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Abstract 

Background:  The global demand for affordable carbon has never been stronger, and there is an imperative in many 
industrial processes to use waste streams to make products. Gas-fermenting acetogens offer a potential solution and 
several commercial gas fermentation plants are currently under construction. As energy limits acetogen metabo-
lism, supply of H2 should diminish substrate loss to CO2 and facilitate production of reduced and energy-intensive 
products. However, the effects of H2 supply on CO-grown acetogens have yet to be experimentally quantified under 
controlled growth conditions.

Results:  Here, we quantify the effects of H2 supplementation by comparing growth on CO, syngas, and a high-H2 
CO gas mix using chemostat cultures of Clostridium autoethanogenum. Cultures were characterised at the molecular 
level using metabolomics, proteomics, gas analysis, and a genome-scale metabolic model. CO-limited chemostats 
operated at two steady-state biomass concentrations facilitated co-utilisation of CO and H2. We show that H2 supply 
strongly impacts carbon distribution with a fourfold reduction in substrate loss as CO2 (61% vs. 17%) and a propor-
tional increase of flux to ethanol (15% vs. 61%). Notably, H2 supplementation lowers the molar acetate/ethanol ratio 
by fivefold. At the molecular level, quantitative proteome analysis showed no obvious changes leading to these 
metabolic rearrangements suggesting the involvement of post-translational regulation. Metabolic modelling showed 
that H2 availability provided reducing power via H2 oxidation and saved redox as cells reduced all the CO2 to formate 
directly using H2 in the Wood–Ljungdahl pathway. Modelling further indicated that the methylene-THF reductase 
reaction was ferredoxin reducing under all conditions. In combination with proteomics, modelling also showed that 
ethanol was synthesised through the acetaldehyde:ferredoxin oxidoreductase (AOR) activity.

Conclusions:  Our quantitative molecular analysis revealed that H2 drives rearrangements at several layers of metabo-
lism and provides novel links between carbon, energy, and redox metabolism advancing our understanding of energy 
conservation in acetogens. We conclude that H2 supply can substantially increase the efficiency of gas fermentation 
and thus the feed gas composition can be considered an important factor in developing gas fermentation-based 
bioprocesses.
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Background
In the face of a warming planet and more inclement cli-
mate, the world faces an increasing need to drastically 
reduce its carbon usage. However, many fuels and chemi-
cals are carbon-based and, therefore, not positioned to be 
phased out in a world less dependent on fossil fuels. Thus, 
fuels and chemicals must come from renewable and sus-
tainable feedstocks. Gas fermentation shows potential in 
being part of this solution [1] and it has received consid-
erable interest for converting inexpensive and abundant 
gaseous waste feedstocks (e.g., syngas [CO, H2, and CO2] 
from gasified biomass, industrial waste gases) into valua-
ble fuels and chemicals [2–5], as opposed to the currently 
dominating fossil-based industries. Importantly, gas fer-
mentation utilises non-food-based feedstocks and offers 
high product versatility [4].

Acetogens are the preferred organisms for gas fer-
mentation, since they can use gas as their sole carbon 
and energy source [6]. They employ the Wood–Ljun-
gdahl pathway (WLP) to convert CO or CO2 (with H2) 
into acetyl-CoA [6, 7], making the pathway the most, and 
only, energy-efficient linear pathway for the synthesis of 
acetyl-CoA from CO2 [8–10]. All acetogens can natively 
produce acetate, while the autotrophic spectrum of other 
products (e.g., ethanol, butyrate, and 2,3-butanediol) 
varies between species [4]. Notably, during autotrophic 
growth on CO, the more energetically and thermody-
namically favourable carbon source [10, 11], a fraction 
of carbon is dissipated as CO2 to generate extra reduc-
ing equivalents by CO oxidation. This loss of carbon can, 
however, be diminished by generating redox from H2 oxi-
dation by cellular hydrogenases. In addition, H2 supple-
mentation should enable elevated production of reduced 
and energy-intensive products. For the latter reasons, 
H2-rich gas streams (e.g., syngas) sourced from biomass, 
industrial, or municipal waste [12, 13] are attractive 
feedstocks.

The benefit of H2 supplementation has been analysed 
on the theoretical stoichiometric conversion of CO into 
ethanol [5, 11, 14]. While 2/3 s of CO is lost as CO2 dur-
ing ethanol formation, when H2 is not present, less car-
bon needs to be dissipated as CO2 with increasing H2 
availability. Theoretically, no carbon should be lost as 
CO2 above an H2/CO uptake ratio of two [14]. However, 
this would come at an expensive thermodynamic cost as 
the Gibbs free energy change decreases with higher H2 
utilisation [14].

Despite the relevance of H2-rich gas streams, to the best 
of our knowledge, the effect of H2 supplementation on 
CO-grown acetogens has yet to be experimentally quan-
tified under controlled conditions, due to experimental 
limitations. The probable reason is that co-utilisation of 
CO and H2 is not observed in most batch cultures until 

CO is almost completely consumed [11, 15–17]. This is 
because acetogens’ Fe-based hydrogenases are strongly 
inhibited by even relatively low concentrations of CO 
[18–20]. For example, no co-utilisation of CO and H2 
was detected when Butyribacterium methylotrophicum 
was grown on CO, syngas, or CO +  H2 [17]. Although 
co-utilisation of CO and H2 was measured during Alka-
libaculum bacchi [21] and Acetobacterium-like isolate 
[22] batch growth on various CO-containing gas mixes, 
uncontrolled growth conditions resulted in changing 
pH and specific growth rate (µ), making data interpreta-
tion challenging. Finally, no gas uptake data are available 
for comparison between Clostridium autoethanogenum 
growth on CO and syngas [23]. There are indications 
though from mixotrophic (fructose + H2) and co-culture 
experiments using acetogens that supply of H2 lowers the 
carbon flux to CO2 and acetate [24, 25] while increasing 
flux to reduced products [24].

Continuous cultures, however, show simultaneous uti-
lisation of CO and H2 [26–28] and enable studying cells 
in controlled physico-chemical conditions, making con-
tinuous cultivation a suitable culturing method for inves-
tigating the effects of H2. In addition, continuous cultures 
yield steady-state data which are preferred for quantita-
tive description and in silico reconstruction of metabo-
lism [29, 30]. Therefore, the aim of our work is to perform 
the first quantitative molecular analysis of the effects of 
H2 supplementation on CO-grown acetogens using con-
tinuous cultures.

Here, we investigate the effects of H2 supplementation 
on CO-grown C. autoethanogenum chemostat cultures at 
the molecular level using metabolomics, proteomics, gas 
analysis, and a genome-scale metabolic model. We show 
that supply of H2 significantly reduces the carbon flux to 
CO2 and increases ethanol production. Proteomics data 
suggest that the metabolic rearrangements we observed 
are controlled at the post-translational level. We con-
clude that H2 supplementation can substantially improve 
the efficiency of gas fermentation and that H2 drives 
rearrangements at several molecular layers of acetogen 
metabolism.

