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Upgrading oxygenated Fischer-Tropsch derivatives
and one-step direct synthesis of ethyl acetate from
ethanol - examples of the desirability of research
on simple chemical compounds transformations
Roman Klimkiewicz
Abstract

Oxygenates formed as by-products of Fischer-Tropsch syntheses can be transformed into other Fischer-Tropsch
derived oxygenates instead of treating them as unwanted chemicals. One-step direct synthesis of ethyl acetate
from ethanol is feasible with the use of some heterogeneous catalysts. Despite their apparent simplicity, both
transformations are discussed as targeted fields of research. Furthermore, the two concepts are justified due to
the environmental protection. Arguments regarding the Fischer-Tropsch process are focused on the opportunities
of the utilization of undesirable by-products. The effective striving for their utilization can make the oxygenates the
targeted products of this process. Arguments regarding the one-step direct synthesis of ethyl acetate underline
the environmental protection and sustainability as a less waste-generating method but, above all, highlight the
possibility of reducing the glycerol overproduction problem. The production of ethyl acetate from bioethanol
and then transesterification of fats and oils with the use of ethyl acetate allows managing all the renewable raw
materials. Thus, the process enables the biosynthesis of biodiesel without glycerine by-product and potentially
would result in the increase in the demand for ethyl acetate.
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Introduction
Oxygenates are organic oxygen compounds – common
oxygenated hydrocarbon derivatives. Their definition is
vague although intuitively obvious – e.g. simple ethers
rather than sugars. Therefore, it can be thought that
simple research on transformation of oxygenates is inex-
pedient as it has already been performed and is generally
known while the research work has moved towards more
advanced structures. It is true only to certain extent. The
purposefulness of the studies on transformations of cer-
tain oxygenates into other ones is justified by dynamic
changes in their interdependence. In order to visualize the
purposefulness of studies on the catalytic conversion of
oxygenates some examples are presented hereinafter.
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Here is a simple model showing why even advanced
studies concerning a simple issue require some modifi-
cations over time.
In the following sequence:

hydrocarbon → alcohol → aldehyde →
ester or any other derivative

ð1Þ

aldehydes are more highly-processed and more highly-
oxidized products than alcohols. Numerous methods of
oxidation or dehydrogenation of alcohols to aldehydes
have been developed, especially the key ones, including
catalysts, some of which are almost perfect. However,
the answer to the question whether it is worth to obtain
all aldehydes from alcohols or, in other words, whether
it is worth to convert all alcohols into aldehydes, is “no”.
Accordingly, the research on the development of the

catalytic transformations of simple oxygenates may have
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new motivation. The efforts to minimize the side formation
of oxygenates as “unfavourable” for Fischer-Tropsch
products may be abandoned in favor of the intentional
exploitation of these compounds. Additionally, even
uncomplicated methods of ethyl ethanoate synthesis
can be replaced with even simpler, direct ones.

Review
Non-schematic catalytic transformations
Obtaining formaldehyde from methanol is an exemplary
and important process in which the following sequence
(1) trend is maintained. This process can be carried on
silver or oxide catalysts. It can take place by dehydrogen-
ation, oxidative dehydrogenation [1-3] or, optionally, by
steam reforming [4]. However, seven decades ago, “oxo
synthesis” or “oxo process“ occurred. It is a homoge-
neously catalysed hydroformylation process [5], i.e. the
synthesis of aldehydes from alkenes and carbon monox-
ide. In particular, the hydroformylation of propylene can
result in two isomeric products, butyraldehyde or iso-
butyraldehyde. This is the basic industrial synthesis of
aldehydes. Thus, these aldehydes are cheaper than the
alcohols related to them. As a consequence, these alde-
hydes are hydrogenated to alcohols, n-butanol and isobu-
tanol [6]. Regular butyraldehyde, unlike isobutyraldehyde,
is also transformed into 2-ethylhexanol in a sequence
involving aldol condensation reaction followed by hy-
drogenation of the aldol product [6]. Isobutyraldehyde
is sometimes regarded as a less valuable isomer [7]. A
more versatile option is the tandem of hydroformyla-
tion and hydrogenation of alkene to alcohol [8].
The direction of conversion is opposite to that in se-

quence (1) - alcohols are obtained from aldehydes. Of
course, there are many examples of new developments
of reactions differing from the scheme of gradual oxida-
tion: hydrocarbon into alcohol, alcohol into aldehyde,
and so on:

- the above hydroformylation [9];
- Reppe reaction related to carbonylation is also used
on the industrial scale [10];
- the Kucherov reaction, replaced by the Wacker
process (also known as the Hoechst-Wacker process),
i.e. method for the production of acetaldehyde via
the direct oxidation of ethylene in an aqueous
medium [11];
- acetic acid is obtained on the industrial scale through
the carbonylation of methanol obtained from the
synthesis gas (Monsanto process) [12];
- this family includes also a group of
hydrocarbonylation reactions, i.e. homologation [13].
The homologation reaction is any chemical reaction
that converts the reactant into the next member of the
homologous series that differs by a constant unit,
generally the methylene group. An example of this is
the synthesis of higher alcohols [14,15];
- in turn, the family of bimolecular condensations
includes, inter alia, the Guerbet reaction, which consists in
converting a primary aliphatic alcohol into its β-alkylated
dimer alcohol accompanied by dehydration, e.g. ethanol to
n-butanol, n-butanol to 2-ethylhexanol [16-24].

The purpose of the above examples is to illustrate the
diversity of the seemingly similar situations and their
specificity as well as to prove that "the only correct" dir-
ection of transformation of oxygenates does not exist.
Hence, the purposefulness of the work on any particu-

lar transformation of oxygenates depends on a whole
range of market factors. First of all, this work comes
down to the development of an active and selective cata-
lyst. The complexity of such an undertaking includes im-
portant concepts concerning the catalysis. Many factors
are significant at the same time. There is no point in dis-
cussing them individually here or even in trying to rank
them. Such complexity indicates that designing the
optimal solution for a specific, desired transformation,
i.e. both preparation of a catalyst and the course of
this transformation, will not facilitate the execution of
other tasks, even closely related ones, because of the
multitude of significant factors and the multitude of
interdependencies. The variation of such interdepend-
encies does not have to be linear so extrapolations and
interpolations are not always effective. Another con-
clusion is that the number of factors to define a spe-
cific process excludes a random selection of catalyst
components.
It may happen that the understanding of phenomena

