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Abstract
Thousands of pathway diagrams are published each year as static figures inaccessible
to computational queries and analyses. Using a combination of machine learning,
optical character recognition, and manual curation, we identified 64,643 pathway
figures published between 1995 and 2019 and extracted 1,112,551 instances of human
genes, comprising 13,464 unique NCBI genes, participating in a wide variety of
biological processes. This collection represents an order of magnitude more genes
than found in the text of the same papers, and thousands of genes missing from other
pathway databases, thus presenting new opportunities for discovery and research.
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Background
Themolecularmechanisms underlying biology are often outlined as pathway diagrams. In
textbooks and on whiteboards, these depictions are fundamental to a biologist’s training.
As mental models for practitioners, they serve as scaffolds for hypotheses and integrating
new knowledge. And in the scientific literature, pathway figures are the pinnacle of com-
munication for published work, synthesizing diverse sources and types of data spanning
decades into a coherent model. Though often published only as static images, path-
ways express dynamic interactions. Common examples include metabolic cycles, gene
regulation, and signaling cascades. Depicted interactions play out over a spectrum of
electrochemical, enzymatic, and developmental timescales.
When properly modeled as an interaction network and annotated with standard iden-

tifiers, pathway knowledge can be conveyed with greater precision in formats amenable
to computational analysis. Distinct from static images, pathway models can be used in
enrichment analyses [1], enhanced data visualization [2, 3], knowledge graphs [4, 5],
biomedical inference [6], and database queries [7, 8]. Over the past couple decades a
number of pathway databases, including GenMAPP [9], MetaCyc [10, 11], KEGG [12]
and Reactome [13, 14] took on the challenge of curating canonical pathway biology, each
with their own unique focus and approach. A broader, community-curated approach was
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undertaken by WikiPathways to allow any researcher to model and freely share their
pathway knowledge [15–17]. And under an even broader umbrella, the NDEx database
provides access to not only pathways, but also diverse types of network models, offering
DOI minting for citation [18]. Despite the continued growth and active usage of these
database efforts, the vast majority of pathway knowledge is still captured in static images
submitted solely to publishers as figures. We estimate 1,000 pathway figures are indexed
by PubMed Central (PMC) each month in recent years and less than 3% of these are
sourced from a pathway database [19].
In this study, we have identified pathway figures published over the past 25 years and

characterized their content in terms of recognized gene symbols by optical character
recognition (OCR). While it is more common to process text from the abstract and body
of papers in order to extract genes and other biological concepts including interactions,
knowledge extraction from published pathway figures is relatively rare and incomplete
[20–22]. In a pilot study of 4,000 pathway figures [19, 23], we developed a custom OCR
pipeline and identified over twice as many unique human genes as detected in the text
by PubTator [24]. The gene content extracted from this limited sample of pathway figures
reproduced two thirds of the database content atWikiPathways and included over a thou-
sand human genes not previously annotated in pathway models. Remarkably, no two
pathways were identical among this set of 4000 figures. A wealth of novel and diverse
pathway knowledge is essentially trapped in published pathway figures.
The goal of this work was to identify the human gene content in a comprehensive collec-

tion of published pathway figures, to characterize its biological relevance, and to increase
meaningful, FAIR [25] access to this pathway knowledge resource. In the end, 65k path-
way figures were found in publications from the past 25 years with over amillionmentions
of human genes identified in total. Of the 13.5k unique human genes identified, over a
quarter had yet to be annotated in WikiPathways or Reactome databases. The biologi-
cal relevance of the identified gene sets was assessed by performing enrichment analysis
against annotated gene sets using GeneOntology and an extensive disease ontology show-
ing both diversity and depth. Finally, a series of usage examples demonstrate the potential
of this content to enhance literature searches, elucidate the history of scientific discovery
and support enrichment analyses.

Content
We identified and characterized 64,643 pathway figures published between the years 1995
and 2019. Starting with 235,081 figures from a PMC image query that specified the 25-
year date range and keywords covering diverse types of pathways, machine learning was
applied to more precisely distinguish figures containing molecular interaction diagrams
from those depicting other types of pathways (e.g., neuronal pathways) or pathway-related
content (e.g., pathway enrichment results).
Relying solely on the linearly ranked PMC results (i.e., without subsequent machine

learning steps) would have resulted a relatively diluted set of figures containing a high pro-
portion of non-pathways. Two rounds of machine learning effectively concentrated actual
pathway figures. The second and final round relied on a set of 15,406 figures manually
classified by a domain expert to train a model distinguishing pathway figures from other
figures with 91.88% precision, 91.88% recall, and a Matthews Correlation Coefficient [26]
of 0.82. The resulting set of 64,643 pathway figures is defined as our “65k set” used in this
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study. The 65k set of pathway figures was ultimately assessed to consist of 94% pathways
(±3% at 97% confidence) by manual classifying a random sample of 300 figures.