Results and discussion
Gas‑fermenting chemostat cultures of Clostridium 
autoethanogenum
Clostridium autoethanogenum is a promising biocatalyst 
for industrial-scale gas fermentation [4, 5], and therefore, 
it was used here to quantitate the effects of H2 supple-
mentation on CO growth. Cells were grown on CO or 
CO + H2, termed “high-H2 CO” hereafter (H2/CO ~ 3), 
using a chemically defined medium in biological quad-
ruplicate chemostats at dilution rate (D)  ~  1  day−1 
(µ ~ 0.04 h−1). Two gas–liquid mass transfer rates were 



Page 3 of 15Valgepea et al. Biotechnol Biofuels  (2018) 11:55 

used resulting in steady-state biomass concentrations 
of ~ 0.5 and ~ 1.4 g dry cell weight (gDCW)/L. Cultures 
were subjected to gas analysis, metabolomics and prot-
eomics (only ~ 1.4 gDCW/L) coupled with genome-scale 
metabolic modelling. We compare the data generated 
here to a previous syngas-grown data set (H2/CO ~ 0.4) 
[28] conducted at near-identical conditions (e.g., pH, D, 
biomass concentration).

Supply of H2 leads to increased production of ethanol
Chemostats operated at two steady-state biomass con-
centrations provided insight into H2 supplementation 
at different levels of by-product inhibition, as we have 
previously shown that it can affect carbon distribution 
[28]. While acetate, ethanol, 2,3-butanediol (2,3-BDO), 
and traces of lactate have been detected in C. autoetha-
nogenum batch cultures [31, 32], our continuous cultures 
showed production of all but lactate (Fig.  1 and Addi-
tional file 1: Fig. S1). Notably, increasing supply of H2 led 
to higher concentrations of ethanol (up to  ~  12  g/L) at 
similar biomass levels. The specific ethanol production 
rate (mmol/gDCW/h) was the highest in the low biomass 
high-H2 CO chemostats (Additional file 1: Fig. S2). Inter-
estingly, acetate levels were the highest on syngas, while 
no 2,3-BDO was detected on high-H2 CO (Fig.  1 and 
Additional file 1: Fig. S1).

Previously, a molar acetate/ethanol ratio of  ~  1 was 
achieved in syngas-grown cells [28]. The high-H2 CO 
data presented here show that additional H2 supply 
can further direct carbon flux towards ethanol, achiev-
ing an acetate/ethanol ratios as low as ~ 0.2 (Fig. 1 and 
Additional file  1: Fig. S1). This highlights that the feed 
gas composition has a substantial effect on autotrophic 
metabolism and it is a critical factor for gas fermenta-
tion-based bioprocesses development, contributing to a 

reduction in downstream purification costs. In addition 
to fermentation parameters [26, 27, 33, 34] and genetic 
engineering tools used to enhance the biocatalysts [35–
37], the composition of the feedstock gas is crucial to 
determine the economic performance of the bioprocess.

Gas analysis shows that H2 uptake can substitute 
generation of redox from CO oxidation
Analysis of gas consumption and production rates by 
an autotrophic culture is essential for understanding 
and comparing the flow of carbon and redox between 
cells grown on different gas mixes. Similar to the pre-
vious syngas-grown continuous cultures [26–28], we 
observed simultaneous utilisation of CO and H2 for 
both our H2-containing gas mixes during steady-state 
growth (Fig.  2 and Additional file  1: Fig. S3). Despite 
the high level of CO in the bioreactor off-gas for both 
the syngas and high-H2 CO high biomass cultures (~ 32 
and ~ 9%, respectively), co-utilisation of CO and H2 was 
likely observed because of the relatively low residual CO 
concentration in the liquid phase, due to a CO-limited 
culture, in contrast to CO-excess batch cultures where 
co-utilisation is usually not observed [11, 15–17]. Impor-
tantly, higher supply of H2 enabled to more than double 
cellular H2 uptake (Fig. 2 and Additional file 1: Fig. S3). 
This was probably not caused by different levels of CO 
inhibition of hydrogenases, as the concentration of the 
chemostat-limiting substrate is determined by µ accord-
ing to the Monod equation [38], and here, µ was near-
constant across experiments (~ 0.04 h−1).

The specific CO2 production rate ( qCO2
 ) dropped 

more than fivefold with increasing H2 supply, while the 
specific CO uptake rate (qCO) was different between 
gases (high-H2 CO vs. others) only for the high biomass 
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cultures (Fig.  2 and Additional file  1: Fig. S3). Notably, 
qCO2

/qCO significantly decreased with increasing H2 sup-
ply from 0.69 ± 0.01 to 0.21 ± 0.01 (average ± standard 
deviation) between high biomass CO and high-H2 CO 
cultures, respectively, indicating that less CO had to be 
dissipated as CO2 under H2 availability. This also sug-
gests that lower generation of reducing power as reduced 
ferredoxin (Fdred) from the oxidation of CO into CO2 was 
off-set with increased H2 oxidation since both can serve 
as sources for the production of Fdred [4, 11]. Indeed, 
qH2

/qCO increased around fourfold from 0.39 ±  0.01 to 
1.44  ±  0.04 comparing high biomass high-H2 CO and 
syngas cultures. These observations confirm the poten-
tial of elevating cellular redox (and energy) generation 
by providing the culture with H2 [4, 5, 11], which is also 
shown by in silico metabolic modelling (see below).

Carbon balance reveals that H2 supply substantially 
increases carbon flux to ethanol
Coupling gas analysis with extracellular metabolomics 
in an autotrophic continuous culture enables accurate 
carbon balancing, which allows experimental valida-
tion of theoretical stoichiometric calculations of product 
yields [5, 11, 14]. Our high biomass steady-state cul-
tures showed carbon recoveries of 111 ± 2, 99 ± 2, and 
124 ± 2% for CO, syngas, and high-H2 CO, respectively 
(see Additional file 1: Fig. S4 for low biomass data). Car-
bon recoveries were normalised to 100% to have a fairer 
comparison of carbon distributions between the three 
gas mixes. Most importantly, H2 supplementation real-
ised a fourfold higher carbon flux to ethanol (15 ± 0.2% 
vs. 61 ±  2%) due to the proportional decline of carbon 
loss as CO2 (61 ±  0.3% vs. 17 ±  1%) when comparing 
high biomass CO and high-H2 CO cultures (Fig. 3). Even 
more significant effects were seen for low biomass cul-
tures (Additional file  1: Fig. S4). Thus, the supply of H2 
can indeed significantly diminish the loss of CO as CO2 
and boost carbon flux to ethanol, as estimated by theo-
retical stoichiometric calculations [14].

