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Abstract

Background: African populations provide a unique opportunity to interrogate host-
microbe co-evolution and its impact on adaptive phenotypes due to their genomic,
phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon
and shotgun metagenomic sequence data with quantification of pathogen burden
and measures of immune parameters for 575 ethnically diverse Africans from
Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer
lifestyles and were compared to an urban US population from Philadelphia.

Results: We observe significant differences in gut microbiome composition across
populations that correlate with subsistence strategy and country. After these, the
variable most strongly associated with gut microbiome structure in Cameroonians is
the presence of gut parasites. Hunter-gatherers have high frequencies of parasites
relative to agropastoralists and pastoralists. Ascaris lumbricoides, Necator americanus,
Trichuris trichiura, and Strongyloides stercoralis soil-transmitted helminths (“ANTS”
parasites) significantly co-occur, and increased frequency of gut parasites correlates
with increased gut microbial diversity. Gut microbiome composition predicts ANTS
positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with
elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association
with multiple immune mechanisms. The unprecedented size of this dataset allowed
interrogation of additional questions—for example, we find that Fulani pastoralists,
who consume high levels of milk, possess an enrichment of gut bacteria that
catabolize galactose, an end product of lactose metabolism, and of bacteria that
metabolize lipids.

Conclusions: These data document associations of bacterial microbiota and
eukaryotic parasites with each other and with host immune responses; each of these
is further correlated with subsistence practices.

Keywords: Gut microbiome, Hunter-gatherers, Parasites, Helminths, Industrialization,
HIV, Lactose, Diet, Metagenomic sequencing, TH2
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Background
Twenty-four percent of the world’s population, predominantly in developing countries,

is estimated to be infected with gastrointestinal parasites. Enteric parasites are under-

studied components of the complex ecosystem of microorganisms that colonize the hu-

man gastrointestinal tract, and their effects on host physiology and the gut microbiota

remain poorly understood. Industrialized countries are characterized by an overall re-

duction in exposure to pathogens and microbes consequent to cultural and techno-

logical societal shifts. Thus, there is a need to characterize the consequences of

gastrointestinal parasite colonization and infection [1] in rural populations living trad-

itional lifestyles to understand their effects on health [2].

The composition of the adult gut microbiome differs among ethnic groups, locations,

and lifestyles [3–7]. For example, different bacterial genera dominate the fecal micro-

biome in people around the world living traditional rural lifestyles (Prevotella) com-

pared to urban dwellers (Bacteroides) [4, 5, 7, 8]. Infection with gastrointestinal

parasites Entamoeba histolytica [9], Ascaris lumbricoides [10], Necator americanus [10,

11], and Trichuris trichiura [10, 12, 13] also influences the structure and function of

the gut microbiome. Microbiota-parasite interactions, in turn, likely influence the

course of systemic infection, parasite virulence, and host immune responses [14]. Prior

microbiome research has considered many gastroenteric parasites as separate exposures

[9, 10, 13, 15]. However, in industrializing countries, coinfection is frequent [9], with

little studied consequences. In this study, we focus on populations from Cameroon that

are genetically, linguistically, phenotypically, and culturally diverse [16–20]. These pop-

ulations have different types of subsistence practices but share overlapping environ-

ments and high infectious disease burdens. Here, we present a detailed analysis of

sequence data from gut microbiota, quantitative measurements of multiple pathogen

loads, host immune parameters, and extensive demographic data for 575 Cameroonian

subjects.

Results
In the sections below, we first present the populations studied, then quantify parasite

loads. We then compare the associations of parasite burden with the gut microbiome

structure, first using 16S rRNA gene tag sequencing and then using shotgun metage-

nomics. Lastly, we analyze a few additional features of lifestyle-microbiome interactions

in the Cameroonian subjects studied.