brings useful generalizations. In the 1920s Taylor de-
duced that since a catalyst can be completely poisoned
by such a little amount of poison that it is able to cover
only a small fraction of the catalyst surface it means that
the active participants in the reaction are only certain
groups of atoms on the surface [25]. In such a concept
the active centres must differ from each other to meet
different requirements. The same groups of atoms do
not have to be active centres of various transformations.
In another reaction, considering different requirements
of reagents, other groups of atoms can perform the func-
tions of centres on the same surface. There are many
types of centres but their definitions are not entirely
consistent. Apart from proving their presence and iden-
tifying their type it is advisable to estimate their number
and power. The catalytic act itself may take different courses
[26]. The basic generalizations include the Langmuir-
Hinshelwood model from the 1920s where both reagents
activated with adsorption on the surface reacted with each
other, the Eley-Rideal model from the 1930s where one of
the reagents adsorbed on the surface became an easy
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target for another reagent attacking from the atmosphere,
and the Mars-van Krevelen model from the 1950s in
which the catalyst’s oxygen participated actively and the
gap after it had to be filled in to enable the next act.
The above differentiated mechanisms relate to the

catalyst per se. Catalytically active materials are often
affixed to the catalyst support due to their high surface
area and saving of the valuable materials. Additionally,
quite a while ago, the boundary between the actual cata-
lyst and the catalytic support began to blur. Tauster
found the strong metal-support interaction (SMSI effect)
[27] predicted much earlier by Schwab [28].

Fischer-Tropsch derived oxygenates
Coming back to the main problem of the dependence of
the justification of transformation of oxygenates on vari-
able conditions, a new attitude regarding the products of
the Fischer-Tropsch synthesis should be noted. The F-T
synthesis is a technology developed in the 1920s, which
consists in producing liquid fuels from any carbon mate-
rials other than petroleum. This is a technology related
to that used much earlier than F-T, in tar and charcoal
manufactories by tar makers and charcoal burners. Dis-
regarding the details of gas names definitions (wood dis-
tillation gas, generator gas, coke-oven gas, town gas,
water gas, or synthesis gas) from any carbon material:
wood, coal, biomass, natural gas [29-32] (including shale
gas [33]), and even better with the participation of water
vapour, sometimes also oxygen, it is possible to obtain
gases containing carbon monoxide and hydrogen in vari-
ous proportions and also other components as a result
of gasification, reforming or pyrolysis. It is possible to
separate hydrogen from such gases and they are suitable
for syntheses of hydrocarbons, i.e. liquid fuels but also
for chemical syntheses, e.g. syntheses of methanol and
higher alcohols [34-41]. Alcohols can be the source of
hydrogen after dehydrogenation. The alcohols may also
be subject to transformations to other oxygenates or
hydrocarbons.
During such syntheses, oxygenates are formed as by-

products quantitatively and qualitatively depending on
numerous factors [42-54]. These relationships have usu-
ally been the subject of research. Especially important is
the impact of the presence of oxygenates on the course
of the process and possibility to manipulate the product
spectrum by selective addition of oxygenates [55-61].
Therefore, there are two possibilities: treat them as un-
wanted products [62-64] and try to reduce their amount
or to strive for their utilization [65-73], also by the use
of new technologies, such as membrane separations
[74-76]. Oxygenates can be transformed into other oxy-
genates or into hydrocarbons through hydrogenation.
Two important coupling reactions for the upgrading of
monofunctional oxygenated compounds are ketonization
and aldol condensation/hydrogenation [77,78]. The con-
version of oxygenates into hydrocarbons, which are lower-
processed products, may seem pointless. However, it may
be an attractive direction if we have redundant oxygenates
[42,79] and if we avoid other expensive treatments such as
separation or costly attempts to improve selectivity in this
way. There is also the option of steam reforming [80].
Thus, oxygenates need not be a nuisance. They can
be seen as a source of intermediates for value-added
chemicals [81-85].
It is a popular opinion that the Fischer-Tropsch tech-

nology has survived only in the RSA because of the iso-
lation of this country. This is truth but not ultimate.
This technology has been developed, inter alia, in the
United States, Uzbekistan, Russia and China as an alter-
native technology [33]. Thus, the current uproar about
the underground coal gasification is much late. Since
1944 a few large plants for the F-T process have been
built in the United States under the Synthetic Liquid
Fuels program and they still exist as a form of strategic
reserve [86].
There are several reasons for the renaissance of the

Fischer-Tropsch technology. One of them is the return
to the abandoned idea of using hydrogen for transport
but in a different aspect. Steam reforming of natural gas,
i.e. the equivalent of the coal gasification process as well
as the coal gasification itself can be the sources of hydro-
gen. Also other chemical processes such as catalytic pro-
cesses of dehydrogenation of alcohols and WGSR (Water
Gas Shift Reaction) can be the sources of hydrogen.
The WGSR is the most important side reaction of the

Fischer-Tropsch synthesis [87,88] of hydrocarbons or
methanol from – it should be reminded here – carbon
monoxide and, after all, hydrogen. The whole point is
that water is also the product of these transformations
and WGSR allows hydrogen recovery. Of course, WGSR
is also used as an independent reaction, unrelated to F-T.

– The increase in demand for methanol is also an
important trigger. In the chemical industry worldwide
there is no other product with such a mass and
multi-directional use as methanol. It is an irreplaceable
intermediate product for the syntheses of many chemicals,
in particular formaldehyde and various related products.
Methanol is also the main base for the production of top
quality petrol and diesel fuels. It can be added,
blended, in significant volumes, directly to petrol fuels
[89] or transformed into dimethyl ether [90], a diesel
fuel substitute crucial for the Methanol-to-Gasoline
(MTG) and Methanol-to-Olefin (MTO) processes. The
use of methanol as a component in the transesterification
of triglycerides to yield a form of biodiesel [91] may
become widespread to the extent similar to obtaining
ethanol from biomass. Methanol is already used today
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on a large scale (the global demand for methanol is
around 60 million ton per year [92]) and the forecasts for
the average annual growth in the methanol production
are estimated to be high. Along with the development of
fuel cells, methanol will become a strategic resource. The
Blasiak’s concept is therefore constantly evolving [93-97].
– The reason is also the return to the concept of using
heavier fuels of natural origin. It is also a comeback,
because the first diesel engine built by Rudolf Diesel
was fuelled by peanut oil and such was the original
intention.

Despite these facts, the preparations for the return of
the Fischer-Tropsch technology proceeded slowly. This
was explained by the adverse financial situation resulting
from the significant decline in oil prices, which reduced
the competitiveness of coal fuels in relation to petroleum
fuels. The current price fluctuations emphasize the pur-
posefulness of long-term studies in this field. May the
dim prospects for shale gas not overshadow this oppor-
tunity and not be the cause of another failure to develop
chemical technologies based on coal resources.