Though higher production of reduced by-products 
leads to a more oxidised intracellular redox state 
inferred from NADH/NAD+ and NADPH/NADP+ 
measurements [28, 39, 40], supply of H2, however, may 
result in a more reduced redox state. Comparing our 
syngas cultures with supply of H2 and higher carbon 
flux to reduced by-products compared to CO (Fig. 3), 
intracellular metabolome analysis of 33 metabo-
lites (Additional File 2: Tables S1, S2) showed a lower 
NADH/NAD+ (p value = 0.02, paired two-tailed t test) 
but a higher NADPH/NADP+ (p value = 0.03) in syn-
gas compared to CO (Fig. 4). However, no statistically 
significant differences (p value  <  0.05) in redox ratios 

were observed between high-H2 CO and CO or syngas 
(Fig. 4), suggesting that H2 supply might not necessar-
ily contribute to a more reduced cellular redox state.

Based on the stoichiometries for ethanol synthesis 
from CO reported by Wilkins and Atiyeh [14],  ~  67 
or  ~  17% of CO is lost as CO2 if no H2 is supplied or 
H2/CO  ~  1.5, respectively. Although our cultures also 
produced acetate, biomass, and 2,3-BDO, the estimates 
of Wilkins and Atiyeh [14] are very close to our experi-
mental data: 61% of carbon lost as CO2 in CO cultures 
and 17% of carbon lost as CO2 in high-H2 CO cultures 
with qH2

/qCO ~ 1.4 (high biomass data). This might be 
somewhat surprising, since the conversion of CO to 
ethanol with higher H2 utilisation becomes thermody-
namically less favourable due to the lower Gibbs free 
energy change [14], which, however, does not seem to 
be a problem for the cells. We chose a feed gas H2/CO 
of ~ 3 for the high-H2 CO cultures as theoretical stoi-
chiometric calculations estimate no carbon loss as CO2 
above an H2/CO uptake ratio of two during ethanol 
formation from CO [14]. Further process optimisation 
is needed for achieving such a high uptake ratio to test 
whether carbon loss as CO2 could be eliminated.

It is noteworthy that incorporation of carbon into bio-
mass (i.e., biomass yield) increased by ~ 35% (5.1 ± 0.1 
vs. 6.8 ± 0.3%) with increasing H2 supply (Fig. 3). Car-
bon flux into acetate dropped by  ~  22% (18 ±  0.4 vs. 
15 ± 1.3%; p value = 0.003) when comparing high bio-
mass cultures of high-H2 CO to CO. Our data show that 
H2 supplementation improves the efficiency of ethanol 
production using gas fermentation through higher sub-
strate fluxes into ethanol and biomass with decreased 
loss of carbon into other by-products.
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Analysis of the effects of H2 on intracellular metabolism 
using a genome‑scale metabolic model
Comprehensive quantification of carbon and redox flows 
in and out of the cells enables the estimation of intracel-
lular flux patterns using genome-scale metabolic models 
(GEMs) [41, 42]. Our chemostats provided steady-state 
data, which are preferred for accurate in silico recon-
struction of metabolism. We used the GEM iCLAU786 
previously developed for C. autoethanogenum [43] for 
in silico analysis of metabolism (refer to Methods for 
details). Simulation results identified as SIMx (e.g., SIM1) 
in the text are reported in Additional file  3: Tables S3, 
S4. The impact of H2 supply on intracellular fluxes was 
estimated by constraining the GEM with experimental 
data (exchange rates and µ) and maximising dissipation 
of ATP as the objective function in flux balance analysis 
(FBA) [44] calculations (SIM1–19). Only high biomass 
data are discussed here, since similar observations were 

made for low biomass conditions (Additional file 1: Fig. 
S5).

Simulations showed that, although CO oxidation 
declined with increasing H2 supply, flux through the 
WLP increased due to the lower dissipation of CO2 
from CO oxidation (Fig.  5). A higher flux through the 
WLP demands both more ATP and reducing power (see 
Additional file  1: Fig. S5 for central metabolism cofac-
tors used in the model). While the redox for this was 
supplied directly by the significantly elevated H2 oxida-
tion (~  82% vs.  ~  41% of Fdred produced by CO oxida-
tion on CO vs. high-H2 CO), it also enabled higher ATP 
production by providing Fdred to the Rnf–ATPase system 
(Additional file 3: Table S3). Notably, these changes were 
accompanied by the complete shutdown of flux through 
the Nfn transhydrogenase complex (Fig.  5). In addition 
to the use of H2 for redox generation, all the CO2 fixed 
by the WLP was reduced to formate directly using H2 by 
the formate-H2 lyase activity of the electron-bifurcating 
hydrogenase–formate dehydrogenase (HytA–E/FdhA) 
enzyme complex [18] (Fig. 5). This saves redox compared 
to growth on CO, where the redox-consuming formate 
dehydrogenase catalysed the reduction of CO2. These 
observations show that cells have the flexibility to use the 
extra H2 left over from CO2 reduction for carbon redis-
tribution (Fig. 3).

Simulations of CO and high-H2 CO conditions con-
firmed that ethanol is produced solely through acetate 
using the acetaldehyde:ferredoxin oxidoreductase (AOR) 
activity, rather than through the “conventional” direct 
route from AcCoA using the bifunctional acetaldehyde/
alcohol dehydrogenase AdhE activity (Fig.  5), as previ-
ously reported for syngas [28]. Our proteomics data 
(see below) also show much higher expression levels for 
AOR (CAETHG_RS00440) compared to genes of the 
“conventional” route as previously shown by transcript 
abundance measurements in C. autoethanogenum syn-
gas cultures [28] and by other acetogen data sets [45–47]. 
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Fig. 4  Intracellular redox state of gas-fermenting C. 
autoethanogenum chemostats. Data for high biomass concentration 
chemostats (~ 1.4 gDCW/L) are shown and represented as the 
average ± standard deviation between biological triplicates (syngas 
and high-H2 CO NADH/NAD+) and quadruplicates (CO and high-H2 
CO NADPH/NADP+). Syngas data from our previous work [28]. The p 
values are calculated using a paired two-tailed t test

(See figure on next page.)
Fig. 5  Central metabolism flux levels and relative protein expression of high biomass gas-fermenting C. autoethanogenum chemostats. Data for 
high biomass concentration chemostats (~ 1.4 gDCW/L) are shown. See dashed inset for bar chart and heatmap details. Fluxes (mmol/gDCW/h) 
are represented as the average ± standard deviation between duplicate (syngas) and quadruplicate (CO and high-H2 CO) chemostats. Arrows 
show the direction of calculated fluxes; red arrow denotes uptake or secretion. Flux into PEP from OAA and pyruvate is merged. Refer to Additional 
file 1: Fig. S5 for the cofactors of the reactions used in the model and Additional file 2: Table S2 for metabolite abbreviations. Protein expression 
fold changes are average of quadruplicate chemostats: syngas vs. CO (left box) and high-H2 CO vs. CO (right box). SIL-protein-aided label-based 
data are denoted with red font for gene ID. Differentially expressed proteins are indicated with an asterisk (q value < 0.05 after false discovery rate 
[FDR] correction [58], and for label-free data additionally fold-change > 1.5). Proteins forming a complex are highlighted with orange borders; FdhA 
(13725) forms a complex with HytA–E (13745–13770) for direct CO2 reduction with H2. Median data are shown for the Rnf and ATPase protein 
complexes. aMethylene-THF reductase flux is shown; bbifunctional acetaldehyde/alcohol dehydrogenase (acetyl-CoA → ethanol). Gene IDs next 
to heatmaps are preceded with CAETHG_RS; gDCW gram dry cell weight, NQ not quantified. Refer to Additional file 3: Tables S3 and S4 for flux data 
and Additional file 4: Tables S5–S7 for protein expression data
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The dominance of AOR is not surprising as it enables 
coupling ethanol and ATP production, especially impor-
tant during growth on CO2 and H2 [11, 48]. Our calcula-
tions with CO and high-H2 CO data agree with the result 
of syngas data [28] that the final WLP reduction step cat-
alysed by methylene-THF reductase (MetFV, RS07830, 
and RS07835) is most likely Fd reducing, since in silico 
growth was infeasible if the latter activity was not pre-
sent. These results are important for filling gaps in our 
understanding and mathematical description of energy 
conservation in acetogens [48, 49].

