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Abstract

Background: The discovery that somatic cells can be reprogrammed to induced
pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease
modelling, drug development and population genetics studies. Gene expression
plays a critical role in complex disease risk and therapeutic response. However, while
the genetic background of reprogrammed cell lines has been shown to strongly
influence gene expression, the effect has not been evaluated at the level of
individual cells which would provide significant resolution. By integrating single cell
RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in
which to evaluate cell type-specific effects of genetic variation on gene expression.

Results: Here, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map
expression quantitative trait loci (eQTLs) at the level of individual cell types. We
demonstrate that the majority of eQTLs detected in fibroblasts are specific to an
individual cell subtype. To address if the allelic effects on gene expression are
maintained following cell reprogramming, we generate scRNA-seq data in 19,967
iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific
eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear
during reprogramming.

Conclusions: This work provides an atlas of how genetic variation influences gene
expression across cell subtypes and provides evidence for patterns of genetic
architecture that lead to cell type-specific eQTL effects.

Keywords: Expression quantitative trait loci (eQTLs), Single cell RNA-sequencing
(scRNA-seq), Induced pluripotent stem cells (iPSCs)
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Background
Mapping expression quantitative trait loci (eQTLs) is a powerful method to study how

common genetic variation between individuals influences gene expression [1, 2]. To

date, nearly all eQTL studies have been conducted while interrogating ‘bulk’ samples,

where the RNA is collected from millions of lysed cells, and therefore, gene expression

represents an average across all cells in a sample. However, even ‘bulk’ eQTL studies in

different tissues [3, 4] and cultured cell lines [5, 6] have revealed specificity in both the

presence and allelic effects of eQTLs [7, 8]. Single cell approaches have already revealed

that stem cell cultures do not contain a single homogeneous cell type [5, 6, 9], but in-

stead consist of multiple cell types that have unique transcriptional profiles. For this

study, we harnessed recent technological advances for high-throughput generation of

single cell data that leveraged cell multiplexing from multiple donors [10–12]. This ex-

perimental framework enabled the identification of cell type-specific genetic effects on

gene expression which revealed eQTLs that were cell type specific and that would not

be detected by ‘bulk’ approaches.

Previous studies have identified cell type-specific eQTLs using scRNA-seq which

were unobservable in bulk RNA-sequence studies [13–17]. The first study to report this

enhanced cell type-specific eQTL detection from scRNA-seq investigated 92 genes

measured in 1440 single cells from lymphoblastoid cell lines in 15 individuals [15]. In

the current study, we set out to understand the impact of common genetic variants on

gene expression in fibroblast and reprogrammed iPSC cell types through eQTL map-

ping at the level of cell subpopulations.

Results
To identify cell type-specific eQTLs in an unbiased manner, we generated scRNA-seq

expression profiles of 83,985 cells—64,018 cultured dermal fibroblasts, generated from

skin biopsies from 79 unrelated individuals, and 19,967 iPSCs reprogrammed from 31

of the dermal fibroblast lines (Fig. 1a). After quality control, we used an unsupervised

clustering approach [18] to identify six types of fibroblasts and four types of iPSCs

(Fig. 1b, c). Fibroblast and iPSC types contained equal distributions of individual do-

nors, pool batches and cell cycle states (Additional file 1: Figure S1 and S2). Cell types

were classified based on the relative activity of the regulating transcription factors in fi-

broblasts (SIX5+, HOXC6+, ATF1+, TEAD2+, KLF10+ and RXRB+) and iPSCs (HIC2+,

ATF2+, BRF2+ and CEBPG+) (Fig. 1d, e; Additional file 2: Table S1 and Additional file 3:

Table S2; and Table 1). Further, pseudo-trajectory analysis demonstrated that the iden-

tified cell types were positioned along a clear lineage trajectory for both fibroblast and

iPSC types which was exemplified by the top differentially expressed genes (Additional

file 1: Figure S3–4, Additional file 4: Table S3 and Additional file 5: Table S4). We also

used an unbiased approach to classify cells against reference transcriptome profiles

from the human primary cell atlas [19, 20], which demonstrated that the majority of fi-

broblasts mapped to the fibroblast or mesenchymal stem cell (MSC) reference, while

the majority of iPSCs mapped to the iPSC or embryonic stem cell references (Add-

itional file 1: Figure S5A-B). Due to the phenotypic and transcriptional similarities of fi-

broblasts and MSCs (Additional file 1: Figure S5C), it is not surprising that some

fibroblast cells mapped to the MSC reference [21].

Neavin et al. Genome Biology           (2021) 22:76 Page 2 of 19



We subsequently tested for cis-eQTLs independently in each of the 10 cell types. We

identified a total of 46,103 eQTLs for 2958 genes (FDR < 0.1) across all cell types—45,

503 eQTLs for 2887 genes in fibroblast cell types and 810 cis-eQTLs for 86 genes in

iPSC cell types (Additional file 7: Table S6 and Additional file 8: Table S7, Table 1).

