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Abstract

Topologically associating domains (TADs) are the organizational units of chromosome
structures. TADs can contain TADs, thus forming a hierarchy. TAD hierarchies can be
inferred from Hi-C data through coding trees. However, the current method for
computing coding trees is not optimal. In this paper, we propose optimal algorithms
for this computation. In comparison with seven state-of-art methods using two public
datasets, from GM12878 and IMR90 cells, SuperTAD shows a significant enrichment of
structural proteins around detected boundaries and histone modifications within TADs
and displays a high consistency between various resolutions of identical Hi-C matrices.

Keywords: Topologically associating domain, Hi-C, Structure information theory,
Dynamic programming

Background
The 3D architecture of chromatin plays vital roles in DNA replication and gene tran-
scription process. Many techniques have been devised to capture the architectural
information within whole genome [1–9], among which the High-throughput Chromo-
some Conformation Capture (Hi-C) technique has gained widespread adoption. Hi-C
applies high-throughput sequencing to collect fragments that are ligated due to spatial
proximity within the genome. Well-established procedures can aggregate and transform
sequenced reads into a Hi-C matrix (called contact map) at a specific resolution. An ele-
ment in the Hi-Cmatrix represents the contact frequency between two fixed-size genome
regions (referred to as bins or windows) of which the indices correspond to the row and
column indices in the matrix.
Contact maps have enabled the discovery of architectural units within a chromatin,

called topologically associating domains (TADs) [10–12]. Genomic regions within a TAD
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interact with each other more intensely than those between different TADs. TAD can
be further subdivided into sub-topologies (sub-TADs), and proximal TADs can aggre-
gate into a higher-order structural domain (meta-TAD), resulting in a hierarchy of the
TADs. The size of a TAD varies from thousands of base pairs (kbps) to several million
base pairs [10]. TADs are the basic unit of both nucleus conformation and gene regula-
tion [11, 13–16]. The boundary between TADs can obstruct the spread of activity and has
been shown to enrich inhibiting factors such as CTCF binding sites, cohesin complexes,
and housekeeping gene TSSs, SINE retrotransposons [10, 13, 16–18]. More signifi-
cantly, the alteration of certain TAD boundaries can lead to cancers or developmental
disorders [19–23].
Determining TAD boundaries from Hi-C data remains a challenging task [24]. Some

computational methods for detecting the hierarchical structure of TADs exist [25–27]. In
2014, Rao et al. [28] proposed Arrowhead algorithm to transform the square domain fea-
ture into an arrowhead-shaped feature and detect TAD through corner score. Each TAD is
determined independently, and some of them show a hierarchymanner. TADtree [29], the
first published algorithm to identify hierarchy, assumes that the signals of the background
and TADs are linear. It models and captures the hierarchical structure of TADs with a
forest. Haddad et al. [30] proposed a hierarchical clustering approach named IC-Finder
for reconstructing TADs. Yu et al. [31] introduced a Gaussian Mixture model And Pro-
portion test (GMAP) algorithm, which is iteratively applied to normalize the Hi-C matrix
until no elements of the statistical test are significant, or the domain size is smaller than a
pre-specified threshold. Norton et al. [32] proposed a graph-theory-basedmethod named
3DNetMod to detect TADs by maximizing network modularity. Li et al. [33] proposed a
method named deDoc that interprets Hi-C matrix as a weighted graph. Then, the prob-
lem is to find a partition with minimal structural information (entropy). They proposed a
method which, through a top-down greedy recursion of partitioning and clustering, pro-
duces a hierarchical structure (called a coding tree) of TADs with the minimal structural
entropy. The algorithm is heuristic and does not guarantee optimal results. As both the
graph partitioning and clustering problems are NP-complete, it is hard to obtain a coding
tree of minimal structural entropy. Nevertheless, the TAD boundaries inferred by deDoc
demonstrated high consistency with Hi-C matrices at different resolutions. This shows
structural information theory to hold promises in the discovery of the TADs. The recent
proposed OnTAD algorithm [34] applied dynamic programming to identify the TADs
from candidate boundaries, which recursively partitioned the genome while maximizing
a score function that depicts the contact frequency inside the TAD hierarchy.
In this work, we design optimal algorithms for computing the coding tree of a contact

map. While the problem of finding an optimal tree from a general graph is NP-hard, we
observe that the graphs which correspond to the contact maps possess specific proper-
ties that allow efficient algorithms for finding their coding trees. One such property is
that the vertices in a contact map are ordered. As a result, the leaf nodes of the coding
tree form a partition of the bins according to the order. Here, we prove that the prob-
lem is polynomial-time solvable. Also, we prove a unique property that can significantly
reduce the search space. We designed an optimal algorithm using dynamic programming
with polynomial time for computing the coding tree of a Hi-C contact map with minimal
structural information. We implemented the algorithms into a software package named
SuperTAD.
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We compare our method with seven existing methods that can infer the TAD hierar-
chy, namely Arrowhead, TADtree, IC-Finder, GMAP, 3DNetMod, deDoc, and OnTAD
(Table 1). The results reveal that the TADs detected by SuperTAD have minimal average
structure entropy and the highest average contact density, as well as the highest enrich-
ment of structural proteins at boundaries and histone modifications within TADs. The
results of SuperTAD under various resolution matrices give the highest agreement (the
average overlapping ratio is 0.945 for GM12878 cell line, and 0.95 for IMR90 cell line
across 25 kb vs. 50 kb and 50 kb vs. 100 kb).

Results
Overview of SuperTAD

SuperTAD implements two variants of our algorithms, one which requires a pre-specified
threshold, and one without such a requirement. Both variants find optimal coding trees
from a contact map. SuperTAD is an open-source, written in C++, and runs from the
command line. It accepts either raw or normalized Hi-C matrix as input (Fig. 1). Given an
input matrix, SuperTAD provides two modes for users, corresponding to the two imple-
mented variants. If a user supplies an integer parameter h, it will construct the optimal
coding tree of height at most h, as SuperTAD(h). Otherwise, it will construct the optimal
tree among all the possible heights. Given an optimal coding tree, we provide a filter to
the tree nodes, pruning away non-TAD ones, resulting only in TAD nodes.
To evaluate the similarity between two coding trees T and T ′ resulted from the same

contact map, we propose a symmetry metric called overlapping ratio, which measures the
maximum intersection between two results. In our work, we use the overlapping ratio, an
asymmetry metric weighted similarity proposed by Li et al. [33] as well as the measure of
concordance (MoC) proposed by Zufferey et al. [27] to quantify the level of agreement in
the results called through different methods.