Papers containing pathway figures

Prior to any gene detection by OCR, the papers containing the 65k set of pathway figures
were characterized by publicly available annotations. The pathway figures came from
56,095 papers authored by 216,542 unique authors and are published in 3,453 journals.
Obviously, not all co-authors are involved in preparing a pathway figure in a given paper,
but for comparison, the most successful effort to crowdsource pathway knowledge by the
WikiPathways database has fewer than 800 unique authors.
The papers containing pathway figures can be characterized by paper-level annota-

tions, for example disease ontology terms from Europe PMC and genes recognized in
the text by PubTator. A subset of 29,187 (52%) pathway-figure containing papers had
at least one disease ontology terms annotation from Europe PMC. The top 10 most
frequent disease ontology terms annotating these papers are Cancer (39% of 29,187
papers), Infection (19%), Defects (15%), Tumor (9.3%), Diabetes (4.3%), Hypoxia (2.0%),
Depression (1.3%), Obesity (0.8%), Ischemia (0.7%), Atherosclerosis (0.4%), and Other
(9.2%). PubTator extracts genes and other concepts from the abstract and body text of
PMC-indexed papers by natural language processing [24]. While figure captions may
be included in text-based approaches, the figure images are not included in any way,
as they require OCR and custom normalization prior to entity recognition. According
to PubTator, 30,036 (53.5%) of pathway-figure containing papers had at least one gene
found in the text with an average of 3.4 genes per paper. The top 10 genes found in
the text of these papers are AKT1 (5.4% of 30,036 papers), MTOR (4.1%), TP53 (3.7%),
MAPK1 (3.5%), TGFB1 (2.8%), PIK3CD (2.8%), EGFR (2.6%), TNF (2.4%), CTNNB1
(1.9%), and MAPK3 (1.7%). The majority of these genes match the dominant disease
annotation for cancer-related biological processes. The prevalence of cancer in this set of
papers is greater than that for PMC in general, which is estimated at 12% [27]. This bias
could reflect the popularity and particular effectiveness of pathway diagrams in depicting
cancer-related signaling and metabolic processes. It could also result from a bias in the
pathway ontology [28] used to construct the original PMC query, which included “cancer
pathways.”

Genes in pathway figures

Having identified and characterized a set of papers containing pathway figures, the pri-
mary goal of this study was to extract their human gene content by an OCR pipeline
customized for pathway figures [19, 23]. The approach targeted the most common ways
authors refer to genes, proteins, complexes, and families in pathway figures, leveraging
current, alias, and previous HGNC symbols as well as a curated collection of conventional
bioentity names that have been mapped to official HGNC symbols. There is a wealth of
information visually conveyed by pathway figures, including localization, reactions, cas-
cades, cycles, co-factors, metabolites, drugs, and other biological concepts. The most
tractable and widely used content—even from fully-annotated pathway models—is the
gene content. The other components and concepts in pathway figures remain worthwhile
pursuing in future work, but knowing the gene content on its own transforms a collection
of static images into a resource with diverse research applications.
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Of the 64,643 pathway figures identified by image classification, 58,962 (91%) figures
had at least one human gene recognized by our pathway figure OCR pipeline. A total of
1,112,551 instances of human genes were recognized, consisting of 13,464 unique human
NCBI Genes. On average, there were 18.9 genes recognized per figure, compared to only
3.4 genes recognized in the text of the same papers by PubTator. PubTator found a tenth
as many genes (101,617) in the text of these same papers overall; only half of the papers
(53.5%) mentioning one or more genes in the text. In our pathway figure OCR results,
there were over 600 figures with more than 100 genes each. While many of the largest
figures are interaction networks, the largest with 385 recognized genes is an augmented
KEGG pathway where the authors properly listed the individual gene family and paralog
members referenced generically in the original [29]. At the other end, there was a long tail
of just over 20k (37%) figures that had fewer than seven recognized genes.
The top 10 human genes identified in pathway figures representing unique families