We detected an increase in cellular maintenance costs 
[50, 51] from 5.5 ± 0.2 to 9.3 ± 0.6 mmol/gDCW/h with 
increasing H2 supply (Fig.  5). Interestingly, the frac-
tion of maintenance costs from total ATP production 
also increased, from  ~  37 to  ~  43% (Additional file  3: 
Table S3). The higher ATP demands for cellular mainte-
nance in high-H2 CO cultures could be explained by the 
chaotropic nature of ethanol (~ 12 g/L) causing the leak-
age of protons from compromised cell membrane integ-
rity [52] and significant consumption of H2 as both lead 
to the influx of protons without ATP synthesis (the Rnf-
ATPase system in C. autoethanogenum generates ATP 
through proton motive force [53, 54]).

Prediction of “optimal” growth phenotypes using 
a genome‑scale metabolic model
In addition to estimating intracellular flux patterns, 
GEMs are useful for phenotype prediction, i.e., design-
ing strains in silico, with potentially superior character-
istics (e.g., higher target product yield) [41, 42]. Before 
using the model for strain design, it is useful to evaluate 
the accuracy of the model by predicting “optimal” growth 
phenotypes. This is generally done by constraining the 
model with experimental data from substrate uptake 
rates and maintenance ATP costs and by maximising bio-
mass yield in FBA calculations.

Similar to our previous predictions for syngas with-
out additional constraints [28], neither ethanol nor 
2,3-BDO production were predicted by the model for 
“optimal” growth on CO, while ethanol production on 
high-H2 CO was underestimated by  ~  55% (Additional 
file 3: Table S3 SIM20–34). We discovered in the former 
work [28] that coupling of carbon and redox metabolism 
from H2 utilisation enables the GEM to predict ethanol 
close to experimental values. Indeed, ethanol predic-
tion on high-H2 CO was improved with the extra con-
straint (see “Methods” for details) to differ by ~ 4% from 
experimental values (Additional file  1: Fig. S6; Addi-
tional file 3: Table S3 SIM35–41). Despite the latter and 
the ability to accurately predict growth-boosting amino 
acids for C. autoethanogenum [43], in silico reconstruc-
tion of autotrophic growth is still incomplete as ethanol 

and 2,3-BDO production on CO could not be predicted. 
The most likely shortcoming of using stoichiometric-
only models (e.g., a GEM) for predicting “optimal” phe-
notypes is not taking into account the effects of the high 
concentrations of ethanol and acetate on enzyme kinetics 
and cellular maintenance costs, highlighting the need for 
kinetic models [41].

Proteome analysis showed no obvious changes explaining 
the metabolic rearrangements
We next performed quantitative proteome analyses to 
investigate whether the above-described metabolic rear-
rangements could be explained by changes in intracellu-
lar protein levels for high biomass cultures of the three 
gas mixes. We used a data independent acquisition (DIA) 
mass spectrometry approach [55] to confidently quanti-
tate 1655 proteins across and 1403 in average within each 
sample (12 in total) with at least two peptides per protein. 
Our proteomics data were highly reproducible shown 
by the clear clustering of bio-replicates with an average 
Pearson correlation coefficient of R = 0.98 between them 
(Additional file  1: Fig. S7A–C). To increase the accu-
racy of relative protein quantification, 20 stable-isotope 
labelled (SIL) proteins covering central metabolism, the 
HytA–E hydrogenase, and a ribosomal protein of C. 
autoethanogenum (Additional file 4: Table S5) were syn-
thesised using a wheat germ cell-free system [56, 57] and 
spiked into every sample as SIL peptides.

While the proteomics data showed gas mix-specific 
clustering (Additional file  1: Fig. S7D) and  ~  200 pro-
teins were differentially expressed (fold-change  >  1.5, 
q value  <  0.05 after false discovery rate [FDR] correc-
tion [58]) between syngas and CO (Additional file  4: 
Table  S6) or high-H2 CO and CO (Additional file  4: 
Table  S7) in the label-free proteome-wide data set, no 
obvious protein expression changes were observed 
explaining the metabolic rearrangements (Fig.  5). In 
addition, the SIL-protein-aided label-based relative 
quantification did not provide clear answers for this 
(Fig.  5 and Additional file  4: Table  S5). Among the 13 
proteins associated with ethanol synthesis from either 
acetate or acetyl-CoA, only one—an alcohol dehydro-
genase (RS15940)—showed consistent up-regulation 
with increased flux to ethanol (Fig. 5). Importantly, the 
primary AOR (RS00440) seems to facilitate ethanol 
synthesis as it is a top-10 protein by absolute expression 
levels (MS signal intensities), and none of the mono- or 
bifunctional acetaldehyde/alcohol dehydrogenases of 
the “conventional” route directly from acetyl-CoA were 
quantifiable (Additional file 4: Table S8 and Fig. 5). This 
is consistent with our model simulations showing flux 
only through AOR (Fig. 5). Regarding the acetaldehyde-
to-ethanol step, despite RS15940 showing consistent 
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up-regulation, RS08920 is likely the most relevant alco-
hol dehydrogenase as its absolute expression levels 
greatly surpassed the other five alcohol dehydrogenases 
(25–500-fold in high-H2 CO). It is important to note 
that fluxes of by-product synthesis pathways—etha-
nol, acetate, and 2,3-BDO—seem to be regulated post-
translationally as protein expression did not follow 
changes in flux rates (Fig. 5).