Comparison with deDoc using simulation data with various noise ratios and sizes

As deDoc and SuperTAD both apply structural information theory, it is interesting to
know if they lead to divergent results. We first compared their relative accuracy and
robustness. To better quantify the performance, we used simulated data with various
noise ratios and TAD sizes and independently executed both approaches 100 times under
each setting. As input, we generate an adjacent matrix A = {

aij
}
N×N ,∀aij ∈ {0, 1} repre-

sentation for each graphG = {V ,E}.G contains non-overlapped clusters, and the number
of clusters is fixed. If an edge

(
vi, vj

) ∈ E(G), then aij = 1; otherwise, aij = 0.
To quantify the accuracy and the quality of the results, we compared the overlapping

ratio, the weighted similarities between the real structure (reflected in simulated data),
and the inferred structures from deDoc or SuperTAD. As weighted similarity is asymme-
try, we set X in wsYX to the actual structure, and let Y be the result of deDoc or SuperTAD.
We calculated the structural entropy of the coding tree for every result.
First, we examined the influence of noise in the performance of both deDoc and Super-

TAD. We fixed the probability of intra-interaction in each cluster and set the size of all
clusters (the number of vertices contained in the cluster) to be equal. Then, we tested the
probability of inter-interaction from 5 to 50% by 5% of the probability of intra-interaction
(denoted as noise ratio). A higher noise ratio implies more edges across different clusters.
For each noise ratio, we simulated a matrix as input to both algorithms. This is repeated
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Fig. 1 The overview of SuperTAD pipeline. With the same input matrix, SuperTAD provides two modes for
users. SuperTAD (the first mode) does not require any user-defined parameter and can determine the height
of the coding tree by self-learning. SuperTAD(h) (the second mode) receives the manually selected h as the
only parameter and finds the optimal coding tree with the constraint of h. For both modes, many coding tree
candidates with various leaves number k are created. The optimal coding tree is selected by determining the
most appropriate k. For SuperTAD, optional node filtering is performed to prune false-positive TADs from the
optimal binary coding tree. The result after pruning is referred to as SuperTAD(F)

100 times. The simulated structure is a set of non-overlapped TADs (i.e., all at one level).
Hence, we only assessed the result of deDoc(E), which is the case where there is only one
layer of clusters.
Statistical results of repeated experiments show that the interactions across the clusters

have a greater influence on deDoc than SuperTAD. Before the noise ratio reaches 40%, the
overlapping ratio and weighted similarity between actual structure and results of Super-
TAD are close to 1 (Additional file 2: Figure S6a, blue boxes), suggesting a high level of
noise tolerance in SuperTAD. For deDoc, the overlapping ratio and weighted similarity
between true structure and result of deDoc began to decrease when noise ratio reaches
15% (Additional file 2: Figure S6a, orange boxes). Note that the median value (Additional
file 2: Figure S6a, black solid line in the boxes) of deDoc boxes reaches 0 when the noise
ratio is equal to 40%. That is, deDoc failed to discover any cluster from the input matrix.
The structural entropy of coding tree detected by both algorithms demonstrated similar
distributions (except for some outliers of deDoc) at 5% noise ratio. This shows that both
algorithms can detect the clusters with high accuracy when there are few inter-domain
interactions. However, at a higher noise ratio, deDoc’s solutions have higher structural
entropy than SuperTAD’s in general.
Next, we examined how the methods perform under different standard deviations on

the TAD sizes. We fixed the probability of intra-interaction in each cluster, with a noise
ratio of 10%, and assumed the sizes to obey a Gaussian distribution with the same mean.
We performed 100 tests with each standard deviation in {1, 2, 3, 4, 5}. For both algorithms,
the solutions started to deviate from the true structure when the standard deviation is at
or above 3, with deDoc deteriorating faster than SuperTAD (Additional file 2: Figure S6b).
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Aswith the previous tests, deDoc’s solutions demonstrated higher structural entropy than
SuperTAD’s.

Comparing SuperTAD(2) with deDoc using real Hi-C matrix

In addition to the tests using simulated data, we tested the algorithms with real Hi-C
matrices. As deDoc detects TADs with only two levels, we tested it against the second
mode of SuperTAD (SuperTAD(h)), setting h to 2 (referred to as SuperTAD(2)). We
downloaded the two in situ Hi-C processed contact datasets (.hic format) from Rao et al.
[28]. Both datasets are combined across replicates and filtered with MAPQ ≥ 30. In the
comparison between SuperTAD(2) and deDoc, we selected two bin resolutions 25 kb and
50 kb for assessing the robustness of the algorithms at various resolutions. The rawmatri-
ces were normalized with Juicer built-in Knight-Ruiz normalization into normalized Hi-C
matrices (referred to as KR matrix).
First, we evaluated SuperTAD(2) and deDoc with identical matrix at bin resolution

of 25 kb. We compared the distribution of length (size), structural entropy, and contact
density of TADs inferred through both methods (Additional file 3: Figure S7a–c). The
contact density is defined as the count of intra-TAD contacts divided by TAD length [33].
Compared to deDoc, TADs of SuperTAD(2) have a higher mean and median value in
length, structural entropy, and contact density (the solid line in the box corresponds to
the median while the dashed line and number in red corresponds to the mean). Next, we
compare the structure entropy of the coding tree across various cell lines and bin resolu-
tions. As shown in Additional file 1: Figure S3d, SuperTAD(2)’s solution always has less
structure entropy for each comparison, which indicates SuperTAD(2) encoded the input
data with lower uncertainty.
It has been previously reported that TAD boundaries are positively associated with the