Ethyl acetate from ethanol
Another example of a new approach to transformation
of a simple oxygenate is the concept of a single-stage
production of ethyl acetate. Of course, the idea of pri-
mary alcohols transformation into esters had to appear
during the development of organic chemistry [98] as a
result of the next step of dehydrogenation of alcohols
and of the earlier step of Tishchenko reaction. However,
publications on the one-step direct synthesis of esters
from primary alcohols with the use of heterogeneous
catalysts are not numerous and are of technical reports
character. Nevertheless, among the patented methods of
ethyl acetate production only the achievement of the
Davy Process (Kvaerner Process Technology, Sasol Chem-
ical Industries) [99] is close to the idea. For instance, the
process of Chinese National Petroleum, described in the
Chemical Weekly [100], is related to a one-step process of
transformation of ethanol into ethyl acetate; however, by
the partial oxidation of ethanol to acetic acid and succes-
sive esterification by the excess of ethanol. In relation to
other more complicated transformations, this relatively
simple one is described rather poorly [76,101-118]. Of
course, there is a different option that illustrates the vari-
ability of the research directions – as mentioned at the be-
ginning – the elaboration of ethyl acetate hydrogenation
to ethanol [119,120].
While observing that literature announcements on pri-

mary alcohols conversion over metal oxide containing
heterogeneous catalysts are focused on the dehydration
to ethers and alkenes or dehydrogenation to aldehydes,
the both reactions are so popular that may be even
treated as tests for acidity and basicity of the surface.
However, some catalysts are able to perform a secondary
condensation of created aldehydes to ketones containing
2n-1 carbon atoms in aliphatic chain [55,56,121-125],
where n stands for the number of C atoms in n-alcohol
undergoing the conversion. These catalysts are capable
of triggering the following reaction chain:

2 RCH2OH → 2 RCHO → RCOOCH2R → RCOR

ð2Þ

In the reports in literature about this group of trans-
formations there is a large divergence of views as to the
route of the reaction. Among others, there are suggested
pathways via aldol, via aldol and secondary alcohol, simul-
taneously via ester and aldol, via hemiacetal and ester, or
aldol with a parallel hydrogen transfer reaction [126-128].
This secondary reaction is not always intentional [129].
During the alkylation of phenol [130] with alcohols higher
than methanol the competitive reaction can occur: bimol-
ecular condensation of primary alcohols to ketones con-
taining 2n-1 carbon atoms [124,131,132]. Ketonization of
primary alcohols, and consequently aldehydes and esters,
allows the synthesis of symmetrical and unsymmetrical
ketones [133,134] and expands possibilities of utilization
of such materials [134,135]. This transformation is akin to
the bimolecular ketonization of monocarboxylic acids
[136-141], which is much more frequently described in
the literature. The suitable oxide catalysts are applied in
the bulk form or are often deposited on various supports,
including materials of natural origin [142-144].
Most of the catalysts of dehydrogenative character

transform primary alcohols only to aldehydes and less
often to symmetric ketones. Excessive overrun of con-
version optimal conditions leads to possible degrad-
ation products. Nevertheless, the proper selection of
control parameters allows obtaining esters as major
conversion products. Obviously, such a termination of
the transformation at the ester stage is effective only
with respect to specific catalysts.
The important incentive, impetus to intensify the re-

search on the termination of the course of bimolecular
condensation of primary alcohols in the ester phase is
the potential increase in the ethyl acetate demand. The
major driving force for that demand originates from the
search for new energy sources which would be renew-
able and “clean” – not causing additional carbon dioxide
emission. Biomass derived fuels meet these expectations
and can partly replace fossil fuels. Diesel oil substitute –
biodiesel – is one of them. Ethyl acetate can be used in
some methods of biodiesel production. Biodiesel synthe-
sis with the use of ethyl acetate is an attractive option
because of the possibility of reducing the glycerol over-
production problem [145]. The majority of methods of
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the conversion of fatty materials (including rapeseed oil)
to fuel components is fraught with side formation of gly-
cerol, according to the scheme:

triglyceride þ alcohol → fatty acid ester þ glycerol

ð3Þ
Glycerol overproduction as well as the problems with its

utilization initiate the search for new methods of its man-
agement. The use of ethyl acetate instead of alcohol in the
process of cross transesterification of triglycerides in the
Gliperol process is an example of such projects [146].
In this case the transformation of fats follows the

scheme:

triglyceride þ ethyl acetate→ fatty acid ethyl ester

þ glycerol triacetate

ð4Þ
Glycerol triacetate (triacetin) does not require the sep-

aration from the final product as it improves biofuel
combustion conditions [147]. Besides, ethyl esters have
better fuel properties than methyl esters (including higher
heating value, incomplete combustion products free from
formaldehyde, a lower freezing point) [148]. The transes-
terification of fats and oils with the use of ethyl acetate al-
lows managing all the renewable raw materials (including
glycerine) for fuel production. It is therefore a very attract-
ive method for the manufacture of the fuel components.
However, one of the factors restricting its wider applica-
tion is ethyl acetate deficiency in the market (ethyl acetate
is widely used in industry [149] and the production
methods have some disadvantages [150-152]: multi-
stage processes and necessity of the catalyst separation
require a complicated system of tanks and equipment,
raw materials cause corrosion, whereas acetaldehyde is
strongly toxic (Fischer esterification – catalyst: sulfuric
acid, p-toluenesulfonic acid, Tishchenko condensation
of acetaldehyde – catalyst: aluminum triethoxide, con-
densation of acetic acid with ethylene – catalyst: ben-
tonites, heteropolyacids)).
Changes in the fuel market, including the strong drive

towards the idea of using ethanol and, consequently, a
large increase in the production of bioethanol, are con-
sistent with this concept. Thus, ethyl alcohol can be a
cheap, renewable resource for the production of ethyl
acetate [153]. The concept of using ethyl acetate in the
process of transesterification of oils and fats is also con-
sistent with the increased production of rapeseed oil and
with the increase in demand for transesterified oils. In
addition, besides the potential demand for ethyl acetate
and the availability of bioethanol, the technical simplicity
of implementation of such a transformation due to few
media and accompanying materials and the reduction of
the amount of noxious by-products as compared to trad-
itional methods of ethyl acetate production should be
emphasized. Such a solution is convergent with eco-
logical trends towards new technologies in order to in-
crease the share of renewable materials in the overall
fuel balance. Moreover, the method meets the require-
ments of green chemistry and is consistent with the
principles of sustainable development.

