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Abstract

Background: Chlorogenic acids (CGAs) are a class of phytochemicals that are formed as esters between different
derivatives of cinnamic acid and quinic acid molecules. In plants, accumulation of these compounds has been
linked to several physiological responses against various stress factors; however, biochemical synthesis differs from
one plant to another. Although structurally simple, the analysis of CGA molecules with modern analytical platforms
poses an analytical challenge. The objective of the study was to perform a comparison of the CGA profiles and
related derivatives from differentiated tobacco leaf tissues and undifferentiated cell suspension cultures.

Results: Using an UHPLC-Q-TOF-MS/MS fingerprinting method based on the in-source collision induced dissociation
(ISCID) approach, a total of 19 different metabolites with a cinnamic acid core moiety were identified. These
metabolites were either present in both leaf tissue and cell suspension samples or in only one of the two plant
systems. Profile differences point to underlying biochemical similarities or differences thereof.

Conclusion: Using this method, the regio- and geometric-isomer profiles of chlorogenic acids of the two tissue
types of Nicotiana tabacum were achieved. The method was also shown to be applicable for the detection of
other related molecules containing a cinnamic acid core.
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Background

Chlorogenic acids (CGAs) are the family of ester phyto-
chemicals formed between cinnamic acid derivatives and
quinic acids. These compounds are present in almost all
plants and contribute a significant fraction of the total
dietary intake of phenols in the daily human diet. More-
over, they possess some notable bio-medical or pharmaco-
logical properties [1-3]. CGAs are phenolic compounds
produced through the shikimate- and phenylpropanoid
pathways [4,5], and have been identified in responses
against both biotic and abiotic stressors [6]. The most
common naturally-occurring cinnamic acid derivatives
that have been reported to be utilized during the
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biosynthesis of these molecules are p-coumaric -, caffeic-
and ferulic acid which give rise to p-coumaroylquinic acid
(pCoQA), caffeoylquinic acid (CQA) and feruloylquinic
acid (FQA), respectively [1,2]. Other acids such as sinapic
acids are, however, rarely found.

Naturally, plants are known to synthesize the trans-
isomers over the cis-isomers of CGA compounds. The
latter has been reported to be formed in tissue or ex-
tracts previously exposed to UV light, mechanical pro-
cessing of coffee and electric field during MS data
acquisition [7]. However, our latest study on tobacco
cells treated with different chemical and biological prim-
ing inducers shows that the cis-isomer of 5-CQA was in-
duced or up-regulated from a pre-existing pool when
compared to non-treated cells. These results suggest the
existence of possible enzymatic machinery responsible
for the production of the cis-isomers in plants [8]. From
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an analytical perspective, CGA molecules offer a chal-
lenge owing to the structural similarities and complexity
of these compounds. As such, scientists still spend a
great deal of time on developing appropriate methodolo-
gies, even though reliable methods for the analysis have
been developed in the past [8,9]. Most of the approaches
for the analysis of these compounds are, however, achieved
by the use of ion trap MS-based platforms [1,2,10-12]. Due
to the limited availability of such instruments, emphasis is
being placed on the development of alternative, equivalent
methods to overcome these challenges. The development
of the ion trap hierarchical approach has significantly con-
tributed to the detailed analyses of CGA molecules [10-14].
Apart from the structural hierarchy, there exists regio- and
geometric-isomerism which offers yet another dimension
of complexity to the analyses of these molecules. However,
the use of such ion trap-MS methods has also enabled the
discrimination between regio- but not geometric-isomers
of CGAs. As such, chromatographic methods have also
been optimized for proper annotation. The order of elution
of the mono-acylated CGA seems to remain constant on a
reverse-phase column [12]. Using this knowledge, other
methods based on Q-TOF-MS have been developed [7], al-
beit in most cases with several difficulties which ultimately
affect the accuracy of the annotated metabolites.

To circumvent this problem, we have recently devel-
oped a Q-TOF-MS fingerprinting method based on the
in-source collision induced dissociation (ISCID) ap-
proach for the analysis of chlorogenic acid derivatives
[8]. This method has proved to generate very stable and
reproducible results compared to previously published
data. To substantiate our method, the current study pro-
files the CGA content of tobacco plant systems (leaf tis-
sue vs. cultured cells) which have been reported to be a
good source of a variety of bioactive constituents includ-
ing CGAs [15].