enrichment of the CCCTC-binding factor (CTCF) and members of the cohesin protein
complex, such as RAD21 and SMC3 [10, 13]. We downloaded the IDR peaks data of tran-
scription factor (TF) ChIP-seq from ENCODE and computed the fold change of peak
enrichment between TAD boundaries and background for each structural protein (see the
“Methods” section). We noticed that the boundary inferred by SuperTAD(2) has a greater
fold change than deDoc for both cell lines (Additional file 3: Figure S7e)
Considering the fact that some Histone H3 modifications indicating the transcriptional

activity are associated with TADs, we next evaluated the enrichment of Histone H3 mod-
ifications within detected TADs. We chose the repressing (H3K27me3) and activating
(H3K36me3) marks as they exhibit a good mutual exclusion and can indicate either active
or repressed transcriptional domains on a well mappable part of the genome [11, 12,
28, 35]. We downloaded the fold change over control data of ChIP-seq from ENCODE
and calculated the observed average log10 ratio (LR) of H3K27me3/H3K36me3 and the
empirical p value for each TAD. Based on the FDR-corrected p value, we identified the
TADs that significantly enriched for either mark (FDR-corrected p value ≤ 0.1) from
those with no significant enrichment (FDR-corrected p value > 0.1). Then, based on the
observed LR value, we further divided the TADs from the former group (FDR-corrected
p value ≤ 0.1) into two sets, one is enriched in H3K27me3, the other is enriched in
H3K36me3. The TADs inferred by SuperTAD(2) have a higher fraction of TADs enriched
for histone modifications than deDoc (Additional file 3: Figure S7f).
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We evaluated the robustness of the algorithms by comparing the similarity of the
detected TADs for the same cell type across different bin resolutions. Resultant heatmaps
for the 25-kb and 50-kb resolution matrix for both cell lines are shown with the detected
TAD boundaries in Additional file 3: Figure S7g and h. To better quantify the similarity,
we calculated the overlapping ratio, weighted similarity, and the MoC between the two
results (Table 2). The result shows that the agreement of SuperTAD(2) is lower (− 0.02)
for GM12878 cells and higher (+ 0.08) for IMR90 cells than deDoc across all metrics.
As deDoc has been reported to work well with raw Hi-C matrices (i.e., without nor-

malization), we performed further experiments to assess the similarity between results
from raw and KR matrices. The heatmaps with the detected boundaries from both raw
and KR matrices are shown in Additional file 3: Figure S7g, h. The overlapping ratio,
weighted similarity, and MoC are as shown in Table 2. The comparison shows that com-
pared to deDoc, SuperTAD(2) has higher consistency between its results from raw and
KR matrices.

Comparison of SuperTAD with existing methods for detecting hierarchies of TADs

The results thus far suggest that, under the two-layer constraint, SuperTAD(2) performs
better than deDoc in terms of accuracy and robustness. We further investigate the per-
formance of SuperTAD without the constraint. Many methods are able to determine the
number of layers to use naturally from the input matrix. SuperTAD is able to do the same
in the first mode. We compare SuperTAD (the first mode) with seven existing meth-
ods, namely OnTAD, deDoc, 3DNetMod, GMAP, IC-Finder, TADtree, and Arrowhead
(Tabel 1). The analysis is performed on Hi-C data sets of two human cell lines (GM12878
and IMR90), the same as the last section. We selected a segment from chromosome 6
(Chr 6: 20000.0–30000.0 kb) for evaluation and comparison among all the methods.

Comparison of length, structural entropy, and contact density of inferred TADs

We first compared the distribution of length (size), structural entropy, and density of the
TADs from each method. As input, we use KR contact map at 25-kb bin resolution. Note
that when constructing the coding tree for calculating structure entropy of the TADs for

Table 2 Assessment of similarity criteria between the results of various resolutions and
raw/normalized matrix

SuperTAD(2) deDoc

GM12878 25 vs. 50 (kb) OR 0.81 0.83

WS 0.85 0.87

MoC 0.71 0.73

Raw vs. KR (average between 25 and 50 kb) OR 0.92 0.83

WS 0.93 0.88

MoC 0.90 0.77

IMR90 25 vs. 50 (kb) OR 0.88 0.79

WS 0.90 0.83

MoC 0.75 0.67

Raw vs. KR (average between 25 and 50 kb) OR 0.93 0.88

WS 0.95 0.91

MoC 0.89 0.83

The larger value is labeled in red for each line
OR overlapping ratio,WS weighted similarity,MoC measure of concordance
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Arrowhead and 3DNetMod, we discarded the small TADs that are incompatible with the
formed coding tree (these methods allows for overlapping across TADs, which conflict
with the definition of the coding tree). Additionally, we use all the identified TADs from
Arrowhead and 3DNetMod for the other analysis. The length of TADs inferred by Super-
TAD has a broader range for both cell lines (Fig. 2a), which agrees with the hierarchical
property of TADs. The TADs inferred by SuperTAD have the minimal mean value (the
dashed line in red in boxes) of structural entropy for both cell lines (Fig. 2b). OnTAD and
deDoc have a median value of structural entropy similar to SuperTAD but also a higher
variance. SuperTAD has the highest mean value of contact density for both cell lines and
the highest median value for IMR90 cells. OnTAD, GMAP, and Arrowhead also have a
higher mean value of contact density for both cell lines (Fig. 2c). The conserved perfor-
mance of SuperTAD between both cell lines proves that the TADs inferred by our method
are highly self-dense structures.
To assess the uncertainty embedded in the detected coding tree, we further computed

the structural entropy of the whole coding tree for each method. SuperTAD gives the

Fig. 2 The statistics of TAD attributes for all the methods. We apply all the methods on KR (normalized) Hi-C
matrix at 25-kb bin resolution for two human cell lines (GM12878 and IMR90). The boxplots show the statistics
on a length, b structural entropy, and c contact density of TADs detected by all the methods. Each boxplot
shows the value distribution of each method for each cell line, and all share the legend in c. The dashed lines
in red and the solid lines indicate the mean and median value for each box. d The total structural entropy of
the coding tree for each method. A lower bar corresponds to a coding tree with less structural entropy
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coding trees with the minimum structural entropy for both cell lines (Fig. 2d), with deDoc
ranked in the second place.

