection sites covering
the period from 1993 to 2014 (Additional file 2a). Data
were stratified according to the four ecological zones of
the country (see Figure 1), with the majority of records
from zones 1 (32%) and 2 (49%). Pyrethroid and organo-
chlorine susceptibility was tested in 56 sites (Additional
file 3 and Additional file 4); organophosphates and car-
bamates in 24 sites (Additional file 5 and Additional file 6)
almost entirely located in ecological zones 1 and 2.
Bioassays were performed using a total of 16 insecticide
formulations of which the pyrethroids permethrin and
deltamethrin and the organochlorine DDT were most
frequently tested (Additional file 2b).

Interspecific (interform) variation in distribution and
insecticide resistance
The frequency of the M and S molecular forms (i.e. An.
coluzzii and An. gambiae s.s.) varied sharply across the
ecological zones of Côte d’Ivoire (Figure 2A) with a pre-
dominance of M forms in zone 1 and often high fre-
quencies in zone 2, but a majority of S forms in zones 3
and 4. Relatively few studies recorded insecticide suscep-
tibility data separately for each molecular form, and data
B

A

forms across the four ecological zones of Côte d’Ivoire; each
ce described in Plot (A). Mean kdr 1014F frequency across sample
004–2012); and sample sites (and total numbers genotyped) are



Table 1 Generalized linear model testing the effects of
sampling year (1993–2012), insecticide (DDT, permethrin,
deltamethrin, bendiocarb & propoxur, fenitrothion &
malathion), ecological zone (zones 1 and 2) and their
interactions on bioassay mortality

Model term Wald χ2 d.f. P-value

Intercept 157.498 1 0.000

Year (covariate) 154.101 1 0.000

Insecticide 90.866 4 0.000

Ecological zone 30.381 1 0.000

Insecticide × year 92.643 4 0.000

Ecological zone × insecticide 31.005 1 0.000

Insecticide × ecological zone 223.041 4 0.000

A three-way interaction term could not be fitted to model owing to insufficient
variance in one of the combinations.
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were insufficient for any single insecticide to conduct any
quantitative analysis of possible differences in pheno-
typic resistance between the molecular forms (Additional
file 2c). However, molecular resistance diagnostic data
for the kdr L1014F polymorphism (Additional file 2d),
Figure 3 Temporal trends in mortality to (A) DDT; (B) deltamethrin an
Solid lines indicate significant correlations, dashed lines are non-significant.
and 2. In all analyses there was a significant effect of year and year × ecozo
concentration of 1% and filled circles with the current WHO standard of 0.7
originating primarily from two geographically wide-ranging
studies [13,22] highlight a temporal discordance between
the molecular forms (Figure 2B). For S forms average
frequencies recorded in 1998 and 2004–2012 were simi-
larly high (t-test, P = 0.41). For M forms kdr 1014F was en-
tirely absent from the six sites surveyed in 1998 (N = 122
genotyped), but in later collections (from 2004–2012)
present at an equivalent frequency to both the early and
late collections of S forms (t-tests, P > 0.5 for both com-
parisons). Therefore, any resistance phenotype mediated
by kdr 1014F would be expected to have increased more
sharply in M than S forms.

Spatio-temporal analysis of resistance across insecticides
We used a binomial generalized linear model (GLiM) to
investigate temporal variation in bioassay mortality across
insecticides and ecological zones (Table 1). All main effect
and interaction terms in the model were highly significant,
suggesting inconsistencies in temporal trends among in-
secticides and zones. We therefore proceeded by analysing
each insecticide separately, including additional terms in
the models where necessary (see Methods). Mortality to
d (C) permethrin in the four ecological zones of Côte d’Ivoire.
In all plots quantitative analysis was performed only on ecozones 1
ne on mortality. In (C) open symbols show data for bioassays with a
5%.
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DDT was very variable across sampling years but with
resistance ubiquitous in bioassays conducted after the
break (2003–2007) due to the political crisis in the coun-
try (Figure 3A). This temporal decline was highly signifi-
cant as was the interaction between year and ecological
zone (Table 2a), evident from a significant negative correl-
ation for zone 1 (r = −0.56, P = 0.025, n = 16) but not
zone 2 (r = −0.17, P = 0.42, n = 24). Deltamethrin typic-
ally yielded far higher mortality than DDT, with some
susceptibility, or at least low-prevalence resistance detected
in all ecological zones in recent bioassays (Figure 3B).
Again there was a highly significant temporal decline,
albeit representing a more modest decrease in resistance,
Table 2 Generalized linear model testing the effects of
sampling year (1993–2012), ecological zone (zones 1 and
2) and their interaction on bioassay mortality for (a) DDT,
(b) permethrin, (c) deltamethrin, (d) carbamates
(bendiocarb & propoxur), (e) organophosphates
(fenitrothion & malathion)