The majority of cis-eQTLs were predominantly cell type specific, with 77.6% of the

eGenes—genes that have an eQTL—(71.5% of the cis-eQTLs) identified in only one

fibroblast type (Fig. 2a, b and Additional file 1: Figure S6A). However, neighbouring

fibroblast types were more likely to share common eGenes than distant fibroblast types

Fig. 1 Fibroblast and iPSC cluster characterisation. a This study used skin biopsies to generate fibroblasts
from 79 healthy volunteers and reprogrammed them into induced pluripotent stem cell (iPSC) lines for 31
of the original 79 individuals. b Six fibroblast subtypes were identified from the transcriptional profiles of
64,018 single fibroblast cells. c The 50 TFs with the highest relative activities as identified by SCENIC in the
six fibroblast subtypes. d Four iPSC subtypes were identified from 19,967 single iPSCs. e The 50 TFs with the
highest relative activities as identified by SCENIC in the four iPSC subtypes. Asterisk indicates the genes
used to name each subtype
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(Fig. 2b, c). iPSC types also demonstrated a high percentage of cell type-specific eQTLs

with 97.2% of the eGenes (99.6% of the cis-eQTLs) identified in only one iPSC type

(Additional file 1: Figure S6B-C). Since each cell type was characterised by activity of a

specific set of transcription factors (Fig. 1c, e), we tested whether any of the eQTLs

were predicted to alter transcription factor binding in those cell types and identified

multiple loci that were predicted to alter key transcription factor binding (Additional

file 8: Table S7).

Cell type ubiquitous eQTLs (shared across all fibroblasts or iPSC cell types) were

rare, with seven eGenes in fibroblasts (Fig. 2a, Additional file 1: Figure S6A and S7)

and none in iPSCs (Additional file 1: Figure S6B). Looking across the cell reprogram-

ming event, we observed a complete lack of shared eQTLs between fibroblasts and

iPSCs. Only 14 genes had eQTLs in both fibroblasts and iPSCs (Fig. 2d), but none of

those shared a common eSNP—a SNP significantly associated with an eGene—or

eSNPs in linkage disequilibrium with one another (r2 < 0.2), which indicates that their

expression is likely associated with independent loci (Fig. 2d and Additional file 1: Fig-

ure S8). These cell type-specific eQTLs are clearly exemplified by top eQTLs identified

for each of the 10 cell types (Fig. 2e).

We then investigated whether the eQTLs identified in fibroblasts replicated in

bulk RNA-sequence data from the Genotype-Tissue Expression database (GTEx,

cultured fibroblasts n = 483) [22]. Only 41.1% of the 45,503 eQTLs identified in the

six fibroblast types replicated in GTEx, although they demonstrated a consistent

shared direction of allelic effects. One explanation for this observation is that bulk

RNA-seq approaches mask cell type-specific effects through averaged gene expres-

sion across cells. Therefore, we hypothesised that cell type ubiquitous eQTLs (from

the single cell analysis) would have higher replication rates compared to cell type-

specific eQTLs. eQTLs that were shared across multiple scRNA-seq fibroblast cell

types showed a highly significant difference compared with eQTLs that were sig-

nificant in just one fibroblast type (p < 5 × 10−324 for eGenes and p = 6× 10−150 for

eSNPs; Fig. 2a and Additional file 1: Figure S6A). Further, we identified that the al-

lelic effect size of the eGenes and eQTLs in GTEx cultured fibroblasts was posi-

tively correlated with the number of fibroblast types where those eGenes and

Table 1 Summary of fibroblast type cis-eQTL. The median number of cells per individual, the
number of significant eSNPs detected, the number of significant eGenes detected and the number
of unique eGenes per cell type are enumerated

Cell type Median cells
per individual

Number of significant
eSNP-eGene pairs

Number of
significant eGenes

Unique genes
with cis-eQTL

Fibroblast SIX5+ 282 13,886 664 383

Fibroblast HOXC6+ 253 23,348 1030 615

Fibroblast ATF1+ 175 20,105 916 500

Fibroblast TEAD2+ 46 6351 402 232

Fibroblast KLF10+ 36 4567 299 163

Fibroblast RXRB+ 7 2883 517 339

iPSC HIC2+ 240 52 6 5

iPSC ATF2+ 176 14 3 2

iPSC BRF2+ 74 52 11 7

iPSC CEBPG+ 41 695 68 55
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eQTL were significant (Additional file 1: Figure S9). These results indicate that

eQTL mapping using bulk RNA-sequence data is likely not sensitive enough to

identify fibroblast type-specific eQTLs.

Based on our initial observation that cell type eQTL effects are highly specific, we

next sought to identify how different types of genetic architecture and gene expression

patterns contributed to cell type-specific effects in fibroblasts and iPSCs.