Significant enrichment of epigenetic characteristics at SuperTAD-detected boundaries or

within TADs

Growing evidence shows that TADmay serve as the fundamental unit of gene regulation.
The boundaries between TADs can obstruct the spread of activity within the genome. To
validate the TAD boundaries inferred from each method, we downloaded the IDR peaks
data of Transcription Factor (TF) ChIP-seq from ENCODE (https://www.encodeproject.
org/) and computed the fold-change enrichment between detected boundaries and the
background region. The data include the CCCTC-binding factor (CTCF), RAD21, and
SMC3.
We computed the average number of peaks for each structural protein for every 5 kb.

The region around the identified TAD boundary (± 1 bin) are referred to as peaks while
the 100-kb-length region located 400 kb away from the boundaries at both sides are
referred to as background. We then calculated the ratio between the average number of
peak and background and then let fold change as the ratio −1. We also added the selected
TADs after pruning the optimal coding tree (referred to as SuperTAD(F)) into the com-
parison. The selected TADs have a higher structure entropy than their parent and a high
probability of being self-dense from a random experiment with 1000 times simulations.
As shown in Fig. 3a, SuperTAD(F) has the greatest fold change for all the structural pro-
teins, while SuperTAD ranks the second. The results on the IMR90 dataset have the same
trend (Fig. 3b).
To quantify the enrichment of Histone H3 methylation marks within TADs, we com-

puted the observed average log10 ratio (LR) between H3K27me3/H3K36me3 as well as
the empirical p value. Based on the FDR-corrected p value and observed LR value, we clas-
sified the TADs into three groups, TAD enriched for H3K27me3 (FDR-corrected p value
≤ 0.1), TAD enriched for H3K36me3 (FDR-corrected p value ≤ 0.1), and neither (FDR-
corrected p value > 0.1). SuperTAD(F) shows the minimal fraction of the TADs that

Fig. 3 The enrichment of epigenetic characteristics at detected boundaries or within TADs for each method.
a, b The fold change of structural proteins peak number (CTCF, RAD21, SMC3) between peaks (regions around
boundaries) and background (regions located 400 kb away from the boundaries) for a GM12878 cells and b
IMR90 cells. The methods in x-axis are ordered based on the average fold change across all the structural
proteins for each cell line. c, d The cummulative bar diagram shows the fraction of TADs from three groups:
enriched for H3K27me3 (FDR-corrected p value ≤ 0.1, the blue bar); enriched for H3K36me3 (FDR-corrected p
value ≤ 0.1, the orange bar); no significant enrichment (FDR-corrected p value > 0.1, the green bar). The
methods in x-axis are sorted in the ascending order of the faction of the third group (no significant
enrichment, FDR > 0.1) for c GM12878 cells and d IMR90 cells. Note that we add both SuperTAD and
SuperTAD(F) into the comparison, representing the results before and after the node filtering, respectively

https://www.encodeproject.org/
https://www.encodeproject.org/
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enriched for neither of the histonemarks for GM12878 cells (Fig. 3c). SuperTAD ranks the
second for GM12878 cells, while the first for IMR90 cells. Note that both SuperTAD and
SuperTAD(F) exhibit a consistent performance in the overall enrichment comparisons,
indicating the TAD inference’s validity.

High consistency between SuperTAD results at different resolutions

To assess the consistency of the results’ output by the algorithms at various resolutions
of identical data, we tested them using Hi-C matrices at 25-kb, 50-kb, and 100-kb bin
resolutions.
We show the Hi-C matrices’ heatmap with the inferred boundaries of both results at

25 kb vs. 50 kb in Additional file 4: Figure S8 (for 50-kb vs. 100-kb heatmap, see Addi-
tional file 1: Figure S1). As can be observed, SuperTAD, SuperTAD(F), and deDoc are
relatively consistent on both the GM12878 (the top line) and the IMR90 (the bottom line)
cell lines. Arrowhead has a higher divergency for IMR90 than GM12878 cells, indicating it
suffers from the relative lower depth of the data. TADtree has many duplications around
the boundaries, resulting in vast disagreement between its results at different resolutions.
OnTAD and IC-Finder show similar across 25 kb and 50 kb for GM12878 cells. How-
ever, their identified TADs at higher levels show high divergency in IMR90 cells, which
implies that both OnTAD and IC-Finder are susceptible to the depth of data. For GMAP,
the size of TADs inferred at 50-kb resolution is much larger than that at 25-kb resolu-
tion for both cell lines (GMAP fails to detect TADs from the identical input at 100-kb
resolution). In this test, 3DNetMod performed the poorest. Its result at 25-kb resolution
has as many duplications around the boundaries as TADtree, and it was unable to detect
any boundary at 50-kb (as well as 100 kb) resolution (since 3DNetMod filters out all the
regions when detecting “good regions,” and the algorithm cannot determine the value of
maximum gamma afterward).
We show in Table 3 the overlapping ratio, weighted similarity, and MoC for the similar-

ity quantitative assessment. We compute the agreement of 25 kb vs. 50 kb and 50 kb vs.
100 kb. Among all the methods, SuperTAD shows the highest consistency in its results
at various resolutions. Node filtering in SuperTAD(F) degrades the consistency to some
extent for both cell lines (SuperTAD(F) ranks the second for GM12878 cells and the
third for IMR90 cells). deDoc and IC-Finder also show high agreement across resolutions
through overlapping ratio and weighted similarity for both cell lines. As both Super-
TAD and deDoc are structural information theory-based algorithms, self-consistency at
different resolutions may be advantageous for this approach.

Discussion
We have demonstrated the usefulness of our proposed algorithm, SuperTAD. In our
experiments, SuperTAD outperformed the existing methods in terms of our new metric
(overlapping ratio), as well as in robustness and self-consistency.
For further work, we plan to improve SuperTAD in the following aspects. First of all,

the complexity of the dynamic programming used in SuperTAD remains relatively high.
Some heuristics can be employed to significantly reduce the running time and memory
requirement. A relatively difficult obstacle is that the current definition of the coding
tree does disallow for the TADs to overlap. A challenging future work is to devise novel
strategies that will allow us to identify the overlap between TADs.