For plant-related studies, mass production of second-
ary metabolites can be achieved by using plant cell sus-
pensions. Cultured cells do not only provide a cost-
effective alternative as they are also environmentally
friendly. The main advantage of using this system is that
it can be easily manipulated for biotechnological pur-
poses [16,17]. However, it should be noted that cells in
suspension culture differ significantly from mature organ
tissue such as leaves in that cells grow rapidly and div-
ide, do not contain any traces of chlorophyll and multi-
ply in an aqueous environment containing stimulatory
phytohormones [18]. Thus, the response to stress factors
encountered by intact plant leaves and cell suspensions
may vary. The evident biochemical differences between
cell suspensions and leaf tissues have also been attrib-
uted to the different environmental conditions to which
they are exposed to [19]. Furthermore, it has been re-
ported that the biosynthesis of CGAs is highly dependent
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on the developmental stage of the tissues [20]. Cell
type-associated localization of CGAs during maturation
(i.e. tissue development) has also been reported [21].

As such, the aim of the current study was to compre-
hensively profile the CGA content of both tobacco leaf
tissue and cell suspensions. The results of the current
study are also expected to contribute to the identifica-
tion of any underlying biochemical differences with re-
gard to CGA biosynthesis between the two systems.

Experimental

Plant material

Nicotiana tabacum cv. Samsun cell cultures were grown
in a Murashige and Skoog (MS) medium containing 0.25
mg/L 2,4-dichlorophenoxyacetic acid and 0.25 mg/L kin-
etin (pH 5.8) [22] at room temperature on a shaker at
120 rpm with a light/dark cycle of 12 h/12 h, and low
light intensity of 30 pmol/m?®/s. Tobacco plants were
grown in composted soil under greenhouse conditions:
temperature min 10°C and max 22°C, light/dark cycle of
12 h/12 h, and light intensity of 60 pmol/m?/s.

Extraction of metabolites

The cells were harvested by filtration on 55 mm filter
paper circles using a vacuum filtration system (Millipore,
Billerica, MA, USA) and washed with 20 mL MS
medium without vitamins while tobacco leaves were
ground with a mortar and pestle in liquid nitrogen. Two
grams (2 g) of each sample was weighed and homoge-
nized in 20 mL (1:10 m/v) 80% methanol using a probe
sonicator (Bandelin Sonopuls, Germany) set at 55%
power for 15 sec with 4 cycles. The crude extract was
centrifuged at 4100 x g for 15 min at room temperature.
The supernatant was evaporated to approximately 1 mL
using a rotary evaporator set at 55°C before being dried
to completeness in a heating block set at 55°C overnight.
The dried residues were reconstituted in 300 uL 50% (v/
v) UHPLC-grade methanol in milli-Q water, and filtered
through a 0.22 pm nylon filter into glass vials fitted with
500 pL inserts. The filtered extracts were stored at —20°C
until analysis. For reproducibility of the results, the ex-
periments consisted of 5 independent biological repeats
and each extract was analyzed in duplicate (2 technical
repeats).

Ultra-high performance liquid chromatography (UPLC)

The extracts were chromatographically analyzed on a
UHPLC high-definition quadrupole time-of-flight MS
instrument (UPLC-qTOF SYNAPT G1 HDMS system,
Waters Corporation, Manchester, UK) fitted with an
Acquity HSS T3 column (1.7 pm, 2.1 x 150 mm; Waters
Corporation). A binary solvent system consisting of eluent
A: 0.1% formic acid in water and B: 0.1% formic acid in
acetonitrile (Romil Chemistry, UK) was used. A 20 min
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gradient method at constant flow rate of 0.4 mL/min was
used for analyte separation, and the conditions were:
2% B over 0.0-1.0 min, 2-3% B over 1.0-3 min, 3-8% B
over 3—4 min, 8-12% B over 4-12.00 min, 12 — 95% B
over 12—13 min and held constant at 95% B over 13-15
min to wash the column and 95-5% B over 15-16 min.
Thereafter, the column was returned to initial condi-
tions at 16 min and allowed to equilibrate for 4 min.
Chromatographic separation was monitored using a
photodiode array (PDA) detector (Waters Corporation,
UK) with a scanning range set between 200-500 nm,
1.2 nm bandwidth resolution and a sampling rate of 20
points/sec.