Fig. 2 Identification of single cell eQTLs in fibroblast and iPSC subtypes. a The majority of single cell (sc)
eGenes in fibroblasts are subtype specific. Further, the single cell eGenes that were detected in two or
more fibroblast subtypes were significantly more likely to be detected as eQTLs in bulk fibroblast RNA-
sequence data from the gene tissue expression (GTEx) database (p < 5 × 10−324, Cochran-Armitage test). b
The total number of eGenes (on the diagonal) and percent that are also observed in other fibroblast
subtypes further shows that most eGenes are unique to a given subtype. c Neighbouring fibroblast cell
types were more likely to share common eGenes than distant cell types. d iPSC types demonstrate a similar
level of cell specificity and none of the single cell eGenes-eSNP pairs that were observed in fibroblasts were
observed in the iPSC subtypes that were generated from the same individuals. e Top eQTLs unique to a
specific cell type exemplify the cell type specificity
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One potential explanation for the cell type-specific eQTL detection is that the

gene is only expressed in one cell type, and therefore, we would not expect to ob-

serve an eQTL in a cell type that does not express the gene. To evaluate this pos-

sibility, we correlated the expression of each eGene, with its expression levels in

each of the other cell types (Additional file 1: Figure S10). Gene expression was

highly correlated, which indicates that cell type-specific eQTL is not a function of

cell type-specific gene expression. Another possible explanation for the cell type-

specific eQTLs is low statistical power to detect eQTLs in multiple cell types. We

tested this hypothesis in two ways: (1) we correlated the eQTL effect sizes between

different cell types and (2) we implemented an empirical framework to test for en-

richment of cell type-specific eGenes in other cell types. The cell type-specific

eQTL allelic effects (betas) were not well correlated in other cell types unless they

were already identified as significant in the other cell type (Additional file 1: Figure

S11). However, there was some enrichment of the test statistic across cell types—

mostly for fibroblast types that were similar to one another such as SIX5+ and

HOXC6+ (Additional file 1: Figure S12). While larger studies will be required to

fully elucidate the full degree of cell type specificity, these results suggest that

many of the eQTLs identified are cell type specific. Therefore, we conclude that

the majority of cell type-specific eQTLs that we have identified were not a result

of differences in gene expression or due to lack of statistical power. We next set

out to interrogate eGenes that were in common between multiple cell types.

We identified 283 eGenes that were significant in multiple cell types, but which had

different top eSNPs—255 eGenes in at least two fibroblast types, no eGenes with differ-

ent top eSNPs in iPSC types and 11 eGenes with different top eSNPs in a fibroblast

type and an iPSC type. In these instances, we considered two alternative hypotheses:

(1) that there was one eQTL shared between cell types but that it was tagged by a dif-

ferent top eSNP in each cell type, or (2) that there were two independent cell type-

specific eQTLs for the same gene. To address these hypotheses, we tested whether the

top eSNP in a given cell type was still significantly associated with gene expression after

correcting for the top eSNP in the other cell type—the same method used for condi-

tional eQTL analyses [23]. A significant association of the SNP with the eGene expres-

sion after correction for the other eSNP would indicate that the two eSNPs were not

tagging the same eQTL and were, therefore, independent loci. The analysis identified

that between 28.6 and 55.7% of these loci for a given fibroblast type were independent

(Fig. 3 and Additional file 9: Table S8), and 100% of the eGenes shared between the

fibroblast and iPSC types were also independent loci (Additional file 9: Table S8).

These results denote that many of the eGenes that were shared between multiple cell

types are in fact regulated by different loci, providing further support to our previous

finding that the majority of eQTLs are cell type specific.

Indeed, we identified that even though the Kelch Like Family Member 36 (KLHL36)

gene was a significant eGene in three fibroblast types, it was regulated by independent

loci in each cell type (Fig. 4a–d). Further, the top eSNPs for each locus were not in LD

with one another (r2 < 0.1) (Fig. 4e). KLHL36 is highly expressed in fibroblasts com-

pared to other cell types in the Genotype-Tissue Expression (GTEx) database (Add-

itional file 1: Figure S13) suggesting that it may play an important role in fibroblast

biology. Further, KLHL36 is part of the E3 ubiquitin ligase family which has been
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implicated in skin fragility [24] and fibroblast pseudopodia function [25]—again

highlighting the potential role of this gene in fibroblast biology and physiology.

Next, we investigated the 153 eGenes that shared at least one significant eSNP-eGene

pair across multiple cell types. We evaluated the potential interactions between cell

type and eSNP that would lead to a difference in magnitude of the allelic effect in dif-

ferent cell types. In cases where multiple eSNP-eGene pairs were significant for the

same eGene across multiple cell types, we tested the eSNP-eGene pair with the largest

beta difference between two fibroblast types. This analysis identified 42 (21.2%) signifi-

cant eSNP-fibroblast type interactions at an FDR of 0.05 (Additional file 10: Table S9).

We identified a number of ubiquitous eQTLs, whose allelic effects were significantly

different across cell types.

Next, we asked whether any of the eQTLs that we identified might impact

fibroblast reprogramming to iPSCs. We first asked whether there were eQTLs for

Fig. 3 eGene comparison across fibroblast subtypes. eGenes that were shared between at least two
fibroblast subtypes were tested for independence. The top eSNP for eGenes that were shared between two
fibroblast subtypes was regressed from the other subtype in order to test if those were independent eSNP
loci. Many (40–73%) of the fibroblast top eSNPs remained significant after regression of the top eSNP from
another fibroblast subtype
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any genes that characterise cell types as they transition from fibroblasts to iPSCs.