are MAPK1 (15% of 58,962 figures), AKT1 (14%), PIK3CA (10%), NFKB1 (8.9%), KRAS
(7.6%), MTOR (7.5%), MAP2K1 (6.2%), TNF (5.6%), RAF1 (5.3%), and TP53 (5.1%). Com-
pared to genes extracted from the text of the same set of papers containing pathway
figures, the same trend of cancer-related biology dominates the content. In more detail,
this top 10 set includes four of the top five genes found in the text of the same papers by
PubTator:MAPK1, AKT1,MTOR, and TP53. Figure 1 presents the results of a set analysis
performed on these overlapping genes found in text and figures, showing approximately
50% overlap with respect to text occurrences (i.e., half of the occurrences in text were
also found in the pathway figures of the same papers) and overall a far greater number of
occurrences in figures; the occurrence of combinations of these genes being almost exclu-
sive to figures. Of the 13,464 unique human genes identified in the figures, half (6564 or
49%) were not identified in the text of any of the papers by PubTator. Compared to path-
way databases, over a quarter of the unique genes recognized in pathway figures (3710
or 28%) were not present in either WikiPathways nor Reactome collections (as of January
2020). Clearly, pathway figures represent biological models that are not fully described in
the text nor captured in curated pathway databases.

Sets of genes in pathway figures

Seeking to optimize across coverage, performance, and interpretability, we defined a sub-
set of figures with at least seven distinct NCBI Genes. Compared to the overall set, these
28,836 pathway figures contained 13,216 (98%) unique genes, thus retaining the cover-
age and novelty of the collection. Among these 28,836 pathway figures, 28,520 (99%)
were significantly associated with at least one Gene Ontology (Biological Process) term
by enrichment analysis, indicating general biological relevance. In terms of disease rele-
vance, we found 20,227 (70%) pathway figures significantly associated with at least one
disease ontology term [30], and 98% of disease terms in the ontology (157/160) were rep-
resented by one or more figures. Not surprisingly, the top disease term was Cancer (42%
of 20,227 figures). Manual inspection of paper and figure titles verified 64 different dis-
ease terms as accurate annotations for as many as 8,419 pathway figures. In addition to
Cancer, prevalent terms included Cardiomyopathy, Lung cancer, Melanoma, Breast can-
cer, Rheumatoid arthritis, Diabetes mellitus, and Neurodegenerative disease. The gene
information extracted from pathway figures allows for a new way to annotate the liter-
ature by enrichment analysis against any gene set-based ontology or resource, such as
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Fig. 1 UpSet plot of the most common genes found in the text of pathway figure-containing papers. The
stacked bar plot (top) shows the number of papers that include one or more of these genes in either a
pathway figure (blue), the text via PubTator (green), or both (red). The matrix below the bar plot indicates
which sets of genes are represented by each bar. The bar plots on the left show the total number of genes in
either pathway figures, text, or both using independent scales

Gene Ontology, OMIM, MSigDB, or even other pathway databases like WikiPathways
and Reactome.

Utility
The initial characterization of published pathway figures and their gene content revealed
a novel resource of relevant pathway knowledge that is practically inaccessible to
researchers. The following examples demonstrate how this resource could be utilized in
a variety of applications.

Searching scientific literature

With over 600,000 papers added to PMC in the last year, researchers are resigned to
merely sampling the work most relevant to them via search engines, feeds, subscriptions,
and recommendations. While figure captions are accessible to text-based processing and
indexing, the actual contents of figures remain hidden to any commonly available search
engine (e.g., PubMed, PMC, Europe PMC or even Google). The systematic identification
of genes in pathway figures enables access to this content through new and existing tools.

Literature search tools

Search engines commonly index papers by the genes found in the abstract, body, and
caption text. Europe PMC goes further by supporting community-contributed mappings
between genes and papers (https://europepmc.org/annotations). While these typically
derive from text-based processing, the same deposition and integration system could be
used to accept gene-paper mappings based on figures. Querying one or more genes at

https://europepmc.org/annotations
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Europe PMC would then return paper results containing both text and figure references
to those genes.
As another example, the Chan Zuckerberg Initiative is working on a new literature feed

service called Meta (https://meta.org; in open beta) that processes the latest publications
and preprints on a daily basis. The gene-paper mappings from pathway figures would
be a natural fit for an indexing system that links papers via their contents. Furthermore,
the characterization of gene sets as demonstrated above could provide mappings from
papers to disease ontology terms and other gene-based and pathway-based annotations.
A feed service that could produce a regularly updated set of papers that contained relevant
pathway figures would be a welcome innovation to researchers attempting to stay abreast
of scientific literature.