Quadrupole time-of-flight mass spectrometry (Q-TOF-MS)
Post-PDA detection, the metabolites were further de-
tected with the aid of a SYNAPT G1 high definition
mass spectrometer (Waters Corporation, UK) operating
in negative ionization mode. The MS conditions were as
follows: capillary voltage of 2.5 kV, sample cone voltage of
30 V, microchannel plate (MCP) detector voltage of
1600 V, source temperature of 120°C, desolvation
temperature of 450°C, cone gas flow of 50 L/h, desolva-
tion gas flow of 550 L/h, m/z range of 100-1000, scan
time of 0.2 sec, interscan delay of 0.02 sec, mode set as cen-
troid, lockmass set as leucine enkephalin (554.2615 Da),
lockmass flow rate of 0.1 mL/min, and mass accuracy
window of 0.5 Da. High purity nitrogen was used as
desolvation gas, cone - and collision gas.

In-source collision-induced dissociation (ISCID)

Tandem MS (MS?) fragments of the chlorogenic acids
were generated by an ISCID approach. For quinic acid
bearing molecules, the approach was optimized for the
detection of m/z 191 [quinic acid-H'] and a similar
method was used for the other molecules herein. For
CGA characterization the trap collision (30 eV) and cone
energy (60 V) was experimentally optimised until stable
fragmentation was obtained characterized by the forma-
tion of C1 [caffeic acid-H], C2 [caffeic acid-CO,], Q1
[quinic acid-H] and Q2 [quinic acid-H,O] ions (for
CQA as an example).

Results and discussion

Due to the lack of authentic standards and low concen-
tration of metabolites, the current study only presents
qualitative data. In most metabolite fingerprinting stud-
ies, metabolite identification is challenging and requires
the use of authentic standards for definite metabolite
identification. However, due to unavailability of most
plants standards, we opted for cider and coffee as surro-
gate extracts for some of the metabolites identified
herein [12]. It is also worth mentioning that the introduc-
tion of instruments such as Q-TOF-MS have contributed
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significantly in overcoming this problem because of its
ability of measuring mass accuracy below 3 ppm [23]. For
all the 19 metabolites detected (Figure 1, Table 1), the
mass error was below 5 ppm. As previously mentioned,
proper annotation of structurally similar isomers of cin-
namic acid derivatives is a difficult task [9]. To avoid am-
biguity during identification, using the [IUPAC numbering
system, we have considered all possible factors ranging
from chromatographic separation to mass spectrometric
behaviour as shown in previously published data [10,12].
In order to simplify identification, metabolites harboring
common cinnamic acid moieties in their core structure
were monitored using a single mass extracted ion chro-
matogram (XIC). As an example, four peaks with m/z
353, representative of three regio-isomers of CQA, were
detected in extracts from both cells and leaves (Figure 2).
This enabled proper identification of CGAs based on pre-
viously published data, taking into consideration all pos-
sible isomers both at positional and geometrical level
[1,2,10-12,23]. It has been reported that CGA molecules
fragment in a similar manner under well-optimized condi-
tions. For instance, CQAs are known to result in the fol-
lowing fragment ions: Q1 [quinic acid-H], C1 [caffeic
acid-H], Q2 [quinic acid-H,O] and C2 [caffeic acid-CO,]
[24]. By monitoring these ions, CGA and the related deriv-
atives could be positively annotated as discussed below.
All mass spectra shown in Figures 3, 4, 5, 6 and 7 were
generated at a collision energy of 30 eV and 60 eV cone
voltage as described under Experimental section.

Characterization of p-coumaroylquinic acids
p-Coumaroylquinic acid has a molecular weight (Mr) of
338 and four peaks at m/z 337 were detected in leaf ex-
tracts whilst only three were detected in cells (XIC not
shown). These ion peaks, according to the mass spectra
(Figure 3), were identified as trans-4-pCoQA (1), trans-
5-pCoQA (2), cis-5-pCoQA (3) and cis-4-pCoQA (4).
The leaf samples were found to contain 1, 2, 3 and 4
while the cells were found to only contain 1, 2 and 4.
The absence of 3 (cis-5-pCoQA) in cells could not be
entirely explained but is possibly due to the fact that
some molecules are more prone to isomerization than
others, a phenomenon which has been observed in other
plants but without supporting explanation [8]. In addition,
another important factor to note is that both trans- and
cis-isomers have very similar fragmentation patterns [12].
In the current study the mass spectra of the trans iso-
mers are shown throughout. The notable absence of 3-
pCoQA in both leaf and cell extracts is an observation
which represents a very interesting biochemical pheno-
type. This molecule has been found to accumulate in
other plants such as legume forages and birch trees
[25-27].
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Figure 1 The structures of chlorogenic acids and related derivatives and CQA glycosides detected in tobacco leaves and cultured cells.
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Characterization of caffeoylquinic acids