We identified multiple eQTLs for genes that characterised cell types during the

transition from fibroblasts to iPSCs (Additional file 1: Figure S14A). In addition,

76.5% of those reprogramming eQTLs were unique to one fibroblast subtype

which suggests that these genetic variants may impact reprogramming efficiency

to varying degrees depending on the cell type. Further, we tested for eQTLs in

regions differentially methylated post reprogramming (Additional file 1: Figure

S14B) and in regions that are incompletely reprogrammed in some iPSCs relative

to embryonic stem cells (ESCs) (Additional file 1: Figure S14C). In both cases, we

Fig. 4 Examples of eQTLs identified in fibroblast and iPSC subtypes. a The KLHL36 gene was significant in
three different fibroblast subtypes but with different top eSNPs for each cell type. b The top SNP for the
SIX5+ fibroblast cell type was rs381037 and demonstrated a significant association with KLHL36 expression
in just the SIX5+ fibroblast cell type. c rs11604918 was a significant SNP in just the ATF1+ fibroblast cell
type. d The rs11445947 SNP was the most significant eSNP for KLHL36 expression in the RXRB+ cell type
and did not demonstrate a significant association in any other cell type. e The three top eSNPs associated
with KLHL36 expression were not in linkage disequilibrium. f CPNE1 was differentially expressed in HOXC6+,
ATF1+, KLF10+ and RXRB+ fibroblast cell types. g CPNE1 was a significant eGene in five of the six fibroblast
subtypes. h Further, the rs3474587283-CPNE1 eQTL demonstrated striking subtype by SNP interaction. *p <
0.05; **p < 0.01; ***p < 0.001; NS non-significant
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identified multiple eQTLs, the majority of which were cell type specific—68.6% in

regions differentially methylated between fibroblasts and iPSCs and 62.1% in re-

gions differentially methylated between iPSCs and ESCs, indicating that these

genetic variants may influence iPSC reprogramming. Of interest, this analysis

identified genes that have previously been associated with reprogramming effi-

ciency such as DNAJ15 [26] or previously been reported as eQTLs such as MICA

[27] and CPNE1 [28].

In addition, CPNE1 was differentially expressed between cell types in our dataset

(Additional file 1: Figure S4F and Additional file 4: Table S3) and the rs374587283-

CPNE1 cis-eQTL demonstrated a significant SNP-cell type interaction (p =

2.64.9 × 10−04; Fig. 4g, h). CPNE1 is a calcium-dependent binding protein that is

thought to play an important role in membrane trafficking, and is important for neur-

onal cell differentiation [29, 30]. Therefore, this eQTL could impact the differentiation

potential of iPSC lines toward neuronal lineages.

Discussion
We set out to identify and define the dynamics of eQTLs in fibroblasts and fibroblast-

derived iPSC types. Collectively, our results provide evidence that there is a high degree

of cell type-specific gene regulation that is not captured with bulk RNA-seq. Our re-

sults indicate that even when the same eGene is observed in different cell types, the al-

lelic effect may be altered in different cell types or may be regulated by different loci

entirely. Our findings support previous reports that many cell type-specific eQTLs are

not detected using bulk RNA-sequencing and that scRNA-seq can be utilised to en-

hance eQTL detection [31].

These results contrast slightly with GTEx [22] that showed that multiple eQTLs are

common across tissues. However, it is important to note that in GTEx, the RNA ex-

pression levels are the averaged signal from all cell types in the tissue biopsy. While the

cellular composition of tissues differs, most tissues share common cell types such as

epithelial cells, circulating immune cells and adipocytes. Therefore, under a scenario of

highly cell type-specific eQTLs, we would expect to see shared eQTLs between tissues

due to the common cell types that are shared between multiple tissues. Likewise, truly

cell type ubiquitous eQTLs would replicate at a higher frequency between single cell

eQTLs and GTEx—as we observe here (Fig. 2). Nevertheless, the results we present

here strongly support the hypothesis of true cell type-specific eQTLs as we observe lit-

tle correlation of the allelic effects (betas) between cell types. However, to adequately

uncover the relationship between bulk and single cell eQTLs, it is likely that future

studies which generate both types of data will be required.