Populations studied

The Cameroonian populations studied were Mbororo Fulani pastoralists (hereafter re-

ferred to as “Fulani”), Baka and Bagyeli rainforest hunter-gatherers, and Bantu-speaking

agropastoralists (hereafter referred to as “Bantu”) (Table S1). Fulani pastoralists have

subsistence practices centered largely around cattle, and the Bantu grow crops and raise

livestock. The Baka and Bagyeli hunter-gatherers, who are sometimes referred to as

“pygmies” for their short stature, engage in small-scale agriculture but also forage for

meat and plant materials (data on diet is in Table S2- Nutritional Questionnaires,

Methods). These populations were sampled over nine sites in the Northwest, South,

and East regions of Cameroon (Fig. 1). As subsistence and ethnicity are strongly
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correlated in these populations (e.g., all pastoralists are Fulani, all agropastoralists are

Bantu, and all Baka and Bagyeli are hunter-gatherers), only subsistence was included as

a statistical parameter in the analyses described below. We also included two cohorts of

US industrial agropastoralists who have diets high in animal fats, proteins, and refined

and processed foods that are the byproducts of intensive agricultural and pastoral prac-

tices, from the Human Microbiome Project [21, 22] and the COMBO study [23].

Quantification of pathogens and their correlates with host physiology

To compare microbiome-pathogen interactions in these Cameroonian populations,

we acquired data on both intestinal and blood-borne pathogens. Using thin and

thick blood smears with light microscopy, a total of 198 occurrences of blood

parasites were identified for Plasmodium falciparum, Microfilaria loa loa, Manso-

nella perstans, Wuchereria bancroftii, and Microfilaria spp.; P. falciparum

accounted for the most parasites detected by microscopy (N = 96) (Additional file 1:

Figure S1). Using a combination HIV-1/2 immunoassay from plasma, 28 HIV-

positive individuals were identified.

Fecal parasites were identified by light microscopy using wet mount techniques and

qPCR [24]. The concordance between microscopy and qPCR results for fecal parasite

occurrence was 86% (Table S1). qPCR was more sensitive, detecting almost three times

more parasite occurrences than microscopy. We tested for the following fecal parasites

by qPCR: giant roundworm Ascaris lumbricoides, hookworms Necator americanus and

Ancylostoma duodenale, whipworm Trichuris trichiura, roundworm Strongyloides ster-

coralis, and protists Giardia lamblia, Entamoeba histolytica, and pan-Cryptosporidium

spp. (Additional file 1: Figure S2). None of our samples was positive for A. duodenale,

and it was not considered in further analyses. Given the greater sensitivity, qPCR-

confirmed parasite detections were used for subsequent analysis.

Fig. 1 Sampling sites and demographics. a Cameroon sampling sites. At every sampling site, Bantu
agropastoralists were sampled. One of two hunting and gathering groups (Baka and Bagyeli) or Fulani
pastoralists were also sampled at these sites. b Top: image of a representative village with a large
population of Bantu agropastoralists (creative commons license). Bottom: image of a representative village
with a large population of hunter-gatherers (photograph by Meagan A. Rubel). c Demography table of
truncated metadata for Cameroon and US (See Table S1 for full metadata)
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Counts of fecal and blood parasites indicated that Cameroonian populations had sig-

nificantly different distributions of parasites (Kruskal-Wallis χ2 = 244, df = 3, p value <

2.2e−16). All populations were significantly different from each other in terms of their

pathogen prevalence except for the Baka and Bagyeli, who were statistically indistin-

guishable (FDR-corrected p values < 0.05, Dunn’s test of multiple comparisons). The

Bagyeli hunter-gatherers had the highest individual parasite detection rate (an average

of 3.91 parasites/person) compared to other Cameroonian populations (Baka = 2.83, Fu-

lani = 0.22, Bantu = 1.13) (Fig. 2a).

Concurrent detections with > 1 tested pathogen occurred in 39% (226/575) of Camer-

oonians. We performed species co-occurrence analysis to identify combinations of

HIV, blood, and fecal pathogens that occurred together more frequently than expected

by chance. Twenty-one pathogen pairs showed significant, positive co-occurrences

(FDR-corrected p values < 0.05 by the hypergeometric distribution). The parasites that

most frequently co-occurred were A. lumbricoides, N. americanus, T. trichiura, S. ster-

coralis, and P. falciparum (p values < 0.05 by hypergeometric distribution) (Fig. 2b,

Table S3). The four soil-transmitted helminth parasites are hereafter referred to as the

“ANTS” group.