Conclusions
Research on the development of catalytic transforma-
tions of simple oxygenates is still justified. New market
conditions make the production and processing of oxy-
genates as part of the Fischer-Tropsch synthesis pur-
poseful. On the other hand, the increase in the potential
demand for ethyl acetate against the background of high
availability of ethanol justifies further research on a dir-
ect one-step catalytic synthesis of this ester.

Competing interests
The author declare that he has no competing interests.

Acknowledgement
The present elaboration is a secondary consequence of Project N R05 0088 10.

Received: 14 July 2014 Accepted: 11 December 2014

References
1. Usachev NY, Krukovskii IM, Kanaev SA: The nonoxidative methanol

dehydrogenation to formaldehyde: (A review). Pet Chem 2004, 44:379–394.
2. Isaguliants GV, Belomestnykh IP: Selective oxidation of methanol to

formaldehyde over V-Mg-O catalysts. Catal Today 2005, 100:441–445.
3. Klimkiewicz R: Przemysłowe odwodornianie metanolu na formaldehyd

wobec katalizatorów srebrowych. Wiad Chem 1977, 31:713–728.
4. Boucher MB, Marcinkowski MD, Liriano ML, Murphy CJ, Lewis EA,

Jewell AD, Mattera MF, Kyriakou G, Flytzani-Stephanopoulos M, Sykes EC:
Molecular-scale perspective of water-catalyzed methanol dehydrogenation
to formaldehyde. ACS Nano 2013, 7:6181–6187.

5. Franke R, Selent D, Börner A: Applied hydroformylation. Chem Rev 2012,
112:5675–5732.

6. Tudor R, Ashley M: Enhancement of industrial hydroformylation
processes by the adoption of rhodium-based catalyst: Part I. Platinum
Met Rev 2007, 51:116–126.

7. Klimkiewicz R, Morawski I, Syper L, Biskupski A, Teterycz H: Aldehyd
izomasłowy potencjalnym surowcem do ketonizacji. Przem Chem 2003,
82:608–610.

8. Hanna DG, Shylesh S, Parada PA, Bell AT: Hydrogenation of butanal over
silica-supported Shvo’s catalyst and its use for the gas-phase conversion
of propene to butanol via tandem hydroformylation and hydrogenation.
J Catal 2014, 311:52–58.

9. Fonseca Y, Fontal B, Reyes M, Suárez T, Bellandi F, Díaz JC, Cancines P:
Synthesis, characterization and hydroformylation catalytic activity of
1-hexene of water-soluble RuCl2(DMSO)2(PySO3Na)2 complex. Av Quim
2012, 7:27–33.

10. Uzcátegui GC, Hung F, Ortega MC, Pardey AJ, Longo C, Aguirre P, Moya SA:
Reppe reaction catalyzed by soluble carbonylrhodium complexes.
J Chil Chem Soc 2005, 50:647–650.

11. Ponomarev DA, Shevchenko SM: Hydration of acetylene: A 125th
anniversary. J Chem Educ 2007, 84:1725–1726.

12. Sano K, Uchida H, Wakabayashi S: A new process for acetic acid
production by direct oxidation of ethylene. Catal Surv Jpn 1999, 3:55–60.

13. Tatsumi T, Muramatsu A, Yokota K, Tominga H: Mechanistic study on the
alcohol synthesis over molybdenum catalysts: Addition of probe
molecules to CO-H2. J Catal 1989, 115:388–398.



Klimkiewicz Chemistry Central Journal  (2014) 8:77 Page 6 of 8
14. Chen MJ, Feder HM, Rathke JW: A general homogeneous catalytic
method for the homologation of methanol to ethanol. J Am Chem Soc
1982, 104:7346–7347.

15. Chen MJ, Rathke JW: Homologation of Methanol Catalyzed by
Manganese Carbonyl in Alkali-Metal Formate-Methanol Solutions.
Organometallics 1987, 6:1833–1838.

16. Sun J, Wang Y: Recent advances in catalytic conversion of ethanol to
chemicals. ACS Catal 2014, 4:1078–1090.

17. Ndou AS, Plint N, Coville NJ: Dimerisation of ethanol to butanol over
solid-base catalysts. Appl Catal A Gen 2003, 251:337–345.

18. Zhang F-y, Liu Y-j, Fan M-g, Ma L, Li J-l, Li B: Performance of ethanol to
n-butanal and n-butanol over Cu-substituted LaMnO3 catalyst. Fine
Chemicals 2011, 2:135–140.

19. Riittonen T, Toukoniitty E, Madnani DK, Leino A-R, Kordas K, Szabo M, Sapi A,
Arve K, Wärnå J, Mikkola J-P: One-pot liquid-phase catalytic conversion of
ethanol to 1-butanol over aluminium oxide—the effect of the active metal
on the selectivity. Catalysts 2012, 2:68–84.

20. Carvalho DL, de Avillez RR, Rodrigues MT, Borges LEP, Appel LG: Mg and Al
mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A
Gen 2012, 415–416:96–100.

21. Patel AD, Telalović S, Bitter JH, Worrell E, Patel MK: Analysis of sustainability
metrics and application to the catalytic production of higher alcohols
from ethanol. Catal Today 2015, 239:56–79.

22. Carlini C, Macinai A, Raspolli Galletti AM, Sbrana G: Selective synthesis of
2-ethyl-1-hexanol from n-butanol through the Guerbet reaction by
using bifunctional catalysts based on copper or palladium precursors
and sodium butoxide. J Mol Catal A Chem 2004, 212:65–70.

23. Hemo E, Virduk R, Landau MV, Herskowitz M: Biogasoline and high
alcohols production by one step ethanol conversion on densified MgO
catalyst with enhanced concentration of surface active sites. Chem Eng
Trans 2010, 21:1243–1248.

24. Kozlowski JT, Davis RJ: Sodium modification of zirconia catalysts for
ethanol coupling to 1-butanol. J Energy Chem 2013, 22:58–64.

25. Taylor HS: A Theory of the catalytic surface. Proc R Soc Lond A 1925,
108:105–111.

26. Ilyas M, Sadiq M: Liquid phase aerobic oxidation of benzyl alcohol
catalyzed by Pt/ZrO2. Chem Eng Technol 2007, 30:1391–1397.

27. Tauster SJ, Fung SC, Garten RL: Strong metal-support interactions. Group
8 noble metals supported on titanium dioxide. J Am Chem Soc 1978,
100:170–175.

28. Schwab GM: Catalytic effects on the surface of semiconductors
supported by metals. Surf Sci 1969, 13:198–200.

29. Kiennemann A, Hindermann J-P: Chapter 4: Heterogeneous Carbon
Monoxide Hydrogenation. Stud Surf Sci Catal 1988, 35:181–256.