(a) DDT Wald χ2 d.f. P-value

Intercept 337.471 1 0.000

Year (covariate) 337.866 1 0.000

Ecological zone 68.178 1 0.000

Year × ecological zone 68.062 1 0.000

(b) deltamethrin Wald χ2 d.f. P-value

Intercept 56.854 1 0.000

Year (covariate) 55.615 1 0.000

Ecological zone 4.833 1 0.028

Year × ecological zone 4.926 1 0.026

(c) permethrin Wald χ2 d.f. P-value

Intercept 6.848 1 0.009

Year (covariate) 7.001 1 0.008

Insecticide concentration 63.232 1 0.000

Ecological zone 33.974 1 0.000

Year × ecological zone 33.889 1 0.000

(d) carbamate Wald χ2 d.f. P-value

Intercept 1.205 1 0.272

Year (covariate) 1.193 1 0.275

Insecticide type 5.922 1 0.015

Ecological zone 72.697 1 0.000

Year × ecological zone 72.311 1 0.000

(e) organophosphate Wald χ2 d.f. P-value

Intercept 1.517 1 0.218

Year (covariate) 1.693 1 0.193

Ecological zone 59.664 1 0.000

Year × ecological zone 59.063 1 0.000

In (b) and (c) two (similar) insecticide concentrations were present in the data
so this term was also included as an effect in each model but not in
interactions owing to insufficient variance.
with the same trend in variation between zones; signifi-
cant as an interaction in the GLiM but not as a cor-
relation across samples (ecozone 1: r = −0.34, P = 0.15,
n = 20; ecozone 2: r = −0.11, P = 0.65, n = 20). Similarly
for permethrin, there was a significant interaction be-
tween year and ecological zone (Table 2c), manifested
again as a far more pronounced temporal decrease in
mortality in ecological zone 1 (Figure 3C). However, in-
secticide concentration (0.75% vs. 1%) explained the
most variance in the model (Table 2c), with higher con-
centration yielding higher mortality as expected, and
a possible interaction with time could not be evaluated
because higher concentrations were only used in earl-
ier studies (Figure 3C). Although both bioassay con-
centrations were applied in each ecological zone, we
cannot rule out some confounding effect of concentration
on the apparent difference between zones in temporal
trends. Analysis for carbamates, for which the differ-
ence between propoxur and bendiocarb was significant
(Table 2d) but small, and organophosphate bioassay
mortality (Table 2e) must be treated with caution owing
to more limited data, especially with respect to the lack
of early studies in ecological zone 1. Nevertheless, results
appear similar for each class (Figure 4A,B, with a signifi-
cant decline in mortality only in ecological zone 2 for
carbamates (ecozone 1: r = −0.08, P = 0.85, n = 9; eco-
zone 2: r = −0.59, P = 0.014, n = 17) and organophos-
phates (ecozone 1: r = 0.16, P = 0.73, n = 7; ecozone 2:
ρ = −0.63, P = 0.027, n = 12), and therefore effectively
opposite to those for DDT and pyrethroids.