Zhang et al. Genome Biology           (2021) 22:45 Page 11 of 20

Ta
b
le

3
A
ss
es
sm

en
to

fs
im

ila
rit
y
cr
ite

ria
be

tw
ee
n
re
su
lts

of
25
-k
b
vs
.5
0-
kb

an
d
50
-k
b
vs
.1
00
-k
b
re
so
lu
tio

ns
fo
ra
ll
m
et
ho

ds

Su
p
er
TA

D
Su

p
er
TA

D
(F
)

O
n
TA

D
d
eD

oc
3D

N
et
M
od

G
M
A
P

IC
-F
in
d
er

TA
D
tr
ee

A
rr
ow

h
ea

d

G
M
12
87
8

25
/5
01

O
R

0.
96

0.
93

0.
91

0.
88

N
/A

2
0.
68

0.
92

0.
64

0.
64

W
S

0.
97

0.
96

0.
94

0.
90

N
/A

0.
78

0.
94

0.
75

0.
78

M
oC

0.
88

0.
84

0.
78

0.
74

N
/A

0.
69

0.
76

0.
55

0.
44

50
/1
00

O
R

0.
93

0.
89

0.
74

0.
82

N
/A

N
/A

0.
77

0.
56

0.
67

W
S

0.
95

0.
95

0.
86

0.
85

N
/A

N
/A

0.
84

0.
79

0.
65

M
oC

0.
80

0.
79

0.
60

0.
70

N
/A

N
/A

0.
63

0.
59

0.
17

IM
R9
0

25
/5
0

O
R

0.
97

0.
93

0.
80

0.
85

N
/A

0.
57

0.
76

0.
60

0.
4

W
S

0.
98

0.
99

0.
93

0.
88

N
/A

0.
75

0.
86

0.
75

0.
47

M
oC

0.
91

0.
95

0.
75

0.
70

N
/A

0.
66

0.
66

0.
53

0.
34

50
/1
00

O
R

0.
93

0.
89

0.
62

0.
81

N
/A

N
/A

0.
91

0.
56

0.
92

W
S

0.
95

0.
94

0.
81

0.
84

N
/A

N
/A

0.
95

0.
73

0.
87

M
oC

0.
81

0.
79

0.
59

0.
69

N
/A

N
/A

0.
80

0.
61

0.
54

Th
e
to
p
2
la
rg
es
tv
al
ue

s
ar
e
la
be

le
d
in
re
d
fo
re
ac
h
lin
e

O
R
ov
er
la
pp

in
g
ra
tio

,W
S
w
ei
gh

te
d
si
m
ila
rit
y,
M
oC

m
ea
su
re
of

co
nc
or
da
nc
e

1
25
/5
0:
ag
re
em

en
to

f2
5
kb

vs
.5
0
kb
;5
0/
10
0:
ag
re
em

en
to

f5
0
kb

vs
.1
00

kb
2
N
/A
:l
ac
k
of

as
le
as
to

ne
re
su
lt



Zhang et al. Genome Biology           (2021) 22:45 Page 12 of 20

Conclusions
In this article, we proposed SuperTAD, a novel method to find the optimal coding tree
with the minimum structural entropy from the Hi-C matrix. A coding tree represents a
hierarchical structure of TADs. SuperTAD operates in two different modes in restricting
the size of the coding tree, namely by the number of leaves, or by tree height. The first
mode, SuperTAD, requires no user-defined parameters, while the second mode, Super-
TAD(h), requires a parameter h to determine the number of layers. Both modes run in
polynomial time and find a globally optimal solution to the coding tree problem. In our
experiments, SuperTAD performed better than existing methods in our metrics, as well
as in robustness and self-consistency. Furthermore, the coding trees computed are proved
to be biologically meaningful.

Methods
Hi-C data collection

We download the processed Hi-C contacts (.hic format) of two human cell lines
(GM12878 and IMR90) from NCBI with accession number GSE63525 [28], and both are
in situ Hi-C protocol datasets. GM12878 dataset has 4.9 B contacts while IMR90 dataset
has 1.1 B contacts. The contacts are merged across primary and replicates with a fil-
tering MAPQ ≥ 30. The raw matrix is further normalized by Juicer [36] built-in KR
(Knight-Ruiz) normalization as normalized Hi-C matrix (referred to as KR matrix).

ChIP-seq data collection and analysis

To obtain the enrichment information of epigenetics characteristics, we downloaded the
Transcription Factor (TF) ChIP-seq from ENCODE (https://www.encodeproject.org/).
For structural proteins like CCCTC-binding factor (CTCF), RAD21 and SMC3, we down-
loaded the optimal IDR thresholded peaks. And for histone modifications H3K27me3
and H3K36me3, we downloaded the fold change over control signals. The experiment
accession numbers are summarized in Additional file 1: Table S1.
To assess the enrichment of structural proteins around TAD boundaries, we firstly

summed the ChIP-seq peaks into 5-kb intervals around boundaries. Then, we calculated
the average peak number of the intervals from two regions, one is the region surround-
ing the boundaries (the bin detected as boundary and ± 1 bin, referred to as peak),
the other is the 100-kb region located 400 kb away from the boundaries at both sides
(referred to as background). The TAD boundaries are defined as the ends of TADs. We
computed the fold change between the average peak number of peak and background per
TAD and took the average. Zero value of the average fold change stands by no enrich-
ment around boundaries and a higher value means the boundaries are enriched for the
structural proteins.
To assess the enrichment of two histone modifications, H3K27me3 (repressing) and

H3K36me3 (activating) within TADs, we adopted the modified analysis from the work
of Zufferey et al. [27]. We summed the ChIP-seq signals into intervals with fixed length
(10% of the resolution). Next, we computed the log10 ratio between H3K27me3 and
H3K36me3 for each interval (LR value) and computed the average LR values of intervals
within each TAD as the observed LR values. Then, we performed 1000 times shuffling to
calculate the empirical p value for each TAD and corrected the empirical p value through

https://www.encodeproject.org/
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false discovery rate (FDR) using the Benjamini-Hochberg (BH) method. With the con-
straint that FDR-corrected p value ≤ 0.1, we classified the TADs into two groups, one
is enriched for either H3K27me3 or H3K36me3, the other is enriched for neither (FDR-
corrected p value > 0.1). We further divided the former group (FDR-corrected p value
≤ 0.1) into two subgroups, TADs enriched for H3K27me3 and enriched for H3K36me3
based on each TAD’s observed LR value. We reported the fraction of the three clusters.
A higher fraction of TADs enriched for either H3K27me3 or H3K36me3 is considered to
reflect a more biological meaningful result of the algorithm.