30. de Klerk A: Fischer–Tropsch fuels refinery design. Energy Environ Sci 2011,
4:1177–1205.

31. Demirbas A: Progress and recent trends in biofuels. Prog Energ Combust
Sci 2007, 33:1–18.

32. Yang J, Ma W, Chen D, Holmen A, Davis BH: Fischer–Tropsch synthesis: A
review of the effect of CO conversion on methane selectivity. Appl Catal
A Gen 2014, 470:250–260.

33. Wood DA, Nwaoha C, Towler BF: Gas-to-liquids (GTL): A review of an
industry offering several routes for monetizing natural gas. J Nat Gas Sci
Eng 2012, 9:196–208.

34. Gall D, Gibson EJ, Hall CC: The distribution of alcohols in the products of
the fischer-tropsch synthesis. J Appl Chem 1952, 2:371–380.

35. Xiaoding X, Doesburg EBM, Scholten JJF: Synthesis of higher alcohols from
syngas - recently patented catalysts and tentative ideas on the mechanism.
Catal Today 1987, 2:125–170.

36. Ishida T, Yanagihara T, Liu X, Ohashi H, Hamasaki A, Honma T, Oji H,
Yokoyama T, Tokunaga M: Synthesis of higher alcohols by Fischer–Tropsch
synthesis over alkali metal-modified cobalt catalysts. Appl Catal A Gen 2013,
458:145–154.

37. Bao Z, Xiao K, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y: Higher alcohol
synthesis over Cu-Fe composite oxides with high selectivity to C2 + OH.
J Energy Chem 2013, 22:107–113.

38. Majocchi L, Lietti L, Beretta A, Forzatti P, Micheli E, Tagliabue L: Synthesis of
short chain alcohols over a Cs-promoted Cu/ZnO/Cr2O3 catalyst. Appl Catal
A Gen 1998, 166:393–405.

39. Lu Y, Yu F, Hu J, Liu J: Catalytic conversion of syngas to mixed alcohols over
Zn-Mn promoted Cu-Fe based catalyst. Appl Catal A Gen 2012, 429–430:48–58.
40. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y: Unsupported
CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas.
Catal Comm 2013, 40:154–157.

41. Yin K, Shou H, Ferrari D, Jones CW, Davis RJ: Influence of cobalt on
rubidium-promoted alumina-supported molybdenum carbide catalysts
for higher alcohol synthesis from syngas. Top Catal 2013, 56:1740–1751.

42. Leckel D: Diesel production from Fischer-Tropsch: The past, the present,
and new concepts. Energy Fuel 2009, 23:2342–2358.

43. Dry ME: The Fischer–Tropsch process: 1950–2000. Catal Today 2002, 71:227–241.
44. Kellner CS, Bell AT: Synthesis of oxygenated products from carbon

monoxide and hydrogen over silica- and alumina-supported ruthenium
catalysts. J Catal 1981, 71:288–295.

45. Juan A, Damiani DE: Supported Ru-Mo catalysts for syngas reaction to
oxygenates. J Catal 1992, 137:77–91.

46. Gaube J, Klein H-F: Studies on the reaction mechanism of the Fischer–
Tropsch synthesis on iron and cobalt. J Mol Catal A Chem 2008, 283:60–68.

47. Mao W-y, Sun Q-w, Ying W-y, Fang D-y: Mechanism of oxygenates
formation in high temperature Fischer-Tropsch synthesis over the
precipitated iron-based catalysts. J Fuel Chem Technol 2013, 41:314–321.

48. Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N: Product
distributions including hydrocarbon and oxygenates of Fischer–Tropsch
synthesis over mesoporous MnO2-supported Fe catalyst. Fuel 2012,
92:122–129.

49. Zhang Q, Kang J, Wang Y: Development of novel catalysts for Fischer–
Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010,
2:1030–1058.

50. Schulz H: Short history and present trends of Fischer–Tropsch synthesis.
Appl Catal A Gen 1999, 186:3–12.

51. Mahdavi V, Peyrovi MH: Synthesis of C1–C6 alcohols over copper/cobalt
catalysts Investigation of the influence of preparative procedures on the
activity and selectivity of Cu–Co2O3/ZnO, Al2O3 catalyst. Catal Commun
2006, 7:542–549.

52. Chaumette P, Courty P, Kiennemann A, Kieffer R, Boujana S, Martin GA,
Dalmon J-A, Meriaudeau P, Mirodatos C, Hölhein B, Mausbeck D, Hubert AJ,
Germain A, Noels A: Evolution of alcohol synthesis catalysts under syngas.
Ind Eng Chem Res 1994, 33:1460–1467.

53. Gnanamani MK, Jacobs G, Shafer WD, Ribeiro MC, Pendyala VRR, Ma W,
Davis BH: Fischer Tropsch synthesis: Deuterium isotopic study for the
formation of oxygenates over CeO2 supported Pt–Co catalysts. Catal Commun
2012, 25:12–17.

54. Spivey JJ, Egbebi A: Heterogeneous catalytic synthesis of ethanol from
biomass-derived syngas. Chem Soc Rev 2007, 36:1514–1528.

55. Wang Y, Davis BH: Fischer-Tropsch synthesis. Conversion of alcohols over
iron oxide and iron carbide catalysts. Appl Catal A Gen 1999, 180:277–285.

56. Davis BH: Fischer–Tropsch synthesis: current mechanism and futuristic
needs. Fuel Process Technol 2001, 71:157–166.

57. Chuang SSC, Stevens RW Jr, Khatri R: Mechanism of C2+ oxygenate
synthesis on Rh catalysts. Top Catal 2005, 32:225–232.

58. de Klerk A: Effect of oxygenates on the Oligomerization of Fischer-Tropsch
olefins over amorphous silica-alumina. Energy Fuels 2007, 21:625-632.

59. Yao F-F, Wu B-S, Zhou L-P, Gao J-H, Li Y, Li Y-W: Effect of alcohol addition
on Fischer-Tropsch synthesis over cobalt-based catalysts. Acta Phys -Chim
Sin 2013, 29:1063–1072.

60. Leckel D: Selectivity effect of oxygenates in hydrocracking of Fischer-
Tropsch waxes. Energy Fuels 2007, 21:662–667.

61. Leckel D: Upgrading of Fischer-Tropsch products to produce diesel. Haldor
Topsøe Catalysis Forum, Sasol Technology Research and Development, FTR
and C1 Chemistry Research, Munkerupgaard, August 2010.

62. Mortensen PM, Grunwaldt J-D J-D, Jensen PA, Knudsen KG, Jensen AD:
A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A
Gen 2011, 407:1–19.