Interactive pathway figure app

We produced an online tool using R Shiny (https://gladstone-bioinformatics.shinyapps.
io/shiny-25years) to enable filtering, searching, and viewing the full collection of 65k
pathway figures by enriched disease terms, genes, date, and various publication metadata
fields (Fig. 2). Organized into three stages, the first stage offers auto-complete fields to
define OR-based filters for disease annotations, gene content and publication years, and
displays bar plots of the top 40 disease ontology terms, top 40 human genes, and publica-
tion dates represented by the currently filtered set of figures. The second stage displays a
paginated table view of the currently filtered set of figures, each row representing a path-
way figure and its parent paper. The columns can be used to sort and query within the
table to further refine the current set. Selecting a row in the table will update the third
stage, which displays the pathway figure, a link to PMC and table of recognized genes. The
gene table includes the symbol found in the figure and the source of the lexicon it matched
along with the official HGNC symbol and NCBI Gene identifier. This tool provides a way
to easily query figures of interest given a set of genes or topic. For example, in the prepara-
tion of this manuscript the tool was used for the “History of scientific discovery” section
on relating to the Hippo Signaling Pathway.
As a topical demonstration of the tool, a second version was produced focus-

ing on COVID-19 related pathways as defined by the COVID-19 Open Research
Dataset (https://gladstone-bioinformatics.shinyapps.io/shiny-covidpathways). There are
221 pathway figures in this collection that can be rapidly queried and viewed by the same
three-stage procedure described above and in Fig. 2. This tool has already proven useful in
building SARS-CoV-2 pathways at WikiPathways (http://covid.wikipathways.org) as part
of the COVID-19 Disease Map initiative (https://covid.pages.uni.lu/map_curation) [31].

Knowledge graph query paths

This source of annotated pathway information is also finding utility in an advanced plat-
form for distributed knowledge integration. The BioThings Explorer platform includes
a collection of APIs semantically defining inputs and outputs that comprise a knowl-
edge graph (https://biothings-explorer.readthedocs.io) [5]. The platform also includes an
engine that supports queries that traverse paths through the graph, e.g., drugs that bind
components of pathways associated with a disease of interest. By defining an API that rec-
ognizes standard paper and gene identifiers in a JSON file export of pathway figure-based
gene sets, the 1.1M gene-paper links from this study can be used to bridge query paths

https://meta.org
https://gladstone-bioinformatics.shinyapps.io/shiny-25years
https://gladstone-bioinformatics.shinyapps.io/shiny-25years
https://gladstone-bioinformatics.shinyapps.io/shiny-covidpathways
http://covid.wikipathways.org
https://covid.pages.uni.lu/map_curation
https://biothings-explorer.readthedocs.io
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Fig. 2 Screenshot of interactive query tool for pathway figures. The tool allows for easy querying of the full
set of 65k pathway figures by any combination of gene content, publication year, disease annotations, figure
and paper title, authors, etc.

to other content in the knowledge graph. The addition of disease annotations and future
extraction of metabolites, drugs, and concepts from the OCR results will establish addi-
tional bridges and reinforce paths inferred by computational reasoning. This work is in
active development as part of the NCATS Biomedical Data Translator program, targeting
critical use cases, such as drug repurposing (https://ncats.nih.gov/tidbit/tidbit_04.html).

History of scientific discovery

Given the 25-year span of this new pathway resource, it was natural to reflect on the role
of pathway figures in scientific discovery. The R Shiny app previously described can be
used by any researcher or historian to investigate the story of particular diseases and genes

https://ncats.nih.gov/tidbit/tidbit_04.html
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from a pathway perspective. Tracing the development of the Hippo signaling pathway as
one example demonstrates this potential (Fig. 3).
The Hippo signaling pathway controls organ size in animals by regulation of cell pro-

liferation and apoptosis. The components of the Hippo signaling pathway are highly
conserved [32], and many of the early discoveries were made via Drosophila genetic
screens. The Hippo signaling pathway includes a central kinase signaling cascade, where
MST1/2 (Hpo) phosphorylates LATS1/2 (Wts), which activates it. Activated LATS1/2
phosphorylates YAP/TAZ (Yorkie/Yki), leading to its inactivation and degradation in the
cytoplasm. When activated, YAP/TAZ translocates to the nucleus and binds to several
transcription factors, including TEADs, leading to transcription of proliferation and sur-
vival genes. Phosphorylation of LATS1/2 is facilitated by binding to SAV and MOB1. The
Hippo pathway can be activated bymany different stimuli including cell density and polar-
ity, mechanical sensation and soluble factors via upstream regulators WWC1 (Kibra),
NF2, etc. Cross-talk with multiple pathways is known, including TGF-β , Notch, and
Wnt signaling. The Wts gene (LATS1 in humans) was discovered in Drosophila in 1995
[33, 34], and the first mention of a pathway involving Wts, Sav, and Hpo was in 2003
[35, 36], initially termed the Salvador/Warts pathway. From 2003 on, several discoveries
were made which further defined the pathway components and process [37].
In our 65k pathway figure collection, the first published figures representing the Hippo

signaling pathway appeared in 2007 [38, 39], more than a decade after the initial discovery
of the central Wts gene, and after the core components were described in the literature
(Fig. 3). The early published pathway figures are sparse and some even include question
marks for components that are not yet known [38]. Discoveries of specific components