In addition, our analyses identified novel cis-eQTLs for genes that characterise cell

types during iPSC reprogramming [32], located in functional genomic regions that re-

flect reprogramming efficiency based on epigenetic profiles [33, 34]. Those loci also

demonstrated important cell type specificity that could impact iPSC reprogramming

and pluripotency in a cell type-specific manner. However, additional studies will be re-

quired to fully understand the mechanisms behind how these genetic loci might impact

iPSC reprogramming in lines that are derived from different individuals. Specifically,

CellTag [35, 36] or other barcoding methods will enable cells to be both collected and

tracked throughout the entire reprogramming event or differentiation lineage.
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scRNA-seq provides a number of advantages over bulk RNA-sequencing for eQTL

mapping. Specifically, scRNA-seq enables cell types to be identified in an unbiased

manner before eQTL detection. Therefore, even cell types that have previously not

been described or well characterised can be identified and separated for eQTL map-

ping, thereby decreasing the measurement noise that is introduced due to heterogeneity

of cells in bulk RNA-sequence profiling. Furthermore, scRNA-seq enables the cells

from multiple individuals to be pooled in a single experiment, thereby decreasing tech-

nical batch effects that can confound biological variation between individuals.

Larger studies will be required to fully parse out the cell type-specific effects.

Conclusions
This study has provided a map of eQTLs in fibroblast and fibroblast-derived iPSC types

that will be an important reference for future studies in iPSC-derived cell types.

Methods
Participant recruitment and ethics approval

Experimental work was approved by the Human Research Ethics committees of the

Royal Victorian Eye and Ear Hospital (11/1031), University of Melbourne (1545394)

and University of Tasmania (H0014124) in accordance with the requirements of the

National Health & Medical Research Council of Australia (NHMRC) and conformed

with the Declaration of Helsinki [37].

Fibroblast culture

Human skin punch biopsies were obtained from subjects over the age of 18 years. Fi-

broblasts were cultured in DMEM high glucose supplemented with 10% foetal bovine

serum (FBS), L-glutamine, penicillin (100 U/mL) and streptomycin 100 (μg/mL) (all

from Thermo Fisher Scientific, USA). All cell lines were mycoplasma-free (MycoAlert

mycoplasma detection kit, Lonza, Switzerland).

Generation and maintenance of iPSCs

Human iPSCs were reprogrammed from fibroblast cultures by nucleofection (Amaxa™

Nucleofector™) of episomal vectors expressing OCT-4, SOX2, KLF4, L-MYC, LIN28 and

shRNA against p53 [38], in feeder- and serum-free conditions using TeSR™-E7™

medium (STEMCELL Technologies, Canada) and selected by sorting with anti-human

TRA-1-60 Microbeads using a MultiMACS (Miltenyi, Germany) as described in [39]

and [40]. Cells were maintained on vitronectin XF™ (STEMCELL Technologies)-coated

plates using TeSR™-E8™ (Stem Cell Technologies). At passage eight, cells were assessed

for quality control as described previously [40].

iPSC quality control

Pluripotency was assessed by immunochemistry for expression of OCT3/4 (sc-5279,

Santa Cruz Biotechnology, USA) and TRA-1-60 (MA1-023-PE, Thermo Fisher Scien-

tific). Copy number variation (CNV) analysis of original fibroblasts and iPSCs was per-

formed using Illumina HumanCore Beadchip arrays with PennCNV [41, 42] and

QuantiSNP [42] with default parameter settings. Chromosomal aberrations were
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deemed to involve ≥ 20 contiguous SNPs or a genomic region spanning ≥ 1MB [41,

42]. The B allele frequency (BAF) and the log R ratio (LRR) were extracted from Geno-

meStudio (Illumina, USA) for representation.

Generating the single cell RNA-sequence data

Viable cells were sorted on a BD Influx cell sorter (Becton-Dickinson) using propidium

iodide into Dulbecco’s phosphate-buffered saline (PBS) + 0.1% bovine serum albumin

and retained on ice. Sorted cells were counted and assessed for viability with Trypan

Blue using a Countess automated counter (Invitrogen) and then resuspended at a con-

centration of 800–1000 cells/μL (8 × 105 to 1 × 106 cells/mL). Final cell viability esti-

mates ranged between 92 and 96%.

Single cell suspensions were loaded onto 10X Genomics Single Cell 3′ Chips along

with the reverse transcription (RT) mastermix as per the manufacturer’s protocol for

the Chromium Single Cell 3′ Library (10X Genomics; PN-120233), to generate single

cell gel beads in emulsion (GEMs). Reverse transcription was performed using a C1000

Touch Thermal Cycler with a Deep Well Reaction Module (Bio-Rad) as follows: 55 °C

for 2 h, 85 °C for 5 min, hold 4 °C. cDNA was recovered and purified with DynaBeads

MyOne Silane Beads (Thermo Fisher Scientific; Cat# 37002D) and SPRIselect beads

(Beckman Coulter; Cat# B23318). Purified cDNA was amplified as follows: 98 °C for 3

min; 12x (98 °C for 15 s, 67 °C for 20 s, 72 °C for 60 s); 72 °C for 60 s; hold 4 °C. Ampli-

fied cDNA was purified using SPRIselect beads and sheared to approximately 200 bp

with a Covaris S2 instrument (Covaris) using the manufacturer’s recommended param-

eters. Sequencing libraries were generated with unique sample indices (SI) for each

chromium reaction. Libraries were multiplexed and sequenced on an Illumina NextSeq

500 (NextSeq control software v2.0.2/Real Time Analysis v2.4.11) using a 150-cycle