One would expect the expression of cellular hydroge-
nases to increase with elevated H2 supply and uptake, 
which increased from sub-zero (i.e., minor production) 
on CO to ~ 30 mmol/gDCW/h on high-H2 CO (Figs. 2, 
4). Strikingly, C. autoethanogenum hydrogenases seem 
to be expressed constantly within our three gas mixes 
at high enough levels to realise substantially elevated H2 
utilisation as neither of the two quantifiable hydroge-
nase complexes—HytA–E (RS13745–13770) and another 
iron-containing complex (RS07645–07655)—from the 
six annotated in the genome [59] showed a higher than 
threefold increase in protein expression (Fig.  5). The 
opposite expression dynamics of these two hydroge-
nases—down- and up-regulation, and up- and down-
regulation of HytA and RS07645–07655 when comparing 
syngas to CO and high-H2 CO to CO, respectively—
could suggest different optimal operation conditions 
(Fig. 5 and Additional file 4: Tables S5–S7). Both hydro-
genases show high absolute expression levels (Additional 
file  4: Table  S8), as previously seen in C. autoethanoge-
num RNA sequencing data sets [28, 45, 59]. High expres-
sion of hydrogenases, even on CO, could be explained by 
the capability of acetogens to rapidly catabolise H2 once it 
becomes available in natural environments, thus provid-
ing a growth advantage.

Our model simulations showed that for H2-containing 
gas mixes all the CO2 fixed by the WLP was reduced to 
formate directly using H2 by the formate-H2 lyase activity 
of the HytA–E/FdhA enzyme complex (Fig. 5). Proteom-
ics data support this as the expression profile of HytA 
and FdhA was very close (all changes q value  <  0.05; 
Fig. 5 and Additional File 4: Tables S6, S7), and the only 
other quantifiable formate dehydrogenase (RS14690) 
showed very low absolute expression levels (Additional 
file  4: Table  S8). Notably, concomitant protein expres-
sion changes with increasing flux through the WLP were 
not observed (Fig. 5), similar to hydrogenases’ expression 
suggesting that sufficient enzymatic capacity was con-
stantly expressed. Overall, our proteomics data suggest 
that fluxes of acetogen central metabolism are regulated 
post-translationally, as proposed before [47], which fur-
ther highlights the need for the use of kinetic models for 
more accurate reconstruction of acetogen metabolism 
in silico [41]. Further analyses are needed to determine 
which mechanism from allosteric regulation, substrate 

concentration change or post-translational protein modi-
fication is responsible for post-translational regulation of 
fluxes.

There were other notable differentially expressed pro-
teins within the pool of  ~  200. For example, proteins 
belonging to the pyruvate–oxaloacetate–PEP node 
(RS07735 and RS13335; both  ~  fivefold, q  <  0.01) and 
several gluconeogenetic enzymes were up-regulated 
on high-H2 CO compared to CO (Fig.  5). In addition, 
expression of proteins of the UMP biosynthesis pathway 
(RS07105–07130; in average ~ threefold, q < 0.01) and its 
associated glutamate–glutamine metabolic pathways (in 
average  ~  twofold, q  <  0.01), and of the oxidative TCA 
cycle (RS13535–13545; in average  ~  twofold, q  <  0.01) 
were elevated on high-H2 CO compared to CO (Addi-
tional file 4: Table S7 and Fig. 5). While the intracellular 
UMP metabolite concentration was not higher in the lat-
ter condition, concentrations of UDP and UTP, down-
stream products of UMP, were higher on high-H2 CO 
(Additional file 2: Table S1).

Conclusions
Our results show that feed gas composition has a strong 
effect on autotrophic metabolism, particularly the pres-
ence and level of H2. We conclude that H2 supplemen-
tation can substantially improve the efficiency of gas 
fermentation by realising higher substrate fluxes into 
ethanol and biomass with decreased loss of carbon into 
other by-products. Proteomics data suggest that the 
observed metabolic rearrangements were regulated at 
the post-translational level. Our study, representing the 
first quantitative analysis of the effects of H2 supplemen-
tation on CO-grown acetogens under controlled growth 
conditions, provides novel links between carbon, energy, 
and redox metabolism. Altogether, the data presented 
here advance our understanding of energy conserva-
tion in acetogens [48, 49]. The results also highlight that 
feed gas composition can be considered a critical factor 
in enhancing the economics of gas fermentation-based 
bioprocesses.

Methods
Bacterial strain, growth medium, and continuous culture 
conditions
A derivate of the Clostridium autoethanogenum DSM 
10061 strain—DSM 19630—deposited in The German 
Collection of Microorganisms and Cell Cultures (DSMZ) 
was used in all experiments and stored as glycerol stocks 
at − 80 °C.

Cells were grown either on CO (~  60% CO and 40% 
Ar; BOC Australia) or CO +  H2, termed “high-H2 CO” 
here (~ 15% CO, 45% H2 and 40% Ar; BOC Australia) in 
chemically defined medium (without yeast extract) [28]. 
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Experimental data for growth on syngas (~ 50% CO, 20% 
H2, 20% CO2, and 10% N2/Ar; BOC Australia) other than 
proteomics data, which was generated in this work, are 
from our previous study [28].

As during growth on syngas [28], cells were grown 
under strict anaerobic conditions at 37  °C and at a pH 
of 5 (maintained by 5  M NH4OH). Chemostat con-
tinuous cultures were operated at D = 1.0 ± 0.01 day−1 
(µ  =  0.04  ±  0.001  h−1) and D  =  1.0  ±  0.01  day−1 
(µ = 0.04 ± 0.001 h−1) for CO and high-H2 CO, respec-
tively, (D = 1.0 ± 0.03 day−1 [µ = 0.04 ± 0.001 h−1] for 
syngas) in 1.4  L Multifors bioreactors (Infors AG) at a 
working volume of 750  mL. The system was equipped 
with peristaltic pumps; mass flow controllers (MFCs); 
pH, ORP, and temperature sensors and was connected to 
a Hiden HPR-20-QIC mass spectrometer (Hiden Analyti-
cal) for online high-resolution off-gas analysis. Antifoam 
was continuously added to the bioreactor using a syringe 
pump to avoid foaming.

We targeted the lowest and highest (~  0.5 and 
1.4  gDCW/L, respectively) steady-state biomass con-
centrations of the previous syngas cultures [28] to com-
pare the effect of H2 supplementation at different levels 
of inhibition from by-products. This was achieved using 
various steady-state gas–liquid mass transfer rates: for 
CO, 510 and 665 RPM at 46.5  mL/min gas flow result-
ing in 0.47 ±  0.02 and 1.43 ±  0.08 (gDCW/L), respec-
tively; for high-H2 CO, 650 and 1000 RPM, and 46.5 
and 110  mL/min gas flow resulting in 0.46 ±  0.04 and 
1.45 ± 0.04 (gDCW/L), respectively. Four biological rep-
licate cultures with two steady states (low and high bio-
mass) per independent chemostat run were performed. 
All the steady-state results reported here were collected 
after optical density (OD) and gas uptake and production 
rates had been stable in chemostat mode for 3–5 working 
volumes, similar to syngas data.

Biomass concentration analysis
Biomass concentration (gDCW/L) was estimated for CO 
and high-H2 CO cultures by measuring the OD of the 
culture at 600 nm using the correlation coefficient of 0.21 
between culture OD and dry cell weight determined in 
[28] for syngas cultures.