The SuperTAD algorithm

Notation and definition

To study TAD or loops, researchers often partition the genome into a sequence of bins or
windows, where a bin contains a fix length segment of the genome. Denote the number
of bins as n. Denote a Hi-C matrix as X = {

xi,j
}
, where xi,j, 1 ≤ i, j ≤ n, is a non-negative

real number which represents the interaction frequency between bins i and j; it is often
the normalized read count which hit both bin i and j simultaneously. X is symmetric. The
diagonal elements are set to be zeros in the matrix. A symmetric matrix is equivalent to
a undirected graph. In deDoc [33], X is interpreted as a weighted graph and the objective
is to find a hierarchical structure of TADs where the structural information (entropy) is
minimum.

Coding tree

Structure information theory is proposed to measure the uncertainty embedded in the
dynamics of a graph [37]. Finding a partition of the graph with the minimum struc-
tural entropy is akin to finding a partition which can best represent the original graph
while reducing all the random variation and noise to a minimum. Here, we introduce the
definitions in structure information theory that are relevant to our TAD finding problem.
A coding tree T of X forms a hierarchical partitioning of the bins of the Hi-C matrix.

The coding tree can be multi-nary. Each node of the tree contains (or codes) a set of con-
secutive bins. The root λT represents, or codes, the entire genome. Each tree node codes
a subset of consecutive bins along the genome. The children of each tree node partition
the bins of their parent node. These partitions are used to define TAD boundaries and
each node is a TAD candidate.
Denote the bins represented by a node u ∈ T as bT (u), and denote its volume as V (u);

that is, V (u) = ∑
i∈bT (u),j∈bT (λT ) xi,j. The structural entropy of u is then defined as

ST (X;u) = −g(u)

2m
log2

V (u)

V (pT (u))
, (1)

where g(u) = ∑
i∈bT (u),j∈bT (λT )−bT (u) xi,j, pT (u) is the parent node of u, and 2m =

∑
i,j∈bT (λT ) xi,j. Clearly, if a node contains only one bin, g(u) = V (u). Denote the leaf node

in T a bin bi belongs to as eT (bi), let the structural entropy of bin bi in T as

ST (X; bi) = −g(bi)
2m

log2
V (bi)

V (eT (bi))
, (2)

where g(bi) = ∑
j �=i xi,j, and V (bi) = ∑

j xi,j
According to the definitions of g and volume V, it is clear that the following hold:
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Lemma 1 If the bins coded by node v1, ..., v� partition the bins coded by v, then
∑

1≤i≤� g(vi) ≥ g(v), and
∑

1≤i≤� V (vi) ≥ V (v).

We write pT (u) as p(u) and eT (bi) as e(i) when the context are clear.
The root λT has a structural entropy of 0. The structural entropy ST (X) of a coding tree

is the sum of the structural entropy of all its nodes and all the bins; that is,

ST (X) =
∑

u∈T
ST (X;u) +

∑

1≤i≤n
ST (X; i) (3)

The optimal coding tree is for the matrix X a tree Topt(X) with minimal structural
entropy. The TAD finding task is then to find an optimal coding tree.

Finding optimal coding trees

First, we prove the following results:

Lemma 2 The structural entropy of an optimal coding tree with k + 1 leaves is always
no more than that of an optimal tree with k leaves, where k is an integer.

Proof Assume Ta is a tree of k leaves. Without loss of generality, we assume its first leaf
v contains bins 1 to �, � ≥ 2. We transform Ta into Tb by: (1) Creating new leaves v1,
and v2, where v1 codes bins 1, ..., j, j ≤ � and v2 codes bins j + 1, ..., �, (2) v1 and v2 are
the children of v. We just need to prove that Tb has the same or lower structural entropy
than Ta.

STa(X) − STb(X) = − STb(X; v1) − STb(X; v2) +
∑

1≤i≤�

(STa(X; i) − STb(X; i))

=g(v1) − ∑
1≤i≤j g(bi)

2m
log2

V (v1)
V (v)

+ g(v2) − ∑
j<i≤� g(bi)

2m
log2

V (v2)
V (v)

≥0.

Therefore, STa(X) ≥ STb(X). The optimal tree with k + 1 leaves will have an entropy no
more than STb(X). Hence, our statement holds.

Clearly, due to Lemma 2, we need to restrict the number of leaves to have an optimal
coding tree. We assume the number of leaves in the coding tree is k.
Without loss of generality, we assume that each internal node u has at least two children.

If a node u is the only child of its parent p(u), then VT (u) = VT (p(u)), and ST (X;u) = 0,
showing u to be redundant.
We next show that an optimal tree can be required to be binary without loss of

generality.

Lemma 3 For every contact matrix M, there exists a binary coding tree of minimum
structural entropy.

Proof Given a node v in a tree Ta with more than two children, c1, c2, ..., c�, � ≥ 3, we
can transform optimal coding tree Ta into Tb such that, (1) in Tb, v has children c1 and u,
u has children c2, ..., c�; and (2) all the other parts of Ta and Tb are the same (see Fig. 4).
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Fig. 4 Two kinds of structure for the identical node {v, c1, c2, c3}. a A sub-structure embedded in the whole
tree that node v has multiple children, node {c1, c2, c3}. b The binary transformation of a structure that node
c2 and c3 firstly merged as node u then node u becomes the new child of node v. It turns out the binary
structure b always has the smaller structural entropy

We just need to prove that Tb has no more structural entropy than Ta.