NextSeq 500/550 High Output Reagent Kit v2 (Illumina, FC-404-2002) in standalone

mode as follows: 98 bp (Read 1), 14 bp (I7 Index), 8 bp (I5 Index) and 10 bp (Read 2).

scRNA-seq Cellranger processing

Processing of the sequencing data into transcript count tables was performed using the

Cell Ranger Single Cell Software Suite by 10X Genomics [43]. Raw base call files from

the NextSeq 500 sequencer were demultiplexed, using the cellranger mkfastq pipeline,

into sample-specific FASTQ files. These FASTQ files were then processed with the

cellranger count pipeline where each sample was processed independently. First, cell-

ranger count used STAR to align cDNA reads to the hg19 human reference transcrip-

tome, which accompanied the Cell Ranger Single Cell Software Suite [44]. We note

that, since the expression data is limited to the 3′ end of a gene and we used gene-level

annotations, differences between reference versions, such as GRCh38, are unlikely to

significantly alter conclusions. Aligned reads were filtered for valid cell barcodes and

unique molecular identifiers (UMIs) and observed cell barcodes were retained if they

were 1-Hamming-distance away from an entry in a whitelist of known barcodes. UMIs

were retained if they were not homopolymers and had a quality score > 10 (90% base

accuracy). Cellranger count corrected mismatched barcodes if the base mismatch was

due to sequencing error, determined by the quality of the mismatched base pair and

the overall distribution of barcode counts. A UMI was corrected to another, more
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prolific UMI if it was 1-Hamming-distance away and it shared the same cell barcode

and gene. Cellranger count examined the distribution of UMI counts for each unique

cell barcode in the sample and selected cell barcodes with UMI counts that fell within

the 99th percentile of the range defined by the estimated cell count value. The default

estimated cell count value of 3000 was used for this experiment. Counts that fell within

an order of magnitude of the 99th percentile were also retained. The resulting analysis

files for each sample were then aggregated using the cellranger aggr pipeline, which

performed a between-sample normalisation step and merged all samples into one.

Post-aggregation, the count data was processed and analysed using a comprehensive

pipeline assembled and optimised in-house as described below.

To pre-process the mapped data, we constructed a cell quality matrix based on the

following data types: library size (total mapped reads), the total number of genes de-

tected, percent of reads mapped to mitochondrial genes and percent of reads mapped

to ribosomal genes (Additional file 1: Figure S15). Cells that had any of the four param-

eter measurements that were greater than 3x median absolute deviation (MAD) of all

cells were considered outliers and removed from subsequent analysis. In addition, we

applied two thresholds to remove cells with mitochondrial reads above 20% or riboso-

mal reads above 50%. To exclude genes that were potentially detected from random

noise, we removed genes that were detected in fewer than 1% of all cells. These quality

control filters resulted in consistent total reads per individual and per pool in both fi-

broblasts and iPSCs (Additional file 1: Figure S16). Before normalisation, abundantly

expressed ribosomal genes and mitochondrial genes were discarded to minimise the in-

fluence of those genes in driving clustering and differential expression analysis.

Demultiplexing

We adapted the Demuxlet method to our 10x scRNA-seq data [16]. The likelihood that a

cell originated from a sample is the cumulative likelihood of single nucleotide polymorph-

ism genotypes identified in each cell. We calculated posterior probability of a genotype g

identified for a cell based on scRNA-seq data given the DNA data from the imputed Bead-

Chip genotypes. Since the single cell SNP genotype data is sparse, to increase the coverage

of SNPs called from scRNA-seq data that are in the SNP genotype data, we imputed SNP

genotypes using the haplotype reference panel. We applied an ensemble approach using

the outputs from pre-imputed genotype data, imputed genotype likelihood data, and im-

pute genotype dosage data, increased the singlet probabilities from Demuxlet (Additional

file 1: Figure S17). The ensemble approach enabled the unique donor assignment of

90.6% of all cells, with high confidence to each sample, where Demuxlet predicted no am-

biguously assigned droplets. Of note, 100% of the cells before Demuxlet were identified in

the cellranger pipeline as a singlet. Demuxlet identified 90.6% of all cellranger singlet cells

as ‘real’ single cells. Therefore, these cells were ascertained as singlets. To recover the cell

assignment to the remaining 9.4% cellranger singlets, predicted as doublets by Demuxlet,

we utilised gene expression matrix to model cell doublets, using a simulation-based ap-

proach [45]. For each cell that was identified as a singlet by both Demuxlet and the doub-

let expression simulation, it was assigned to a donor based on the highest likelihood

probability from Demuxlet. Doublets identified by Demuxlet or the doublet expression

simulation were removed before downstream processing and analysis.
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Normalisation

Normalisation was conducted at four levels: between samples within a pool, between pools,

between cells and between clusters. The between-pool normalisation followed the subsamp-

ling strategy in the cellranger pipeline, where the reads, genes and cells were randomly sub-

sampled following subsampling rates determined by the total read per sample and binomial

distribution [46]. Four pools were randomly multiplexed into one sequencing lane. For cell-

to-cell normalisation, a cell-pooling strategy was applied to circumvent the zero-inflation

issue, as described by Lun et al. [47]. Between-pool normalisation followed Combat paramet-

ric empirical Bayesian strategy. To select the normalisation strategy, we compared results

from using Combat, RUV and SCRAN methods by using k-BET batch-effect scores [18]. We

found that a combination of SCRAN normalisation followed by Combat was superior in re-

ducing batch effects compared to other methods, consistent with the results reported by

Buttner and colleagues [18]. Prior to eQTL analysis, the mean expression of each gene per in-

dividual per cell subpopulation was computed, quantile normalised and z-transformed for

eQTL mapping.