Bioreactor off‑gas analysis
Bioreactor off-gas analysis was performed as specified in 
[28] by an online Hiden HPR-20-QIC mass spectrometer 
(MS) using the Faraday Cup detector. Shortly, gas uptake 
(CO and H2) and production (CO2 and ethanol) were 
determined using “online calibration” of the MS by ana-
lysing the respective feed gas directly from the cylinder 
after each analysis cycle of the bioreactors. Specific rates 
(mmol/gDCW/h) were calculated by taking into account 

the exact composition of the respective gas, bioreactor 
liquid working volume, feeding gas flow rate, off-gas flow 
rate based on the fractional difference of the inert gas Ar 
in the feeding and off-gas composition, the molar volume 
of ideal gas, and the steady-state biomass concentration. 
To achieve a more accurate carbon balance, ethanol strip-
ping and the total soluble CO2 fraction in culture broth 
were also taken into account based on off-gas analysis.

Extracellular metabolome analysis
Extracellular metabolome analysis was carried out using 
filtered broth samples stored at −  20  °C until analysis. 
Organic acids, alcohols, and amino acids were quantified 
using HPLC as described before [43]. We note that cells 
produced 2R,3R-butanediol.

Intracellular metabolome analysis
Intracellular metabolome analysis was based on the 
method previously developed for the autotrophic growth 
of C. autoethanogenum [45] with details specified in [28]. 
Briefly, 1  mL of a high biomass culture was pelleted by 
immediate centrifugation followed by extraction of intra-
cellular metabolites using acetonitrile. Metabolite con-
centrations were determined using LC–MS analysis in 
negative ion mode and relevant standards.

Cell‑free synthesis of stable‑isotope labelled proteins
Twenty proteins covering central metabolism, the HytA–
E hydrogenase, and a ribosomal protein of C. autoetha-
nogenum (Additional file  4: Table  S5) were selected for 
cell-free synthesis of stable-isotope labelled (SIL) pro-
teins. First, the genes encoding for these proteins were 
synthesised by commercial gene synthesis services (Bio-
matik). The PCR-amplified target genes were sub-cloned 
into the cell-free expression vector pEUE01-His-N2 
(Cell-Free Sciences) and transformed into Escherichia 
coli DH5α. Next, plasmid DNA was extracted and puri-
fied by alkaline lysis after cells had been cultured over-
night in LB medium containing 50  μg/mL ampicillin. 
Correct gene insertion into the pEUE01-His-N2 was 
verified by DNA sequencing. Subsequently, cell-free 
synthesis of His-tag fused C. autoethanogenum proteins 
was performed using the bilayer reaction method with 
the wheat germ extract WEPRO8240H (Cell-Free Sci-
ences) as described previously [56, 57]. Briefly, mRNAs 
used for cell-free synthesis were prepared by an in vitro 
transcription reaction at 37 °C for 6 h using the SP6 RNA 
polymerase. In  vitro translation of C. autoethanogenum 
proteins was performed using a bilayer reaction (200 μL 
substrate layer and 40  μL translation layer) at 17  °C for 
24  h in a 96-well microplate. The translation layer was 
supplemented with l-Arg-13C6,15N4 and  l-Lys-13C6,15N2 
(Wako) at final concentrations of 20 mM to achieve high 
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efficiency (>  99%) stable-isotope labelling of proteins. 
Finally, in vitro synthesised proteins were purified using 
the Ni-Sepharose High-Performance resin (GE Health-
care Life Sciences) and stored at −  80  °C until further 
use.

Proteome analysis
Proteome analysis of CO, high-H2 CO, and syngas cul-
tures was carried out for four biological replicates from 
the high biomass concentration (~ 1.4 gDCW/L) experi-
ments using a DIA MS approach [55]. 2  mL of culture 
was pelleted by immediate centrifugation (25,000×g for 
1 min at 4 °C) and stored at − 80 °C until analysis.

Sample preparation
Frozen cell pellets were thawed, washed with phosphate-
buffered saline, resuspended in 500 µL of lysis buffer (pH 
7.6) containing 2% (w/v) SDS (L4390; Sigma-Aldrich), 
0.1  M DTT (V3155; Promega), 0.1  M Trizma® base 
(T1503; Sigma-Aldrich), and vortexed. The cell suspen-
sion was transferred to a 2 mL screw cap microtube (522-
Q; Thermo Fisher Scientific) containing 0.1  mm glass 
beads (11079101; BioSpec Products). Cell lysis was per-
formed by repeating the following “lysis cycle” four times: 
incubation for 10 min at 100 °C; bead beating using pro-
gram “cycle 5” on the Precellys™ 24 instrument (Bertin 
Technologies); centrifugation at 14,000  rpm for 10  min 
at room temperature; vortexing (excluded from the final 
fourth lysis cycle). Next, 400  µL of lysate was carefully 
removed without withdrawing glass beads. Protein con-
centration in cell lysates was determined using the 2D 
Quant Kit (80-6483-56; GE Healthcare Life Sciences).

Alkylation of sulfhydryl groups and protein diges-
tion was based on the filter-aided sample preparation 
(FASP) protocol [60]. 100  µg of protein was loaded 
and mixed with 200  µL of 8  M urea ([UA]; U5128; 
Sigma-Aldrich) in 0.1  M Trizma® base (pH 8.5) on an 
Amicon® Ultra-0.5 mL centrifugal filter unit with nom-
inal molecular weight cutoff of 30,000 (UFC503096; 
Merck Millipore), and centrifuged at 14,000  rpm for 
10  min at room temperature. The filter was washed 
and centrifuged once more with 200  µL of UA after 
which sulfhydryl groups were alkylated with the addi-
tion of 100 µL of 0.05 M iodoacetamide (I6125; Sigma-
Aldrich) in UA, vigorous vortexing, and incubation for 
30 min at room temperature in the dark. Next, the filter 
was centrifuged as described above, and then washed 
three times and centrifuged with UA. Subsequently, the 
addition of 100  µL of 25  mM ammonium bicarbonate 
(AMBIC) and centrifugation was repeated twice before 
proteins were digested on the filter for 16  h at 37  °C 
with 2  µg of Trypsin/Lys-C mix (V5073; Promega) in 
30  µL of  ~  17  mM AMBIC and acetic acid. Peptides 

were recovered by centrifuging the filters upside down 
at 1000 rpm for 2 min at room temperature, followed by 
two times of addition of 30 µL of 25 mM AMBIC and 
centrifugation as in the previous step. Finally, the col-
lected peptide material was mixed with 10  µL of 0.1% 
(v/v) formic acid (FA) in 5% (v/v) acetonitrile (ACN) to 
stop digestion.