63. Vosloo AC: Fischer–Tropsch: a futuristic view. Fuel Process Technol 2001,
71:149–155.

64. de Klerk A: Environmentally friendly refining: Fischer–Tropsch versus
crude oil. Green Chem 2007, 9:560–565.

65. Gnanamani MK, Ribeiro MC, Ma W, Shafer WD, Jacobs G, Graham UM, Davis BH:
Fischer–Tropsch synthesis: Metal–support interfacial contact governs
oxygenates selectivity over CeO2 supported Pt–Co catalysts. Appl Catal A Gen
2011, 393:17–23.

66. Lunsford JH: Catalytic conversion of methane to more useful chemicals
and fuels: a challenge for the 21st century. Catal Today 2000, 63:165–174.



Klimkiewicz Chemistry Central Journal  (2014) 8:77 Page 7 of 8
67. Gharibi M, Zangeneh FT, Yaripour F, Sahebdelfar S: Nanocatalysts for
conversion of natural gas to liquid fuels and petrochemical feedstocks.
Appl Catal A Gen 2012, 443–444:8–26.

68. Subramani V, Gangwal SK: A review of recent literature to search for an
efficient catalytic process for the conversion of syngas to ethanol.
Energy Fuels 2008, 22:814–839.

69. Klimkiewicz R: Możliwości pozyskiwania organicznych związków tlenowych
w wyniku zgazowania węgla. Górnictwo Odkrywkowe 2014, 55:90–94.

70. Wender I: Reactions of synthesis gas. Fuel Process Technol 1996, 48:189–297.
71. Graham UM, Jacobs G, Gnanamani M, Lipka S, Shafer WD, Swartz C,

Jermwongratanachai T, Chen R, Rogers F, Davis BH: Fischer Tropsch
synthesis: High oxygenate-selectivity of cobalt catalysts supported on
hydrothermal carbons. ACS Catal 2014, 4:1662–1672.

72. Tsai Y-T, Mo X, Goodwin JG Jr: The synthesis of hydrocarbons and oxygenates
during CO hydrogenation on CoCuZnO catalysts: Analysis at the site level
using multiproduct SSITKA. J Catal 2012, 285:242–250.

73. Herman RG: Advances in catalytic synthesis and utilization of higher
alcohols. Catal Today 2000, 55:233–245.

74. Iglesia E: Challenges and progress in the conversion of natural gas to
fuels and chemicals. Fuel Chem Div Prepr 2002, 47:128–131.

75. Iglesia E: Challenges and progress in the conversion of natural gas to
fuels and chemicals. Prepr Pap-Am Chem Soc, Div Fuel Chem 2004, 49:49–50.

76. Sánchez AB, Homs N, Miachon S, Dalmon J-A, Fierro JLG, de la Piscina PR:
Direct transformation of ethanol into ethyl acetate through catalytic
membranes containing Pd or Pd-Zn: comparison with conventional
supported catalysts. Green Chem 2011, 13:2569–2575.

77. Gürbüz EI, Kunkes EL, Dumesic JA: Integration of C–C coupling reactions
of biomass-derived oxygenates to fuel-grade compounds. Appl Catal B
Environ 2010, 94:134–141.

78. Alonso DM, Bond JQ, Dumesic JA: Catalytic conversion of biomass to
biofuels. Green Chem 2010, 12:1493–1513.

79. Prasomsri T, Nimmanwudipong T, Román-Leshkov Y: Effective
hydrodeoxygenation of biomass-derived oxygenates into unsaturated
hydrocarbons by MoO3 using low H2 pressures. Energy Environ Sci
2013, 6:1732–1738.

80. Trane-Restrup R, Resasco DE, Degn Jensen A: Steam reforming of light
oxygenates. Catal Sci Technol 2013, 3:3292–3302.

81. Quek X-Y, Guan Y, van Santen RA, Hensen EJM: Unprecedented oxygenate
selectivity in aqueous-phase Fischer–Tropsch synthesis by ruthenium
nanoparticles. ChemCatChem 2011, 3:1735–1738.

82. Dry ME: Fischer–Tropsch reactions and the environment. Appl Catal A Gen
1999, 189:185–190.

83. Dry ME: Practical and theoretical aspects of the catalytic Fischer-Tropsch
process. Appl Catal A Gen 1996, 138:319–344.

84. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y: Advances in
bifunctional catalysis for higher alcohol synthesis from syngas. Chin J
Catal 2013, 34:116–129.

85. Fang KG, Li DB, Lin MG, Xiang ML, Wei W, Sun YH: A short review of
heterogeneous catalytic process for mixed alcohols synthesis via syngas.
Catals Today 2009, 147:133–138.

86. Andrews A: Oil Shale: History, Incentives, and Policy. CRS Report for
Congress, Congressional Research Service, Library of Congress, Washington,
2006, Document No. RL33359; http://www.fas.org/sgp/crs/misc/RL33359.pdf

87. Jacobs G, Ma W, Davis BH: Influence of reduction promoters on stability
of cobalt/γ-alumina Fischer-Tropsch synthesis catalysts. Catalysts 2014,
4:49–76.

88. Jermwongratanachai T, Jacobs G, Ma W, Shafer WD, Gnanamani MK, Gao P,
Kitiyanan B, Davis BH, Klettlinger JLS, Yen CH, Cronauer DC, Kropf AJ,
Marshall CL: Fischer–Tropsch synthesis: Comparisons between Pt and Ag
promoted Co/Al2O3 catalysts for reducibility, local atomic structure,
catalytic activity, and oxidation–reduction (OR) cycles. Appl Catal A Gen
2013, 464–465:165–180.

89. Tarun T, Thamotharan C, Naveenchandran P: Performance of methanol
blended diesel fuels in twin cylinder diesel engine. Middle-East J Sci Res
2013, 17:1775–1778.

90. Varisli D, Tokay KC, Ciftci A, Dogu T, Dogu G: Methanol dehydration
reaction to produce clean diesel alternative dimethylether over
mesoporous aluminosilicate-based catalysts. Turk J Chem 2009, 33:355–366.

91. Meher LC, Vidya Sagar D, Naik SN: Technical aspects of biodiesel
production by transesterification – a review. Renew Sustain Energy Rev
2006, 10:248–268.
92. Olah G, Prakash GKS, Goeppert A: Anthropogenic chemical carbon cycle
for a sustainable future. J Am Chem Soc 2011, 133:12881–12898.

93. Blasiak E: Sposób wytwarzania wysokoaktywnego katalizatora do syntezy
metanolu. Polish Patent 34000 1947 (Błasiak E: PL 34000 B1, Urząd
Patentowy Rzeczypospolitej Polskiej 1947; Wiadomości Urzędu
Patentowego 1950).