Fig. 3 Major milestones in the development of the Hippo signaling pathway. A timeline spanning 1995 to
2013 focuses on the discovery of the components and processes of the Hippo signaling pathway (below
timeline), illustrated by representative pathway figures that grow in complexity and detail (above timeline).
The events depicted in gray below the timeline were collected mostly from Kim et al. [37]. Drosophila and
human orthologs are Wts:LATS1/2, Sav:SAV1, Hpo:MST1/MST2(STK3), Mer:NF2, Fat: FAT1, Ex: FRMD6,
Yorkie/Yki:YAP(YAP1)/TAZ(WWTR1), Sd:TEAD1-4, Kibra:WWC1
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are in some cases followed by a pathway figure from an independent publication, adding
that component to the pathway. For example, discovery of the binding of PTPN14 to YAP
in 2012 [40] is followed in 2013 by a pathway figure showing the interaction [41]. Another
interesting observation is related to the Kibra gene (WWC1 in humans), which was first
characterized in a yeast two hybrid screen in 2003 [42]. It was investigated in a variety of
contexts (cytoskeleton, memory function, etc.), and in 2010, Kibra was shown to be an
upstream regulator of the Hippo pathway [43]. Interestingly, there were no pathway figure
hits for Kibra before 2010, but from 2010 on, the number of pathway figures including
Kibra has grown steadily, with the vast majority of them representing the Hippo pathway
[44]. Yorkie (YAP/TAZ in humans) was first indicated as the transcriptional activator of
the Hippo pathway in 2005 [45] and it was subsequently found that phosphorylation of
YAP at S127 inhibits transcriptional activity by retaining YAP in the cytoplasm [46]. These
critical findings were followed in 2008 by the first pathway figure showing the details of
YAP/TAZ signal transduction [47].
Access to pathway diagrams and their gene contents provides a new way to track the

discovery and depiction of key molecules and interactions for a given pathway over time;
many of these pathway figures predate any pathway database. For the Hippo pathway
example, there were 31 representations of the pathway in published literature span-
ning the 13 years prior to its first entry in a database in 2012 (https://reactome.org/
content/detail/R-HSA-2028269). Even with the advent of pathway databases, evolving
and emerging pathway knowledge can be accessed via our pathway figure OCR pipeline
once published and publicly indexed, whereas traditional database curation might lag by
months, by years or indefinitely. In the next section, this example is also used to demon-
strate the utility of having access to this history in a computational format for the first
time, enabling clustering, visualization, and other applications.
Trends for all pathways and their gene content can also be explored. For example, by

using data gathered from OMIM [48], the time spanning the initial cloning of a gene and
its first appearance on a pathway can be determined. A decade in the case of the Wts
(LATS1/2 in human) gene and the Hippo signaling pathway, the cloning-to-pathway time
spans for all 13,464 genes has an overall median of 12 years. By comparison, the time
spanning the initial cloning of a gene and its first biochemical feature characterization
also has a median of 12 years.

Pathway figure enrichment analysis

The 65k set contains more unique human genes and greater contextual depth than any
pathway database, providing an interesting new resource for pathway analysis. How-
ever, to make the set usable for enrichment analysis like overrepresentation and gene set
enrichment analysis, there are aspects of gene content and redundancy to consider.
Even though certainmethods normalize enrichment scores for gene set size, the process

is not accurate for extremely small or extremely large gene sets. While large sets are not
an issue in our pathway figure-based gene sets, approximately half of the figures have
fewer than 10 genes. Filtering the 65k set with a cutoff of at least 10 unique genes, a set of
32,277 (49%) pathway figures can be defined for use in enrichment analysis. By contrast,
only 1072 (1.9%) papers had 10 or more genes identified in the text by PubTator. Also
of note, this set of 49% of the largest pathway figures retains 97% (13,153) of the unique
human genes found in the overall 65k collection. Among the set of 32,277 pathway figures

https://reactome.org/content/detail/R-HSA-2028269
https://reactome.org/content/detail/R-HSA-2028269