Samples were desalted using C18 ZipTips (ZTC18S096; 
Merck Millipore) as follows: the column was wetted 
using 0.1% FA in 100% ACN, equilibrated with 0.1% FA in 
70% (v/v) ACN, and washed with 0.1% FA before loading 
the sample and washing again with 0.1% FA. Finally, pep-
tides were eluted with 0.1% FA in 70% ACN. Total pep-
tide concentration in each sample was determined using 
the Pierce™ Quantitative Fluorometric Peptide Assay 
(23290; Thermo Fisher Scientific) to ensure that the same 
total peptide amount across samples could be injected for 
DIA MS analysis. To further increase the accuracy of rel-
ative protein quantification, each sample was spiked with 
the same amount of a mix of SIL peptides derived from 
the 20 SIL proteins (see above) using the same FASP-
based workflow as for culture samples with an additional 
step of reduction of disulfide bonds using DTT. Finally, 
samples were freeze-dried and reconstituted with 10 µL 
of 2% (v/v) ACN containing 0.05% (v/v) trifluoroacetic 
acid (TFA) to which 1 µL of an iRT Peptide mix (Ki-
3003; Biognosis) were added, pre-diluted one in five to 
meet the manufacturer’s recommendations. In addition, 
the whole material eluted from a ZipTip of one sample 
from each gas mix and one syngas-grown culture sample 
spiked with SIL peptides were used for DIA MS spec-
tral library generation using data-dependent acquisition 
(DDA; see below).

Sample fractionation for DIA MS spectral library
To increase the proteome coverage in DIA MS analy-
sis, a pool of samples from each gas mix was fraction-
ated using high pH reverse-phase fractionation, based 
on the protocol of the Thermo Fisher Scientific product 
84868. A Waters Sep-Pak tC18 cartridge (WAT054960; 
Waters) was conditioned twice by the addition of 500 µL 
of 100% ACN and centrifugation inside a 15  mL falcon 
tube at 3000×g for 2 min at room temperature. The same 
was repeated with 0.1% FA. Next,  ~  15  µg of the FASP 
product of one sample from each gas mix were pooled 
together, mixed with 0.1% FA for a final volume of 500 µL 
and loaded on the column by centrifugation (same con-
ditions). The cartridge was then washed with 500  µL of 
Milli-Q water before eight fractions were collected with 
an increasing ACN step gradient (from 5 to 50%) at high 
pH in triethylamine background. Finally, the fractions 
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were freeze-dried and reconstituted with 10  µL of 2% 
ACN containing 0.05% TFA.

Nano‑LC method
For both the DDA spectral library generation and DIA 
sample runs, a Thermo-Scientific U3000 nano-HPLC 
system was used in a trap column configuration for con-
centration and separation of the peptide samples. The 
samples were initially loaded onto a Thermo Acclaim 
PepMap C18 trap reversed-phase column (75 µm × 2 cm 
nano viper, 3 µm particle size) at a flow rate of 8 µL/min 
using 2% ACN containing 0.05% TFA for 6 min. Separa-
tion was achieved at 250 nL/min using 0.1% FA in water 
(buffer A) and 0.1% FA in ACN (buffer B) as mobile 
phases for gradient elution with a 75 µm × 50 cm Pep-
Map RSLC C18 (2  µm particle size) Easy-Spray Column 
at 45  °C. Peptide elution employed a 2–8% ACN gradi-
ent for 14 min followed by two step gradients of 8–30% 
ACN gradient for 80 min and 30–45% ACN for 10 min. 
The total acquisition time was 130 min including a 95% 
ACN wash and re-equilibration step. For each DDA sam-
ple run, a volume of 5 µL equating to ~ 1.5 µg of protein 
digest was injected. Likewise, for each DIA sample run, 
a volume of 5 µL equating to 0.5 µg of protein digest was 
injected.

DIA MS spectral library generation
The following 17 samples were analysed on the 
Q-Exactive HF (Thermo Fisher Scientific) in DDA mode 
to yield the spectral library for DIA MS data analysis: 
(1) one unfractionated sample from each gas mix and 
one unfractionated syngas-grown culture sample spiked 
with SIL peptides; (2) four replicates of one pool of all 
12 unfractionated culture samples; (3) eight high pH 
reverse-phase fractions of a pool of samples from each 
gas mix; and (4) a mix of eight SIL-proteins (see Addi-
tional file 4: Table S5).

The eluted peptides from the C18 column were intro-
duced to the MS via a nano-ESI and analysed using the 
Q-Exactive HF. The electrospray voltage was 1.8 kV, and 
the ion transfer tube temperature was 250 °C. Employing 
a top-20 ddMS2 acquisition method, full MS scans were 
acquired in the Orbitrap mass analyzer over the range 
m/z 400–1200 with a mass resolution of 120,000 (at m/z 
200). The AGC target value was set at 3.00E+06. The 20 
most intense peaks with a charge state between 2 and 6 
were fragmented in the high energy collision dissociation 
(HCD) cell with a normalised collision energy of 28%. 
MSMS spectra were acquired in the Orbitrap mass ana-
lyzer with a mass resolution of 15,000 at m/z 200. The 
AGC target value for MSMS was set to 1.0E+05, while 
the ion selection threshold was set to 1.8E+05 counts. 

The maximum allowed ion accumulation times were 
50 ms for full MS scans and 40 ms for MSMS. For all the 
experiments, the dynamic exclusion time was set to 20 s, 
and undetermined charge state species were excluded 
from MSMS.

Identification results from DDA analysis were used 
to build a spectral library for DIA MS data confirma-
tion and quantification using Skyline [61] (see below). 
For this, raw DDA data files were analysed with Pro-
teome Discoverer 2.2 (Thermo Fisher Scientific) using 
SEQUEST HT against a C. autoethanogenum DSM 10061 
[31] database containing  ~  3750 sequences while also 
annotated to include the 20 SIL-proteins and a fusion of 
the 11 iRT peptides. The NCBI annotation of sequence 
NC_022592.1 [59] was used as the annotation genome 
here, with CAETHG_RS07860 removed and replaced 
with the carbon monoxide dehydrogenase genes named 
CAETHG_RS07861 and CAETHG_RS07862 with initial 
IDs of CAETHG_1620 and 1621 [59], respectively. The 
workflow editor was used to create customised searches 
and result reports, where RAW data files were processed 
to generate a Magellan Server File (MSF) result file and 
a.pd result output file, which was later incorporated in 
Skyline for the DIA MS spectral library build.

The SEQUEST HT search parameters included: 
10 ppm precursor ion mass tolerance; product ion mass 
tolerance of 0.05  m/z; full trypsin specificity with two 
missed cleavages allowed for peptides with a length of 
6–150 AAs. Cysteine carbamidomethylation was set as a 
fixed modification, while methionine oxidation, deamida-
tion of glutamine and asparagine as well as N-terminal 
acetylation were set as variable modifications. The mass 
analyser used was Fourier Transform Mass Spectrometry 
while the activation type was HCD. Peaks were filtered 
with a signal to noise (S/N) threshold of 1.5. A sepa-
rate SEQUEST HT search node was included with fixed 
modifications set to include 13C(6)15N(2)/+ 8.014 Da (K) 
and 13C(6)15N(4)/+  10.008  Da (R) for the SIL-proteins. 
Within this search node, cysteine carbamidomethylation 
(+ 57) was set as a fixed modification, while methionine 
oxidation (+ 16), deamidation of glutamine and aspara-
gine (+  0.984) as well as N-terminal acetylation (+  42) 
were set as variable modifications.