94. Cybulski A: Liquid-phase methanol synthesis: catalysts, mechanism,
kinetics, chemical equilibria, vapor-liquid equilibria, and modeling—A
Review. Catal Rev Sci Eng 1994, 36:557–615.

95. Skrzypek J, Lachowska M, Grzesik M, Słoczyński J, Nowak P:
Thermodynamics and kinetics of low pressure methanol synthesis.
Chem Eng J 1995, 58:101–108.

96. Ledakowicz S, Nowicki L, Petera J, Nizioł J, Kowalik P, Gołębiowski A: Kinetic
characterisation of catalysts for methanol synthesis. Chem Proc Eng 2013,
34:497–506.

97. Riaz A, Zahedi G, Klemeš JJ: A review of cleaner production methods for
the manufacture of methanol. J Clean Prod 2013, 57:19–37.

98. Keyes DB: Esterification processes and equipment. Ind Eng Chem 1932,
24:1096–1103.

99. Colley SW, Tabatabaei J, Waugh KC, Wood MA: The detailed kinetics and
mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst. J Catal
2005, 236:21–33.

100. Dutia P: Ethyl acetate: A techno-commercial profile. Chemical Weekly 2004,
49:179–186.

101. Colley SW; Tuck MWM: Ethyl ethanoate synthesis by ethanol dehydrogenation.
In Catalysis in application. Edited by Jackson SD, Hargreaves JSJ, Lennon D.
Royal Society of Chemistry: Cambridge; 2003:101-107.

102. Inui K, Kurabayashi T, Sato S, Ichikawa N: Effective formation of ethyl
acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. J Mol Catal A: Chem
2004, 216:147–156.

103. Sánchez AB, Homs N, Fierro JLG, de la Piscina PR: New supported
Pd catalysts for the direct transformation of ethanol to ethyl
acetate under medium pressure conditions. Catal Today 2005,
107–108:431–435.

104. Gaspar AB, Esteves AML, Mendes FMT, Barbosa FG, Appel LG: Chemicals
from ethanol – The ethyl acetate one-pot synthesis. Appl Catal A Gen
2009, 363:109–114.

105. Santacesaria E, Carotenuto G, Tesser R, Di Serio M: Ethanol dehydrogenation
to ethyl acetate by using copper and copper chromite catalysts. Chem Eng
J 2012, 179:209–220.

106. Santacesaria E, Di Serio M, Tesser R, Carotenuto G: Process for the
production of ethyl-acetate from ethanol. WO 2011104738 A2 Eurochem
Engineering S.R.L. 2011.

107. R. Klimkiewicz, J. Trawczyński, Katalizator do katalitycznego przetwarzania
alkoholu etylowego oraz sposób jego wytwarzania, Polish patent
application P393737, 2011; Klimkiewicz R., Trawczyński J: Sposób
wytwarzania octanu etylu. Polish patent 215884 2011.

108. Pattanaik BN, Mandalia HC: Ethyl acetate: properties, production processes
and applications - A review. IJCRR 2011, 03:23–40.

109. Tang Q-H, Wei Z-W, Wang J, Zhao H-R, Zhao P-Z: Direct Synthesis of Ethyl
Acetate from Ethanol over Cu-Zr-Co-O Catalysts. Petrochem Technol 2013,
7:780–786.

110. Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG: Chemicals from
ethanol – The dehydrogenative route of the ethyl acetate one-pot
synthesis. J Mol Catal A Chem 2011, 334:29–34.

111. Gaspar AB, Barbosa FB, Letichevsky S, Appel LG: The one-pot ethyl
acetate syntheses: The role of the support in the oxidative and
the dehydrogenative routes. Appl Catal A Gen 2010, 380:113–117.

112. Yu X, Zhu W-C, Gao S, Chen L-L, Yuan H-J, Luo J-H, Wang Z-L, Zhang W-X:
Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts
modified by ZrO2. Chem Res Chin Univ 2013, 29:986–990.

113. Xiaofei L, Haoxi J, Guiming L, Minhua Z: Investigation of Cu-Based catalyst
for direct synthesis of ethyl acetate from ethanol: improvement of
thermal stability of Cu–Cr–Zr composite oxide catalyst by addition of
Mn promoter. Ind Eng Chem Res 2012, 51:8974–8978.

114. Minhua Z, Guiming L, Haoxi J, Jiyan Z: Investigation on process
mechanism on Cu–Cr catalysts for ethanol dehydrogenation to ethyl
acetate. Catal Lett 2011, 141:1104–1110.

115. Wang LX, Zheng DF, Ma CX, Zhu WC, Liu SY, Cui J, Wang ZL, Zhang WX:
Direct transformation of ethanol to ethyl acetate over MoSx/C catalyst.
Polish J Chem 2009, 83:1993–2000.

http://www.fas.org/sgp/crs/misc/RL33359.pdf


Klimkiewicz Chemistry Central Journal  (2014) 8:77 Page 8 of 8
116. Men’shchikov VA, Gol’dshtein LK, Semenov IP: Kinetics of ethanol
dehydrogenation into ethyl acetate. Kinet Catal 2014, 55:12–17.

117. Inui K, Kurabayashi T, Sato S: Direct synthesis of ethyl acetate from
ethanol carried out under pressure. J Catal 2002, 212:207–215.

118. Sato AG, Volanti DP, de Freitas IC, Longo E, Bueno JMC: Site-selective
ethanol conversion over supported copper catalysts. Catal Commun 2012,
26:122–126.

119. Zhu Y-m; Shi XWL: Hydrogenation of ethyl acetate to ethanol over bimetallic
Cu-Zn/SiO2 catalysts prepared by means of coprecipitation. Bull Korean Chem
Soc 2014, 35:141- 146.

120. Zhang B, Lin L, Zhuang J, Liu Y, Peng L, Jiang L: Hydrogenation of ethyl
acetate to ethanol over Ni-based catalysts obtained from Ni/Al
hydrotalcite-like compounds. Molecules 2010, 15:5139–5152.

121. Bloomfield G, Swallen LG, Crawford FM: Method of producing ketones.
US1978404 A Commercial Solvents Corp US patent 1934.

122. Plint N, Ghavalas D, Vally T, Sokolovski VD, Coville NJ: Catalysed synthesis
of 4-heptanone from 1-butanol. Catal Today 1999, 49:71–77.

123. Plint ND, Coville NJ, Lack D, Nattrass GL, Vallay T: The catalysed synthesis of
symmetrical ketones from alcohols. J Mol Catal A Chem 2001, 165:275–281.