Hanspers et al. Genome Biology          (2020) 21:273 Page 10 of 18

identified for use in enrichment analysis, there were 878 figures that shared the exact
same gene content with at least one other figure and 4,937 figures entirely contained by
one or more other pathway figures.
In order to assess the redundancy and hierarchical structure among pathway figures

in more detail, a sample subset of 55 Hippo signaling pathway figures was clustered
by gene overlaps (Fig. 4). The overlap (intersection/number of genes in gene set) and
Jaccard index (intersection/union) [49] were calculated between each pair of gene sets.
No two pathways in this set were identical, but many pathway figures contained the con-
tents of smaller pathway figures, analogous to the nesting of Biological Process terms in
Gene Ontology. The “Core” cluster (red), for example, contains four small figures each
with the defining set of Hippo signaling pathway genes, which are an essential component
of all the figures in this set; thus, the high scores across top four rows. The “Meta” cluster
(purple) has 25 large figures associating multiple pathways with Hippo signaling. Though
there is much lower similarity for this cluster, a few bright subclusters along the diago-
nal indicate sets of pathway figures with high mutual overlap. The “Plus” cluster (green)
has 26 small-to-medium figures that contain just a few additional genes interacting with
the core Hippo signaling pathway. The dendrogram and heatmap for this example set of
pathways illustrate a novel way to conceive of a pathway in general, that is, as a hierarchi-
cally organized collections of core and peripheral components rather than as a singular
summary diagram.
For the purpose of an enrichment analysis, any of these pathways have the potential to

provide a highly specific result with greater context and interpretability than a single, so-
called canonical, Hippo signaling pathway. This potential argues against additional pre-
filtering of the pathway figure set. Furthermore, many enrichment tools already employ

Fig. 4 Overlap among Hippo signaling pathway figures. A matrix view of the directional overlap among 55
pathway figures containing at least five core genes involved in hippo signaling. The dendrogram (left)
identifies various levels of clustering. The top three clusters are annotated by labels and a color bar for
reference (right)
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post-filtering of results by, for example, a Jaccard distance measure to handle ontologies
with even greater redundancy and higher degree of nesting. The same approach could
optionally be applied to enrichment results from these pathway figure-based gene sets as
part of a researcher’s exploratory analysis.

Discussion
There is a vast resource of pathway knowledge trapped in the form of published path-
way figures. We have identified these figures and extracted their gene content to make
this resource accessible and to demonstrate its potential to enhance biomedical research.
We found 64,643 pathway figures in publications dating from 1995 to 2019 and identi-
fied 1,112,551 occurrences of human genes in total (13,464 unique NCBI Genes). Much
of this content represents novel pathway knowledge that is present neither in the text of
papers, nor in pathway databases. The extraction of drugs, metabolites, and disease terms
from these same pathway figures is now a more tractable project, as is the identification
of genes from other species, by expanding the lexicon used to match against the OCR
results. A greater challenge lies in the extraction of interactions, subcellular compart-
ments, and other graphical representations of biology beyond just the molecules. While
the OCR of text from images is a well-studied problem with widely available solutions,
a more customized machine learning approach will be required for these non-standard
graphics. Adding to the challenge, the process of modeling interactions in a pathway
involves more than simply retracing what is typically provided in a pathway figure. A
certain level of domain expertise is required for curators of pathway databases as their
task requires independent interpretation and investigation. Nevertheless, the refined col-
lection of gene-characterized pathway figures presented here can be used as a reference
dataset by researchers interested in this challenge.
Despite unlocking the basic contents of published pathway figures, this work only

partially mitigates gross deficiencies in current pathway knowledge representation and
communication.Oh, the figures we have seen! Having scannedmany thousands of pathway
figures as a collection, the most obvious point to make is that standardization is desper-
ately needed. Standards for pathway models have been around for decades [50–52] and
have been implemented in a variety of freely available software tools [53–57]. Likewise,
standard practices for the deposition and sharing of scientific models are well established
(e.g., sequences, structures and ontologies). We recommend that authors make use of
these standards and we implore reviewers, editors, journals, and funders to encourage
and enforce the application of good scientific publishing practices to pathway knowledge.
This recommendation applies generally to the publication of pathways, networks, and
other models of system biology consisting of identifiable entities and their relationships.
By using proper modeling tools, pathway knowledge can be databased, indexed, shared,
and used more effectively and FAIRly [25].
In the meantime, the post hoc extraction of knowledge from published pathway figures

can serve to make this content more findable, accessible, interoperable, and reusable. The
gene sets extracted from these figures can be indexed to enhance literature searches, they
can create and reinforce links in knowledge graphs, they can inform the historiography
of gene and pathway discovery, and they can enable pathway figure-based enrichment
analysis. We are currently working with NDEx to host the initial set of gene-annotated
pathway figures for enrichment analysis (https://home.ndexbio.org). The annotated

https://home.ndexbio.org
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pathway figures are also being prioritized by their novel gene content and disease associ-
ations for manual curation as proper models in pathway databases. Finally, the interactive
pathway figure tool allows anyone to explore the complete set of 65k figures by various
metrics and metadata (https://gladstone-bioinformatics.shinyapps.io/shiny-25years).