Imputation and quality control of genotype data

The 79 cell lines were genotyped by Infinium HumanCore-24 v1.1 BeadChip assay

(Illumina). GenomeStudioTM V2.0 (Illumina) was used for SNP genotype calling of the

BeadChip data (total 306,670 SNPs for one assay). The full genotype report files were

reformatted into Plink map, fam and lgen files and were then converted into variant

calling format (vcf) using custom shell scripts and Plink2 [48]. Plink2-converted files

contained predicted reference and alternative alleles with no information for homozy-

gous genotypes, which were fixed using the GenomeStudio report file and a custom

script. For each sorted, indexed vcf file (separated by chromosomes), a strand fixing

step was performed using bcf fixref function [49]. Prior to imputation, Eagle V.2.3.5

was used for haplotype phasing the strand-fixed genotype vcf files [50]. The phased

data were imputed based on the 1000 genome phase 3 reference panel (2535 samples)

using the minimac3 program in the Michigan Imputation server [51].

Cell type classification and annotation

We combined all cells from the fibroblasts and iPSC pools separately. We normalised

and clustered the cells in these two datasets to ensure that the clustering was not af-

fected by pool-specific data processing. We performed clustering using the SCORE

method to identify subpopulations of cells [52]. Clustree [53] was used to display the

cluster stability at different resolutions (Additional file 1: Figure S18). To visualise cell

distributions, we used non-linear Uniform Manifold Approximation and Projection

(UMAP) dimensionality reduction [54]. Cyclone [55] was used to estimate cell cycle

stages of each cell. Pseudo-trajectory analysis was carried out with slingshot [56] using

the UMAP cell projections.

We used gene regulatory network analysis independently on the two datasets—fibro-

blasts and iPSCs—to identify unique regulatory networks in each cell type with the pyS-

CENIC method (v.0.10.3) using default parameters [57, 58]. The method involves three

steps: (1) modules of genes that are co-expressed with transcription factors are identified

from the correlation matrix using GRNboost algorithm [57]. (2) Then those modules were
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pruned by RcisTarget [58], a transcription factor motif enrichment analysis to identify cis-

regulatory motifs around the putative target genes. Only genes that contain the binding

motif for each respective transcription factor are retained in the module. The gene sets in

these modules—known as regulons—consist of each candidate transcription factor and

their target genes. (3) Lastly, the ‘activity’ of each regulon is measured in each cell using

the AUCell package [58] where the area under the recovery curve (AUC) measures the ac-

tivity for the regulon in that cell by calculating whether a subset of the input gene set is

enriched in the expressed genes. For each regulon and cell, the AUC values were calcu-

lated using AUCell_calcAUC function, where AUC values represent the fraction of genes

within the top-ranking transcription factor that were defined in each cluster. We visua-

lised the AUCell scores generated from SCENIC with ComplexHeatmap [59].

The UMAP projected 59 cells from the fibroblast RXRB+ cell type in the upper right

corner of the UMAP. To be sure these were not outlier cells, we tested for differentially

expressed genes between the ‘central cells’ and the ‘far cells’ of this RXRB+ cell type but

only found four genes that were differentially expressed using a Wilcox test (Additional

file 1: Figure S19). SingleR [19] was used to map single cell transcriptomes against 713

reference transcriptomes.

eQTL association analysis

To study specific regulation effects of genomic variance to gene expression, we per-

formed statistical analysis of the association between genotypes of single nucleotide

polymorphisms and single cell gene expression for 79 fibroblast cell lines and 31 iPSC

cell lines generated from the same individuals. We filtered for common SNPs (minor

allele frequency > 0.05) that were within ± 1Mb of an expressed gene (detected in > 1%

of the cells), resulting in 5,368,223 SNPs and 9796 genes for the fibroblasts, and 4,508,

778 SNPs and 10,899 genes for the iPSCs. SNP genotypes were recoded as 0, 1 or 2

copies of the reference allele.