Although present at different relative intensities, all
CQA regio-isomers (Mr = 354) were identified in both
tobacco leaves and cultured cells: trans- and cis-3CQA
(5, 6), trans-4-CQA (7) and trans- and cis-5-CQA (8, 9)

(Figure 4). Amongst the CGAs, the CQAs have the widest
occurrence and are well researched [21,28]. Unlike pCoQA,
only 3- and 5-acylated CQA possessed both cis- and trans-
isomers whilst only the trans-isomer of 4-CQA (7) was de-
tected. All the mentioned CQA molecules were found in
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Table 1 Characterization of chlorogenic acids and related cinnamic acid derivatives detected in tobacco leaves and cells

Compound name Retention time (min) Cells Leaves [M-H]™ Diagnostic m/z ions
cis-4-pCoQA (4) 7.35 v v 337.0933 173

trans-4- pCoQA (1) 796 v v 337.0957 173
trans-5-pCoQA (2) 7.69 v v 337.0886 191

cis-5-pCoQA (3) 10.54 v 337.0949 191

cis-3-CQA (6) 4.55 v v 353.0875 191,179,135
trans-3-CQA (5) 461 v v 353.0787 191,179,135
trans-4-CQA (7) 6.13 v v 353.0864 191,179,173, 135
trans-5-CQA (8) 581 v v 353.0829 191,135
cis-5-CQA (9) 7.55 v v 353.0809 191,135
trans-4-FQA (12) 6.17 v 367.0429 173

trans-5-FQA (10) 5.84 v v 367.0708 191

cis-5-FQA (11) 941 v v 367.0847 191
Caffeoylglycoside (13) 5.60 v v 341.0894 179
Feruloylglycoside (14) 7.09 v 355.1012 193

3,4-diCQA (15) 5.21 v 515.1509 191,179, 173,135
4,5-diCQA (16) 550 v v 515.1404 191,179,135
3,5-diCQA (17) 6.30 v v 515.1477 191,179,135
3-CQA glycoside (18) 4.78 v 515.1261 191,179, 135
5-CQA glycoside (19) 547 v 515.1354 191,135

both leaf and cell suspension samples. Another interesting
observation was the fact that cis-5-CQA (9) appeared in a
relatively high intensity compared to the cis-3- CQA in
both the leaf and cell samples. The same was also noted in
our previous study where the same molecule was shown to
be induced by activators of plant defence and priming re-
sponses [8]. The differences in the metabolite profiles (in-
cluding CGAs and phenolic content) between cells and leaf
tissue have been previously reported [21,29]. However, ac-
cording to the best of our knowledge, this is the first report
focusing on the differences between cells and leaf tissue

samples taking into account both regional and geometrical
isomerism (cis and trans configurations) of CGAs. From
our previous work [8], we could confidently conclude that
the cis-5-CQA molecule could be a natural product of to-
bacco plant systems, suggesting an interesting biochemical
phenotype which is not fully explained in other plant
species.

Characterization of feruloylquinic acids
Feruloylquinic acids have an Mr = 368. Similarly to
pCoQA and CQA, molecules harboring ferulic acid
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Figure 7 Mass spectra of the fragmentation patterns of 3,5-di-CQA (A), 4,5-di-CQA (B).

moieties were also identified (Figure 5). However, only
three peaks were successfully identified; as trans-5-FQA
(10), cis-5-FQA (11) and trans-4-FQA (12) respectively
(Table 1). Similarly to the pCoQA, there was an absence of
the 3-acyl molecule in both cell- and leaf extracts. These
three FQAs were identified in leaf tissue, however, only
trans-5-FQA (10) and cis-5-FQA (11) were identified in
cells, suggesting an underlying biochemical difference be-
tween the two systems, possibly due to enzymes differing
in their substrate specificities.