Multiple resistance
Casual observation of records of resistance to single and
multiple insecticide classes (Figure 5) might suggest a
temporal increase in the prevalence of multiple resist-
ance, with more records of resistance to two, and espe-
cially three or more classes in the second decade (26% vs.
64% of studies in 1993–2002 and 2003–2012, respectively,
represented by violet and red colours in Figure 5). How-
ever, even without considering geographical variation
in sample sites between decades, closer examination re-
veals differences in bioassay effort (symbol shapes in
Figure 5), with a significant shift toward testing of more
insecticide classes in more recent studies (χ2 = 8.1, 3 d.f.,
P = 0.04). Consequently, it is not possible to conclude that
there has been a significant overall increase in multiple
resistance. Moreover, whilst the first record of resist-
ance to all classes emerged in recent years, resistance
to three classes was already present in ecological zone
2 prior to 2003.

Discussion
In this study we aimed to use the relatively long history
of WHO bioassay testing in Côte d’Ivoire to investigate



Figure 4 Temporal trends in mortality to (A) carbamates (propoxur and bendiocarb) and (B) organophosphate (fenitrothion, barring
two open symbols for malathion) in the southern and central ecological zones of Côte d’Ivoire. Solid lines indicate significant correlations,
dashed lines are non-significant. In both analyses there was a significant effect of year x ecozone on mortality.
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three questions concerning temporal trends in insecti-
cide resistance. Although as noted in the Results, and
discussed below, some important caveats must be con-
sidered, our analyses suggest that: the prevalence of re-
sistance to each insecticide class has increased over time
(question 1); but that this change is not uniform across
insecticides and ecological zones (question 2); and, that
whilst records of multiple resistance across insecticide
classes do appear to have increased, this might be ex-
plained by an increase in the number of classes typically
tested (question 3).
Striking differences in temporal trends among insecti-
cides were observed between the two largest ecological
zones, with a significantly stronger decline in bioassay
mortality for DDT and each of the class I and II pyre-
throids in ecological zone 1, but the reverse pattern for
carbamates and organophosphates. This zonal effect
might potentially be linked to differences in the use of
insecticide in agriculture. Indeed, with the rank of first
worldwide cocoa producer, third coffee producer and
first rubber producer in Africa, and extensive rice culti-
vation across the country, agriculture remains the key



(a) 1993-2002 (b) 2003-2012

Resistance to 2 classes

No resistance

Resistance to 1 class

Resistance to 3 classes

Resistance to 4 classes

Limit of ecozones

Figure 5 Records of resistance to different insecticides classes in relation to the number of classes tested in the two decades (a) and
(b) spanning 1993 to 2012. Inset key shows how colours and shapes of the collection site markers illustrate the number of insecticide classes to
which the mosquitoes were resistant and the number tested, respectively.
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component of the national economy. The distribution of
agricultural areas was previously mapped in the country
[13] and is particularly well developed in ecological zone 1
where insecticides are applied extensively [13]. However,
data on which insecticide classes have been most com-
monly used in agriculture are unavailable, and so it is not
possible to evaluate whether zonal shifts in the relative
usage of different classes has occurred.
In Côte d’Ivoire an early investigation of the impact of

pyrethroid resistance in An. gambiae, which compared
mosquitoes from susceptible and resistant populations,
suggested that ITN efficacy was not compromised [23].
Yet widespread use of insecticide-treated bednets has only
occurred in the last five years [2] and it is possible that
individual levels of resistance, rather than just prevalence
(as recorded in all the studies we surveyed) may only have
increased relatively recently. Assessments of contempor-
ary insecticide resistance on LLINs and IRS are required
to evaluate this. However, extensive use of insecticides in
the past for other public health programmes may be a
factor contributing to resistance trends. Successful con-
trol targeting onchocerciasis and trypanosomiasis vectors
(Glossina spp.) from 1966 to 1983 eliminated onchocercia-
sis as a public health problem from the region crossed by
the Bandaman River (from ecological zone 3 to 1). For this
purpose, high amounts of DDT, pyrethroids, carbamates,
and organophosphates were sprayed on a large geo-
graphical scale [24] and may have played a role in select-
ing for the resistance in malaria vectors currently seen
today [25,26]. Unfortunately, no systematic monitoring
programme based on insecticide accumulation in water
and soil, (perhaps particularly pertinent for DDT) has
been conducted and hence the longer-term selection pres-
sure exerted by these activities is unknown.
One clear factor potentially linked to the difference in