Model choice

To determine the best choice of model, we tested multiple models for detecting eQTLs

with the SNPs and genes located on chromosome 21. In each case, we used a linear re-

gression to detect eQTLs but compared models with different covariates and PEER fac-

tors, and with different normalisation of the input gene expression levels [60]. In total,

we tested the following linear models:

1. Gene expression calculated as the average of across cells, per cell type, per individual.

Then quantile normalised and z-transformed without any additional covariates

2. Gene expression calculated as the average of across cells, per cell type, per individual.

Then quantile normalised and z-transformed with one PEER factor as a covariate

3. Gene expression calculated as the average of across cells, per cell type, per individual.

Then quantile normalised and z-transformed with ten PEER factors as covariates

4. Using all cells for a given cell type, gene expression was quantile normalised and z-

transformed, and a random effect to account for the non-independence of the

dependent variable (multiple cells from the same individual)
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5. Using all cells for a given cell type with a random effect to account for the non-

independence of the dependent variable (multiple cells from the same individual)

The numbers of eQTLs detected on chromosome 21 for each of these models indi-

cated that the first three models that used the average expression per gene for each cell

type per individual resulted in the identification of the largest number of eQTLs (Add-

itional file 11: Table S10). Therefore, we further interrogated the number of PEER fac-

tors to include in the model. The final model that we selected for genome-wide eQTL

detection in each cell type used the average expression level of the cells per individual

for that cell type and 1 PEER factor (Additional file 1: Figure S20). PEER factors were

calculated using genes that passed QC filtering (9796 genes in fibroblast cell types and

10,899 genes for iPSC cell types).

eQTL mapping was performed for each subpopulation identified by the clustering

analysis. Therefore, for each subpopulation, the average expression for a given individ-

ual in that cell subpopulatipon was used to detect cis-eQTLs. Cis-eQTLs (SNP < 1Mb)

were detected using a linear model implemented in the MatrixEQTL R software with

study-wide FDR lower than 10% using the Benjamini-Hochberg procedure [61].

Differential expression

We used edgeR [62, 63] to identify differentially expressed genes between each cell type

compared with the other cell types combined (i.e. each fibroblast type compared to the

other five fibroblast types and each iPSC type compared to the other three iPSC types).

Differentially expressed genes were detected using the gene-wise negative binomial gen-

eralised model with a quasi-likelihood test. Detection rate and pool batches were in-

cluded as covariates following the recommendations of Soneson and Robinson [31].

Heatmaps and upset plots were generated using ComplexHeatmap [59] in R. Heatmaps

were created with scaled, normalised data.

Independent eQTL analysis

Given an eGene that was significant in a pair of cell types (a and b), the top eSNPs

from each cell type (Sa and Sb) were tested for independence with relation to eGene ex-

pression. Accordingly, the top eSNP (Sb) in cell type b was regressed from the linear

model for the association of the top eSNP, Sa, for cell type a with gene expression of

the eGene (Ga) in cell type a.

Ga � β0 þ β1Sa þ β2Sb þ PEER1 þ ε

eSNPs were deemed independent if the association between Sa and Ga was significant

following regression of Sb in the linear model. This model works well for these data

since all the scRNA-seq data for fibroblast and iPSC cells was generated, processed and

underwent quality control assessment together.

Interaction eQTL analysis

Given an eGene that was significant in at least two cell types, the eSNP with the largest

difference between their beta allelic effects between any two clusters was used to test

for cell type interaction. Two models were fit for gene expression G, with SNP S and

cell type C. The first model (1) was a normal linear model and the second model (2)
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included an interaction term. An interaction was considered significant if an anova

comparing the two models was significant.

1) G~β0 + β1S + β2C + PEER1 + β

2) G~β0 + β1S + β2C + β3SC + PEER1 + β

eGene correlation

The expression of eGenes that were unique to a given cell type were correlated with

their expression in the other cell types using a Pearson correlation test.

Test statistic correlation

The significant eQTL test statistics from each cell subtype was compared with test statis-

tic for the same eGene-eSNP pair in all other cell types to test whether one contributing

factor for the highly cell type-specific eQTL detection could be due to lack of power.

eGene enrichment

eGenes from a specific cell type were tested for enrichment in the other cell types.

eGenes were ranked based on the lowest p value for each eGene. An expected distribu-

tion of mean rank scores was generated from 10,000 permutations of randomly selected

genes (selecting the same number of genes as eGenes). The mean rank of the eGenes

in the testing cell types was then tested for significance with a t test.

GTEx comparison

Gene Tissue Expression (GTEx) [22] database version seven results were downloaded

on 6 July 2019. The cultured fibroblast cell eQTL were compared with the fibroblast

cell type eQTL results to identify common and unique results.

iPSC reprogramming comparison

Genes differentially expressed during iPSC reprogramming from fibroblasts were

obtained from Liu et al. [32]. Gene IDs were used to identify reprogramming

genes that were also eQTLs. Differentially methylated regions (DMRs) between fi-

broblasts and iPSCs were obtained from Lister et al. [33] and were checked for

overlapping eSNPs. DMRs between iPSCs and ESCs were obtained from Polo

et al. [34] and were checked for eSNPs within 100 bp of the differentially methyl-

ated base pair.

Figure preparation and creation

Plots panels were prepared in R with ggplot [64], Gviz [65], ComplexHeatmap [59] and

LDlinkR [66]. They were arranged and edited with BioRender.com.
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