Characterization of caffeoylglycoside and
feruloylglycoside

Caffeoylglycoside and feruloylglycoside have molecular
weights of 342 and 356 respectively. Two molecules with
pseudomolecular peaks at m/z 341 (Figure 6A) were
identified as isomers of caffeoylglycoside (13) in both
leaf and cell samples. They produced distinctive ions at
m/z 179 ([caffeic acid - H]-) by the loss of a glucosyl
residue (CgH;005) and m/z 135 ([caffeic acid - H] -). As
for the feruloylglycoside at m/z 355 (14, Figure 6B), it
was also tentatively identified based on its fragmentation
patterns: briefly this molecule produced a base peak at
m/z 193 ([ferulic acid — H]-) and by the loss of a gluco-
syl residue (CgH;0O5) (162 Da). It also produced a base
peak at m/z 175 ([ferulic acid — H — H,O]- ), a peak at
m/z 295 (M - H -60 Da]-) by the loss of C,H,O, and
another peak at m/z 235 ([M - H -120 Da]-) by the loss
of C4HgO,, due to internal sugar fragmentations. The
identification of these molecules was also found to be
consistent with published data [9]. Interestingly, this
molecule was only identified in cells and not in leaf

samples. The fact that feruloylglycoside molecules are
only biosynthesized in cell suspensions again suggests a
very interesting biochemical characteristic of the cul-
tured cells in suspension which is absent in the leaf
tissue.

Characterization of di-caffeoylquinic acid and caffeoylquinic
acid glucoside

Both di-caffeoylquinic acid and caffeoylquinic acid glu-
coside have an Mr =516. Here, a maximum of nine
peaks at m/z 515 were identified and, based on the ac-
curate masses and fragmentation patterns, these ions
were distinguished as either di-caffeoylquinic acid and
caffeoylquinic acid glycosides (Figure 7). As previously
reported, both di-CQA and CQA-glycoside produce an
isobaric pseudomolecular ion at m/z 515. As such, mole-
cules 15-19 were annotated as either di-CQA or CQA
glycosides. Based on the accurate mass, the diCQA were
detected with an average m/z of 515.1463 (Cy5H,3015)
and the CQA glycosides were found to have an average
m/z of 515.1292 (CyyH570;4). Based on information
published elsewhere [10,11], molecules 15-17 were
identified as di-CQAs (3,4 di-CQA (15), 4,5 di-CQA
(16) and 3,5 di-CQA (17). Interestingly, both leaves and
cells were found to contain these compounds except for
the 3,4 4i-CQA which was only present in the cells. Un-
like the diCQA, the CQA glycosides produce distinctive
ions at m/z 341 ([caffeoyl glucoside — H]-) or/and 323
([caffeoyl glucoside — H — H,OJ]-) which were not
present in the diCQA MS spectra. Recently, Jaiswal et al.
[30,31] reported the hierarchical fragmentation scheme
of similar molecules, briefly it was noted that CQA
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forms a glycoside through an ether bond at either C-3 or
C-4 on the aromatic caffeoyl ring. During MS fragmen-
tation, these molecules gives rise to ions at m/z 341
which predominates in both cases; however a peak at m/z
323 is a characteristic of glucosyl attachment at C-3 [30].
Thus these molecules were putatively identified as 3-O-
(4’-O-caffeoyl glucosyl) quinic acid (18) since it also
produced similar fragmentation to 3CQA. In turn, 5-O-
(3’-O-caffeoyl glucosyl) quinic acid (19) produces frag-
mentation similarly to 5-CQA (Figure 8). Interestingly,
the CQA glycosides were only present in leaf tissue
samples. Also, a previous report showed the accumula-
tion of similar glycosides in Moringa leaves [32] and re-
cently in Lonicera leaves [30].

Conclusion

Using the described UHPLC-Q-TOF-MS/MS fingerprint-
ing method, based on the ISCID approach, a total of 19
different metabolites with a cinnamic acid core moiety
were identified. Chlorogenic acids and related compounds
are important because their involvement during plant de-
fence responses is also becoming apparent [8,33,34]. In a
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separate study, the distribution of these molecules
were found to be different across the different parts of
the plants [35], which is an indication that there could
be a localised function associated with a particular
content and distribution. Similarly, the results of the
current study indicate that there exists a significant
difference in the CGA profiles of tobacco leaf tissue
and cell suspensions. Possibly, the differences stem
from different biochemical pathways leading to the
biosynthesis of CGA molecules in the two biological
systems. As already mentioned, the biochemical differ-
ences between cells and leaf tissue could be a result of
the different environmental conditions which the cells
and the leaves are exposed to as well as the level of tis-
sue differentiation. This finding is in agreement with
other published data where it was demonstrated that
the CGA content varies with plant developmental
stages. Therefore, there is a need to further investigate
the underlying biochemical differences in such plant
systems by investigating the same plant systems at
transcriptomic and proteomic levels in conjunction
with MS-based metabolite profiling.
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