Database searching against the corresponding decoy 
database containing reversed protein sequences was per-
formed using Percolator to evaluate the FDR of peptide 
identifications. The final.pd result file contained peptide–
spectrum matches (PSMs) with q values estimated at 1% 
FDR for peptides ≥ 4 AAs.

DIA MS data acquisition
As for the DDA method, eluted peptides were intro-
duced to the MS via a nano-ESI and analysed using the 
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Q-Exactive HF. The electrospray voltage was 1.9 kV, and 
the ion transfer tube temperature was 250  °C. DIA was 
achieved using an inclusion list: m/z 400‒1000 in steps 
of 15 amu and a quadruple isolation window of 16 amu, 
scans cycled through the list of 40 isolation windows 
interspersed with an MS1 scan for every 10 targets. Full 
MS scans were acquired in the Orbitrap mass analyser 
over the range m/z 400–1200 with a mass resolution of 
120,000 (at m/z 200). Identical to the DDA method, the 
AGC target value was set at 3.00E+06 with a maximum 
injection time of 50 ms. All DIA scans implemented an 
NCE collision energy of 28% while MSMS detection in 
the Orbitrap was at a resolution setting of 30,000 (at m/z 
200). The AGC target was set to 1.0E+06 with a maxi-
mum injection time of 45 ms. A first fixed mass of m/z 
200 was applied, and default charge state of 2 was set for 
scanning MS2 events.

DIA MS data analysis
DIA MS data analysis was performed with the software 
Skyline [61]. The .pd result file from Proteome Dis-
coverer was used to build the DIA MS spectral library 
within Skyline using only PSMs with q value  <  0.01. 
The following parameters were used for DIA MS data 
analysis: six of the most intense y and b (only y for 
SIL-protein-aided label-based quantification) prod-
uct ions from ion 3 to last ion of charge state 1 and 2 
among precursor charges 2, 3, and 4 were picked while 
product ions falling within the DIA precursor window 
were excluded; chromatograms were extracted with 
a library match mass tolerance of 0.05  m/z for prod-
uct ions with an extraction window within 5  min of 
the predicted retention time after iRT alignment; full 
trypsin specificity with two missed cleavages allowed 
for peptides with a length of 8–25 AAs; cysteine car-
bamidomethylation as a fixed peptide modification. In 
addition, for SIL-protein-aided label-based quantifica-
tion, peptide modifications included heavy labels for 
lysine and arginine as 13C(6)15N(2)/+ 8.014 Da (K) and 
13C(6)15N(4)/+  10.008  Da (R), respectively, and these 
heavy labels were set as “internal standard type” to aid 
peak picking.

Next, for both data sets (label-free and label-based), 
shared peptides were removed, and a minimum of five 
transitions per precursor and two peptides per protein 
were allowed. The mProphet peak picking algorithm 
[62] within Skyline was used and trained with shuffled 
sequence decoys to separate true from false-positive 
peak groups (per sample) and only peak groups with q 
value < 0.01 (representing 1% FDR) were used for further 
quantification. For the proteome-wide data set (label-
free), we confidently quantitated 14,705 peptides and 

1655 proteins across all samples, and 10,134 peptides and 
1403 proteins on average within each sample with at least 
two peptides per protein.

Determination of differentially expressed proteins 
and absolute protein expression levels
Protein expression fold changes with p- and q values 
were determined using the software MSstats [63] with 
high-quality feature selection, top3 featureSubset, 
and Tukey’s median polish as run-level summarisa-
tion within its linear mixed models. For the proteome-
wide data set (label-free), only proteins with at least 
two peptides in each bio-replicate under comparison 
were used (filtering for two, instead of one, peptides 
per protein has shown higher quantification accuracy 
[64, 65]) and input data were normalised using quan-
tile normalisation, independently determined as the 
most suitable normalisation method using the soft-
ware Normalyzer [66]. Higher quantification accu-
racy for the SIL proteins was achieved by label-based 
quantification through normalising light (endogenous) 
data with heavy (spike-in). Proteins were considered 
to be differentially expressed by a q value  <  0.05 after 
FDR correction [58], and for proteome-wide label-free 
quantification additionally with a fold-change > 1.5.

Absolute protein expression levels as MS signal 
intensities were estimated for proteins with at least 
two peptides in each bio-replicate of the respective gas 
mix by summing the five most intense product ions (of 
the most intense precursor) of the three most intense 
peptides (two if only two quantified). This combination 
has shown the highest accuracy for label-free absolute 
quantification from DIA MS data [67].

Differentially expressed proteins within SIL-protein-
aided label-based quantification are presented in Addi-
tional file  4: Table  S5, and within the proteome-wide 
label-free data set between syngas and CO or high-H2 
CO and CO in Additional file 4: Tables S6, S7, respec-
tively. Absolute protein expression levels are in Addi-
tional file  4: Table  S8. The MS proteomics data have 
been deposited to the ProteomeXchange Consortium 
(http://prote​omece​ntral​.prote​omexc​hange​.org) via the 
PRIDE partner repository [68] with the data set identi-
fier PXD008367.

Genome‑scale metabolic modelling
Model simulations were performed using GEM 
iCLAU786 of C. autoethanogenum [43] with modifi-
cations and simulation details specified in [28]. For 
simulations reported here, we used experimentally 
determined C. autoethanogenum biomass amino acid 
composition of high biomass syngas cultures reported 

http://proteomecentral.proteomexchange.org
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in [28]. Biomass amino acid composition was deter-
mined at the Centre of Food and Fermentation Tech-
nologies (Tallinn, Estonia) using a method based on 
acid hydrolysis and LC–MS.

Briefly, we used FBA [44] to estimate intracellular 
fluxes (SIM1–19) and predict “optimal” growth phe-
notypes for our experimental conditions (SIM20–34) 
using either maximisation of ATP dissipation or bio-
mass yield, respectively, as the objective function. In 
addition, for SIM35–41, CO2 reduction with the redox-
consuming FdhA activity (reaction rxn00103_c0) was 
zeroed and the ratio between H2 utilisation for direct 
CO2 reduction (reaction rxn08518_c0), and Fdred and 
NADPH generation (reaction leq000001) by the HytA–
E/FdhA complex was fixed at a value corresponding to 
the respective experiment’s qH2

/qCO ratio (see [28] for 
details; both syngas and high-H2 CO data were used 
for fitting). Finally, we note that since carbon recover-
ies above 100% were observed, model input data for gas 
uptake rates were modified to achieve feasible solutions 
as specified in [28].

Simulation results identified as SIMx (e.g., SIM1) in the 
text are reported in Additional file 3: Tables S3, S4. The 
reactions together with their stoichiometries forming the 
metabolic network of GEM iCLAU786 can be found in 
Additional file 3: Table S4 and from the SBML model file 
of the GEM iCLAU786 in Additional file 5.
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