STa(X) − STb(X) = −STb(X;u) +
∑

2≤i≤�

STa(X; ci) −
∑

2≤i≤�

STb(X; ci)

= g(u) − ∑
2≤i≤� g(ci)

2m
log2

V (u)

V (v)
≥ 0.

(4)

Therefore, the statement holds.

Note that both Lemmas 2 and 3 hold for general graphs. To find an optimal coding tree,
we merely need to search the binary trees. Here, we adopted a dynamic programming
approach to find the tree. Let S(i : j, k) be the structural entropy of the optimal binary
coding tree when partitioning bins

(
bi, bi+1, ..., bj

)
with k leaves, denote Hl(il : ir , j) as

structural entropy of the node containing bins
{
bil , bil+1, ..., bj

}
with its parent containing

bins
{
bil , bil+1, ..., bir

}
, il ≤ j ≤ ir ; and denote Hr(il : ir , j) as structural entropy of the

node containing bins
{
bj+1, bj+2, ..., bir

}
with its parent containing bins

{
bil , bil+1, ..., bir

}
,

il ≤ j ≤ ir .
Then, we can write the recurrent relations to find the optimal binary coding tree with k

leaf nodes for X

S(1 : n, k) = min
1≤i<n,1≤k1<k

{S(1 : i, k1) + S(i + 1 : n, k − k1) + Hl(1 : n, i) + Hr(1 : n, i)}
(5)

where S(1 : n, k) is the structural entropy of the optimal binary coding tree with parti-
tioning bins {b1, b2, ..., bn} with k leaves. k1 and k − k1 are the number of leaves in the left
subtree and right subtree, respectively (Additional file 1: Figure S2).
There are O

(
n3

)
possible Hl(1 : n, j) and O

(
n3

)
possible Hr(1 : n, j) terms, each can

be calculated in O(1) time. Hence, O
(
n3

)
time is necessary to compute these H terms.

A table of size O
(
kn2

)
can be created to store the values of S(1 : n, k), and each value of

S(1 : n, k) takes time O(kn). Hence,

Theorem 1 There exists an algorithm that finds the optimal coding tree of k leaves with
time complexity O

(
k2n3

)
.
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Also, we may restrict the height of the coding tree. A heuristic algorithm exists for
the problem [33]. Here, we solve the problem exactly by a dynamic programming. We
propose SuperTAD(h) which restricts the size of the coding tree by assuming the optimal
coding tree is to be of height at most h. The tree may not be binary and a node can have
more than two children. Our dynamic programming is as follows. Let T(l : r, p, k, h) store
the structural entropy of a multi-nary optimal coding tree where (1) the root codes bins
{
bl, bl+1, ..., br

}
; (2) children nodes partition bins

{
bl, bl+1, ..., bp

}
, p ≤ r; (3) there are a

total of k leaves; and (4) the height is at most h. Then, we can write the recurrence relation
as follows:

T(l : r, p, k, h) = min
l≤i<p,1≤k1<k

{min{T(l : r, i, k1, h),T(l : i, i, k1, h − 1) + Hl(l : r, i)}

+ T(i + 1 : p, p, k − k1, h − 1) + H(l : r, i + 1 : p)}
(6)

where H(l : r, i + 1 : p) is the structural entropy of a node which codes the bins
{
bi+1, bi+2, ..., bp

}
, where its parent node codes bins

{
bl, bl+1, ..., br

}
(Additional file 1:

Figure S3).

Theorem 2 There exists an algorithm that finds the optimal coding tree of at most height
h and at most k leaves with time complexity O

(
n4k2h

)
.

The time complexity can be reduced by extracting a candidate set of TAD boundaries
prior to applying the algorithm. This shows that the optimal coding tree with restricted
height problem is polynomial-time solvable.

Determine the number k of leaves

Asmentioned, structural entropy decreases with an increase of the number of leave nodes
k. We consider the problem of determining a suitable k. First, we propose a Bayesian Infor-
mation Criteria (BIC) approach. Second, we normalize the elbow point at the structural
entropy vs. k curves. Third, we try to compare the structural entropy to a background
model; that is, we try to derive the structural entropy in the ideal contact matrix and
use it as a normalization factor. A fourth approach is based on our observation that as k
increases, the sum of the structural entropy of the leaf nodes drops at first, but increases
after a minimum is reached. We explore using the k value which corresponds to this
minimal entropy for the leaves.

Filter TADs

Each node in a coding tree gives a potential candidate for defining TADs.We consider the
task of filtering out the nodes which are unlikely to be TAD. A node is likely to be a TAD
if the intra-interactions are much dense. To eliminate the influence of hierarchy and com-
pute the inherent density for each TAD, we compute the average interaction frequency at
three layers: the parent node, the node’s children, and the node itself. Starting from the
root, we iteratively deduct the influence of the parent and children for each node up to
the leaf nodes. In this way, we calculate each node’s inherent density from the top to the
bottom of the coding tree.
Based on the empirical distributions of contact frequencies in the Hi-Cmatrix, the con-

tact frequency decreases with the increase of distance. Next, we cluster all the nodes into
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two sets based on their inherent density and size, repeating with 1000 times random ini-
tialization. We select the set of TADs that shows a strong negative relationship between
their sizes and inherent density. We calculate the probability of being selected for each
TAD candidate. The candidates that show low probability, lower structure entropy than
their parent and close to equally split from their parent are discarded (Additional file 1:
“More details in nodes filtering” section, Figure S4, S5).