124. Vivier L, Duprez D: Ceria-based solid catalysts for organic chemistry.
ChemSusChem 2010, 3:654–678.

125. Kamimura Y, Sato S, Takahashi R, Sodesawa T, Fukui M: Vapor-phase
synthesis of symmetric ketone from alcohol over CeO2-Fe2O3 catalysts.
Chem Lett 2000, 29:232–233.

126. Grabowska H, Klimkiewicz R: Reactions of n-butanol in the presence of
dehydrogenating iron catalyst. Pol J Chem 1998, 72:141–145.

127. Klimkiewicz R: Primary alcohols, aldehydes and ester transformations into
ketones over oxide catalysts. Pol J Environ Stud 2008, 17:727–731.

128. Rodrigues CP, Zonetti PC, Silva CG, Gaspar AB, Appel LG: Chemicals from
ethanol—The acetone one-pot synthesis. Appl Catal A: Gen 2013,
458:111–118.

129. Jyothi Y, Vakati V, Satyanarayana T, Veerasomaiah P: Gas phase
dehydrogenation of n-butanol to butyraldehyde on magnesia supported
copper catalysts. Indian J Chem 2014, 53A:553–556.

130. Żukowski W, Berkowicz G, Baron J, Kandefer S, Jamanek D, Szarlik S,
Wielgosz Z, Zielecka M: Selective phenol methylation to 2,6-dimethylphenol
in a fluidized bed of iron-chromium mixed oxide catalyst with o–cresol
circulation. Chem Cent J 2014, 8:51.

131. Wrzyszcz J, Grabowska H, Klimkiewicz R, Syper L: Reactions of normal
alcohols in the presence of a dehydrogenating iron catalyst. Catal Lett
1998, 54:55–58.

132. Klimkiewicz R, Grabowska H, Teterycz H: Sn–Ce–Rh–O monophase system
as a new type of ortho-selective catalyst for phenol alkylation. Appl Catal
A Gen 2003, 246:125–136.

133. Klimkiewicz R, Grabowska H, Syper L: Ketonization of long-chain esters.
Pol J Environ Stud 2000, 9:179–181.

134. Klimkiewicz R, Grabowska H, Syper L: Oil industry waste as a basis for
synthesis of new type surfactants. Pol J Environ Stud 2001, 10:337–339.

135. Klimkiewicz R, Grabowska H, Teterycz H: Application of Zr-Mg-Y-O catalyst
for ketonization of ester and alcohol type industrial wastes. Pol J Environ
Stud 2003, 12:67–71.

136. Gliński M, Zalewski G, Burno E, Jerzak A: Catalytic ketonization over metal
oxide catalysts. XIII. Comparative measurements of activity of oxides of
32 chemical elements in ketonization of propanoic acid. Appl Catal A Gen
2014, 470:278–284.

137. Pham TN, Sooknoi T, Crossley SP, Resasco DE: Ketonization of carboxylic
acids: mechanisms, catalysts, and implications for biomass conversion.
ACS Catal 2013, 3:2456–2473.

138. Zaytseva YA, Panchenko VN, Simonov MN, Shutilov AA, Zenkovets GA, Renz
M, Simakova IL, Parmon VN: Effect of gas atmosphere on catalytic
behaviour of zirconia, ceria and ceria–zirconia catalysts in valeric acid
ketonization. Top Catal 2013, 56:846–855.

139. Nagashima O, Sato S, Takahashi R, Sodesawa T: Ketonization of carboxylic
acids over CeO2-based composite oxides. J Mol Catal A Chem 2005,
227:231–239.

140. Gliński M, Kijeński J: Catalytic ketonization of carboxylic acids synthesis of
saturated and unsaturated ketones. React Kinet Catal Lett 2000,
69:123–128.

141. Renz M: Ketonization of carboxylic acids by decarboxylation: Mechanism
and scope. Eur J Org Chem 2005, 6:979–988.
142. Cyganiuk A, Klimkiewicz R, Olejniczak A, Lukaszewicz JP: Biotechnological
fabrication of LaMnO3 -carbon catalyst for n -butanol conversion to
ketones. catalyst for n -butanol conversion to ketones. Carbon 2010,
48:99–106.

143. Łukaszewicz JP, Wesołowski RP, Cyganiuk A: Enrichment of Salix viminalis
wood in metal ions by means phytoextraction. Pol J Environ Stud 2009,
18:507–511.

144. Cyganiuk AW, Klimkiewicz R, Olejniczak A, Kucińska A, Łukaszewicz JP:
Nanoscale phenomena occurring during pyrolysis of Salix viminalis
wood. J Materials 2013, 2013:1–9.

145. ten Dam J, Hanefeld U: Renewable chemicals: Dehydroxylation of glycerol
and polyols. ChemSusChem 2011, 4:1017–1034.

146. Kijeński J, Różycki K, Lipkowski AW, Walisiewicz-Niedbalska W: Nowe biopaliwo
estrowe Gliperol®. Przem Chem 2007, 86:269–272.

147. Rao PV, Rao BA: Performance and emission characteristics of diesel
engine with COME-Triacetin additive blends as fuel. Int J Energy Enviorn
2012, 3:629–638.

148. Kołodziej H, Piętak A, Struś M, Vogt A: Properties of biofuels with ethyl
components to diesel engines. J Kones 2006, 13:139–145.

149. Nielsen M, Junge H, Kammer A, Beller M: Towards a green process for
bulk-scale synthesis of ethyl acetate: Efficient acceptorless dehydrogenation
of ethanol. Angew Chem Int Ed 2012, 51:5711–5713.

150. Sato T, Hagiwara T: Production of ester. Tokuyama Sekiyu Kagaku K.K., Japan.
Kokai Tokkyo Koho, JP 11140017, 1999.

151. Giwa A, Giwa SO, Bayram I, Karacan S: Simulations and economic analyses
of ethyl acetate productions by conventional and reactive distillation
processes using aspen plus. Int J Eng Res & Technol 2013, 2:594–605.

152. Gregory R, Smith DJH, Westlake DJ: The production of ethyl acetate from
ethylene and acetic acid using clay catalysts. Clay Miner 1983, 18:431–435.

153. Carotenuto G, Tesser R, Di Serio M, Santacesaria E: Bioethanol as feedstock
for chemicals such as acetaldehyde, ethyl acetate and pure hydrogen.
Biomass Conv Bioref 2013, 3:55–67.
Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/


	Abstract
	Introduction
	Review
	Non-schematic catalytic transformations
	Fischer-Tropsch derived oxygenates
	Ethyl acetate from ethanol

	Conclusions
	Competing interests
	Acknowledgement
	References