resistance trends is sharing of target sites, with pyre-
throids and DDT both targeting the para voltage-gated
sodium and carbamates and organophosphates targeting
acetylcholinesterase. In general, An gambiae M (known
as An. Coluzzi) and S (An. gambiae s.s) forms [27] were
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sympatric in all ecological zones but with varying rela-
tive frequencies. M form An. gambiae are particularly
common in ecological zone 1, which showed the stron-
ger declines in pyrethroid and especially DDT mortality;
resistance to the latter being more strongly linked to kdr
1014F in M forms in Côte d’Ivoire [7]. It thus seems
plausible that the dramatic rise in kdr 1014F frequency
in M forms in Côte d’Ivoire, also documented in sur-
rounding countries [28,29], could be at least a partial
contributory factor. Our results highlight the critical im-
portance of separating resistance testing results even be-
tween these closely related forms (now known as species).
The apparent difference in trends between ecological
zones for carbamates and organophosphates must be
treated with considerable caution because it is evident
that the decline in zone 2 is driven largely by high mor-
tality in collections from the 1990s, which were not per-
formed in zone 1 (see Figure 4).
Characterisation of spatial variance according to eco-

logical zones is extremely coarse, with many areas under-
represented or all-but unexplored, in addition to our
analyses ignoring smaller scale spatial variation in resist-
ance testing over time. Two reasons could explain the
highly uneven distribution of bioassay data. The first rea-
son could be the existence of experimental huts and the
proximity to research institutes. During the first decade,
the main experimental huts available in the country were
located in ecological zone 2 in Bouake area. The huts
were supervised by the Pierre Richet Institute, where
several projects targeting malaria control have been con-
ducted. These experimental huts are still in use and add-
itional new huts in the Tiassalé area were built by the
Swiss Centre of Scientific Research (Centre Suisse de
Recherches Scientifiques, CSRS) in ecological zone 1
during the second decade. Overall in this and any other
studies of temporal trends in insecticide resistance, sample-
site specific biases are difficult to control and represent a
major limiting factor.
Another extremely important source of bias when evalu-

ating temporal trends in insecticide resistance is apparent
from our analysis of multiple resistance. Typically maps
representing insecticide resistance simply record presence
or absence of resistance according to WHO criteria and do
not explicitly consider spatial temporal variations in investi-
gation effort. Yet this may explain much of the apparent
pattern of increasing multiple resistance in Côte d’Ivoire;
studies testing more classes are clearly more likely to de-
tect multiple resistance. This does not in any way down-
play the important consequences implied by detection of
multiple resistance [7,30]. However, given that causation
will inevitably be linked to correlation because of the lim-
ited temporal and spatial scale of properly controlled stud-
ies, it does highlight the importance of objective evaluation
of available data.
Conclusion
This is the first nationwide mapping study to attempt a
synthesis of the 20 years of insecticide resistance data
from Côte d’Ivoire, and we clearly show increasing preva-
lence of resistance albeit with a non-uniform pattern across
areas and insecticides. Our study highlights the need for
well-standardised, regular monitoring of resistance to
multiple insecticide classes in Côte d’Ivoire, encompassing
a wider spatial scale than is currently represented by the
malaria-monitoring sentinel sites, as performed in other
countries e.g. [31]. For several areas, susceptibility data on
pyrethroid, organochlorine, organophosphate and carba-
mate need to be updated. For Tiassalé the high prevalence
of resistance (as measured by the one hour bioassay ex-
posure) does also signify high individual resistance levels,
at least for deltamethrin and bendiocarb [7]. However, this
cannot be assumed to be true generally [32], and requires
evaluation to give data that may more closely align to the
operationally-significant resistance of immediate concern
for decision-makers. Since IRS is being suggested as a
complementary tool to LLINs in the country, careful
evaluation at local scale before implementation of IRS is
needed to design an appropriate insecticide resistance
management plan to combat spread of multi-class resist-
ance known to be present at least locally in southern Côte
d’Ivoire.
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