Assess the similarity between two coding trees

Given two coding trees X and Y of the same Hi-C matrix. Suppose that X = {x1, x2, .., xm}
and Y = {

y1, y2, ..., yn
}
where each node Xi or Yj is a consecutive set of bins. We consider

evaluating the similarity between X and Y.
The work of deDoc [33] proposes the weighted similarity between X and Y, which is

defined as wsYX

wsYX =
∑n

j=1 |yj| · SYX (j)
∑n

j=1 |yj| (7)

SYX (j) = mmax
i=1

{
|xi ∩ yj|√|xi| · |yj|

}

(8)

However, the definition shows that weighted similarity is an asymmetry metric, and it is
hard to determine the similarity when there is a big difference between wsYX and wsXY .
Zufferey et al. [27] adopted the measure of concordance (MoC), a symmetric metric to

compare clustering assignments, which is defined asMoC(X,Y )

MoC(X,Y ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if NX = NY = 1

1
(
√
NXNY − 1)

⎛

⎝
NX∑

i=1

NY∑

j=1

∥∥Fi,j
∥∥2

‖Xi‖
∥∥Yj

∥∥ − 1

⎞

⎠ , otherwise
(9)

However, the MoC is upper and lower bounded only if the partitions are disjoint (any two
TADs of X or Y do not have overlap). To adopt the MoC for assessing the agreement of
two hierarchical TAD structures, we only selected the level one of hierarchy (the TAD can
no further partition) and added the inter-TAD regions into the assessment as [27].
In this work, we use, in conjunction with the weighted similarity and MoC, a new sym-

metry metric we call overlapping ratio to measure coding trees similarity. First, we build
a Bipartite Graph G = (V ,E) in which the vertex set can be partitioned V = {X,Y }, and
every edge e ∈ E links one node in X and the other node in Y. We define the weight of
edges as the intersection between the two linked nodes, denoted as w(xi; yj). Obviously,
the graph G is complete.
Then, we apply Maximum Bipartite Matching to the graph with the goal of finding a

maximum matching M that the summation of selected edges’ weight is maximum. That
is, we find the global optimal matching for every node in X and Y. The overlapping ratio
between X and Y is defined as the function S(X,Y )

S(X,Y ) =
∑M

i=1 w′ (xi; ∗) + ∑N
j=1 w′ (∗; yj

)

∑M
i=1 |xi| + ∑N

j=1 |yj|
(10)
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where w′ is the edge weight in the maximum matchingM and w′ (xi; ∗) is defined as

w′(xi; ∗) =
{
w(xi, yj), if edge e

(
xi; yj

)
is selected inM

0, none of e (xi; ∗) is selected inM
(11)

The overlapping ratio is symmetric, S(X,Y ) = S(Y ,X). The value of overlapping ratio
between any coding trees ranges from 0 to 1, where 1 indicates that the two coding trees
are the same while 0 indicates the two coding trees contain no intersection between any
pair of xi and yj.

The SuperTAD C++ package

SuperTAD is implemented as a command line tool in C++. We compiled and tested
our software on both local computers and a Linux server with CentOS 7.6 pre-installed
that has 96 12-core processors and 598 GB memory. Our method and software guar-
antee accuracy while do not sacrifice computational performance. The source codes of
SuperTAD package are available at https://supertad.deepomics.org/, where the example
dataset is also deposited. The version used in the manuscript is permanently available at
https://doi.org/10.5281/zenodo.4314123.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-020-02234-6.

Additional file 1: Supplementary Information.

Additiona file 2: Figure S6. The robustness comparison between SuperTAD and deDoc(E) under various noise
ratios and sizes. a The influence of noise on the performance of both methods. The x-axis indicates the increase in
noise ratio from 5 to 50% by 5%, while the boxes show the value distribution of certain metrics among 100 repeated
experiments. b The influence of variance in TAD size (length) on the performances of both methods. The x-axis
indicates the increase in standard deviation of TAD size while the boxes show the value distribution of certain metrics
among 100 repeated experiments. The boxes of SuperTAD are colored in blue while deDoc are in orange. The colored
line links the mean value (the green point in boxes) across boxes. For boxplots, centerline indicates the median, box
limits indicate upper and lower quantiles, whiskers indicate the 1.5 interquantile range, and points indicate outliers.

Additiona file 3: Figure S7. Comparison between SuperTAD(2) and deDoc using real Hi-C matrix for in situ Hi-C
GM12878 and IMR90 cell lines. We first apply SuperTAD(2) and deDoc on KR (normalized) Hi-C matrix of two human
cell lines (GM12878 and IMR90) at 25-kb bin resolution. The boxplots show the statistics on a length, b structural
entropy, and c contact density of inferred TADs for both methods. The box shows the value distribution of each
method for each cell line (blue boxes represent SuperTAD(2) while orange boxes represent deDoc). The marked
numbers and dashed lines in red both indicate the mean value for each box. The contact density is defined as the
number of intra-TAD contacts divided by TAD length. d The structure entropy of the coding tree detected by
SuperTAD(2) and deDoc for both cell lines at 25-kb and 50-kb resolutions. e The fold change of structural proteins
peak number (CTCF, RAD21, SMC3) between peaks (regions around boundaries) and background (regions located
400 kb away from the boundaries). The higher value indicates more enrichment of structural proteins around
boundaries. f The cummulative bar diagram shows the fraction of TADs from three groups: enriched for H3K27me3
(FDR-corrected p value ≤ 0.1, the blue bar); enriched for H3K36me3 (FDR-corrected p value ≤ 0.1, the orange bar); no
significant enrichment (FDR-corrected p value > 0.1, the green bar). g, h The heatmap and inferred boundaries with
various inputs for GM12878 and IMR90 cell lines. Each heatmap exhibits different results with two inputs. Text in the
upper/lower triangle indicates the input matrix’s information, and the plotted boundaries on the same side present
the corresponding result. The similarity between boundaries in different colors shows the robustness of performance
between 25-kb and 50-kb bin resolution (or raw and KR) matrix for each method. Note that the heatmap is
asymmetric when comparing two results from raw and KR matrices.

Additiona file 4: Figure S8. Consistency comparison for the same cell line with 25-kb vs. 50-kb resolutions among
all the methods. The heatmap and detected boundaries with 25-kb and 50-kb bin resolution input for GM12878 (the
top line) and IMR90 (the bottom line) cell lines. The detected domains from 25-kb resolution are colored in blue at the
upper triangle, and 50-kb resolution results are in pink at the lower triangle (as the texts indicate). The similarity
between boundaries in different colors shows the robustness of performance between 25-kb and 50-kb bin
resolution matrices for each method.
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