Construction
Collection of figures

A PMC image query URL was composed, specifying a date range starting at 1995-01-01.
Exploratory queries previously identified 1995 as the first year with accurately indexed
pathway figures. Keywords in the query were specified as an OR set of the following path-
way types together with the word pathway: signaling, signaling, regulatory, disease, drug,
metabolic, biosynthetic, synthesis, cancer, response, and cycle. These were determined
based on exploratory queries and referencing the first two levels of pathway ontology
terms [28]. The query returned just over 235,000 figure images, which were retrieved by
an HTML-scraping script, along with metadata pertaining to the figure and parent paper:
PMCID, paper title, paper citation, publication year, figure filename, figure URL, figure
number, figure title, and figure caption. The collection was filtered for unique entries and
publication dates spanning the 25-year period of 1995 January 01 to 2019 December 31.
It is worth noting that while the query was performed on 2020 January 31, the results for
2019 are not expected to be complete since many journals unfortunately wait 6 months to
a year to make their content openly accessible.

Limitations

Web scraping the results of a PMC image query is inefficient and imprecise. It is likely
that many pathway figures are missing from the results due to incomplete keyword listing
and database indexing. At the same time, the query results included many non-pathway
figures. Given the ranked order of images provided by provided by PMC, we manu-
ally checked the percentage of actual pathway figures at three points: the first thousand
figures (of 235k) contained 66.3% pathways, the middle thousand contained 35%, and the
final thousand contained fewer than 10% (Fig. 5a). The order of query results from PMC
was thus informative, but not sufficient to distinguish pathway and non-pathway figures.

Classification of figures

To properly identify pathway figures among the PMC image query results, two rounds
of machine learning were performed using Google Cloud AutoML Vision. The AutoML
service was accessed and controlled via a REST API and a web-based dashboard. The
first model was trained on 2000 manually classified figures selected from high, middle,
and low relevance ranges based on PMC query result ranking (Fig. 5a, dots). The ser-
vice randomly split the provided figures into three sets: 80% training, 10% testing, and
10% validation. The manual classification was performed by a domain expert relying on
their own organic neural network (a.k.a. brain) trained on 15 years of experience creat-
ing, curating, and using pathway diagrams in biomedical research. For the purposes of
this OCR-based project, figures were considered pathways if they described a biological
process or set of interactions involving identifiable genes and proteins. Molecular interac-
tion networks and developmental processes were thus included, while cellular diagrams
that did not name genes or proteins were excluded. The AutoML service evaluated the

https://gladstone-bioinformatics.shinyapps.io/shiny-25years
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Fig. 5 Machine learning performance. Classification of pathway figures assessed in a original PMC-sorted
query results and b first and c second rounds of machine learning results independently sorted by estimated
pathway likelihood (y-axis). Dots in a and b (connected by dotted lines) indicate where figures were sampled
along their sorted indices for manual classification. These data were used in training subsequent rounds of
ML. The solid black curves in b and c indicate the prediction of the learned model from each round of ML.
The red vertical lines indicate the threshold used to define a set of pathway figures at each stage and assess
their count and actual pathway content (inset tables). The final set of 64,643 pathway figures replaced 1.2%
of known false positives and false negatives based on manual classification and was estimated to contain
94% pathway content

performance of the first model at 88.42% precision and 91.3% recall at a 50% confidence
threshold. The model was then applied to the complete set of 235k figures to obtain
pathway likelihood scores (Fig. 5b, solid line). Additional figures were sampled along the
full distribution of scores and manually classified (Fig. 5b, dots). The total actual path-
way content above the threshold (red line) was estimated to be 85%. Given these results,
a second model was trained on combined set of 15,406 manually classified figures and
assessed to perform at 91.88% precision and 91.88% recall at a 50% confidence threshold,
resulting in a steeper transition (i.e., fewer uncertain calls) and increased accuracy at the
extremes (Fig. 5c). A Matthews correlation coefficient of 0.82 was calculated [26]. 64,679
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figures had a predicted pathway likelihood of 50% or greater from the second round of
machine learning (red line). Finally, 383 false negative pathways were added back and 419
false positive non-pathways were removed based on prior manual classification, result-
ing in the set of 64,643 pathway figures used in this study. We have included our manual
classification calls for the 15,406 pathways and non-pathways in the supplemental data
files [58].

Limitations

A random sample of 300 figures from the final set was manually classified to estimate
the proportion of actual pathway figures at 94% (±3% at 97% confidence). Of the 18
figures classified as non-pathways, two were composite figures that included a pathway
as a minor panel in figure that contained a lot of non-pathway content. Composite figures
were typically excluded from the “pathway” training sets in our manual classification in
order to avoid recognizing gene occurrences in figure elements unrelated to pathways,
so these were conservatively included in the false positive count. Of the remaining 16
non-pathways, only three had three or more genes subsequently detected by our pathway
figure OCR pipeline (see next section), suggesting the majority of false positives could be
effectively ignored.

Identification of genes in pathway figures

The set of pathway figures was then fed into our pathway figure OCR pipeline [19, 23].
Briefly summarized here, the pipeline’s main components are word isolation, transfor-
mation, and lexicon matching. A series of custom transforms were applied to newline-
and space-delimited words provided by the OCR output. Transforms included normaliza-
tion of characters, substitutions, and expansions, correcting for common OCR mistakes
and common habits of pathway authors to use non-standard gene names in pathway dia-
grams. For example, a transform would strip away extraneous annotations prefixed or
suffixed to gene symbols (e.g., p-AKT or CDK1-FLAG) and would expand numerical
ranges into individual gene symbols (e.g., WNT1-5). The “transforms” directory in our
public GitHub repository contains all transforms applied in this work. After each round of
transformation, a match is attempted against a lexicon of human genes including HGNC
symbols (official, aliases and previous) and bioentities (https://github.com/wikipathways/
bioentities). The pipeline output is a table of pathway figures associated with sets of rec-
ognized genes with human NCBI Gene identifiers. Paper and figure metadata including
titles and captions are maintained along with additional information such as the raw
OCR results, the normalized and transformed symbols, and the lexicon source that was
matched.

Limitations

There were three non-composite false positive cases that contained three or more human
genes: a diagram of nerve fibers with gene markers [59], a meta-network of gene-named
pathways (e.g., IL-6 signaling) [60], and a figure containing three-letter amino acid codes
(e.g., Tyr, His, Met) that happen to match gene aliases [61]. The first two cases are not
egregious in that relevant biology is still being detected; it is just not in the context of a
pathway diagram as defined here. The last case is the only one that is a problematic false
positive (i.e., mistakenly identifying an amino acid as a gene). The pathway figure OCR

https://github.com/wikipathways/bioentities
https://github.com/wikipathways/bioentities
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pipeline was also limited by the lexicon of human genes. Many of the pathway figures with
zero or small numbers of recognized genes were for other species, e.g., Drosophila signal-
ing pathways, yeast networks, and microbial metabolism. The lexicon can be expanded in
the future to include other species, other types ofmolecules and other biological concepts.

Characterization of pathway figures

Annotations on the 56,095 papers containing pathway figures were retrieved from the
PMC query site and web services, including authors, journal titles, paper titles, paper
identifiers, publication dates, figure titles, hyperlinks, and captions.
Disease annotations for 29,187 papers were available from Europe PMC and collected

using the europepmc R package [62]. A less redundant list of top 10 terms was made by
excluding previously counted papers and re-sorting by disease term frequency. Singular
and plural forms of the same disease term were combined, e.g., “Tumor” and “Tumors”.
After identifying the top ten, remaining publications were counted as “other.”
Gene associations for 30,036 papers were available from PubTator and downloaded

as NCBI Gene-to-PMID mappings from the PubTator FTP Service. A PMID-to-PMCID
mapping file from the PMC FTP Service enabled comparison with our PMCID-indexed
pathway figures and extracted gene sets.
Gene Ontology and disease annotations for pathway figures were determined by

performing enrichment analysis on the sets of figure-extracted genes against ontology-
associated gene sets. The source of disease annotations was the “knowledge” channel of
the DISEASES database [30] filtered for disease terms with seven or more associated
genes, resulting in a set of 160 disease terms in total with 5088 gene associations. Top
10 disease term lists were made less redundant by excluding previously counted figures
(i.e., figures associated with more than one disease term) and re-sorting by disease term
frequency.
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