In addition, we looked for correlations between pathogens and a number of

physiologic traits, including measures for 21 cytokines, temperature, BMI, white

blood cell (WBC) count, and WBC cell type fractions (eosinophils, basophils, neu-

trophils, lymphocytes, monocytes; Table S1). We first determined which physio-

logical variables were inter-correlated using correlation coefficients and tested their

significance [25] (Table S4). Co-occurrence results indicated that eosinophils, white

blood cell count (WBC), and temperature were significantly positively correlated

with any variable that includes ANTS parasite count (e.g., ANTS binary count,

ANTS count with blood parasite count) (Spearman’s correlation test, corrected p

values < 0.01, Table S4, Additional file 1: Figure S3). Other significantly positive

correlations included WBC with eosinophils and temperature (Table S4, Add-

itional file 1: Figure S3). Eosinophilic leukocytes are normally a small fraction of

WBC but increase dramatically during helminth infection [26]. No parasites were

positively associated with HIV status by co-occurrence analysis.

Association of pathogens with the gut microbiome

We amplified and sequenced the V4 region of the bacterial 16S rRNA marker

gene from fecal samples obtained from 103 Fulani, 117 Baka, 33 Bagyeli, 322

Bantu, and 37 US industrial agropastoralists from the COMBO cohort [23]. A

comparison of alpha diversity metrics (Faith’s Phylogenetic Diversity and bacterial

richness) indicated that the Bagyeli had the highest diversity and richness, and

that the Fulani agropastoralists had the lowest diversity and richness, with the US

being the second lowest (Additional file 1: Figure S4A-D). In all Cameroonian

samples, we observed a significant positive correlation between increasing num-

bers of parasite detections and higher within-individual bacterial diversity (Faith’s

Phylogenetic Diversity) in a linear regression model (adjusted R2 = 0.051, p value

< 0.001; Fig. 3a). When testing for correlations between bacterial diversity and

ANTS count for subsistence groups, we found that the only subsistence group
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that had a significant positive correlation were the Bantu agropastoralists

(adjusted R2 = 0.018, p value < 0.001).

The occurrence of a single ANTS parasite was correlated with increased alpha diversity

(one-way ANOVA with Tukey’s post hoc testing; adjusted p values < 0.05), paralleling the

data from populations in Cameroon [9], Indonesia [10, 15], Liberia [10], Bangladesh [15],

Fig. 2 Helminth parasite characterization in the Cameroon cohort. a Distribution of individuals with
different combinations of soil-transmitted helminths within the “ANTS” group in the Cameroon sample
colored by subsistence group. b Positive, negative, and random association based on a probabilistic model
of pathogen co-occurrence, calculated across all types of tested pathogens (blood parasites, fecal parasites,
and HIV) for all Cameroonians. The expected frequency is calculated from the presence/absence data of
parasites, with the assumption that the distribution of each pathogen is independent and random of other
pathogens. Probabilities that are more extreme than would have been obtained by chance are shown for
positive co-occurrences in blue (as one pathogen occurrence increases, the other increases), negative co-
occurrences in yellow (as one pathogen occurrence increases, the other decreases), and random co-
occurrences in gray (no significant association). Top hits for negative and positive co-occurring pathogens
are annotated as follows: Asc, Ascaris lumbricoides; HIV, human immunodeficiency virus; Nec, Necator
americanus; Pla, Plasmodium falciparum; Tri, Trichuris trichiura
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and Malaysia [13]. However, this is the first time that significantly co-occurring gastro-

enteric parasites have been shown to additively associate with increased bacterial diversity.

Bacterial microbiome composition in most individuals from Cameroon was sig-

nificantly different from the microbiome composition of US. individuals based on

weighted and unweighted UniFrac distance (Fig. 3b) (weighted UniFrac distance

PERMANOVA p-value = 0.002, unweighted UniFrac distance PERMANOVA p-

value = 0.003) (Fig. 3b) (Tables S5, S6). Prevotella was the most highly abundant

bacterial genus in most Cameroonian individuals, whereas Bacteroides was the most

abundant in the US individuals (Fig. 3c–e). We found no significant differences in

weighted and unweighted UniFrac distances by sex or age using PERMANOVA.

An analysis of the top ten significant metadata variables by PERMANOVA (FDR-

corrected p values < 0.05, Tables S5, S6) revealed that parasite variables and

Fig. 3 16S rRNA diversity and composition of the gut microbiome and parasites. a Total bacterial diversity
measured against total “ANTS” parasite count, where parasite count is the presence/absence count of
unique instances of a parasite. Thus, an individual with a score of “4” has qPCR-confirmed detection for four
different gastrointestinal parasites (see Table S1 for details). Bacterial diversity increases with gastrointestinal
parasitemia for all Cameroonian subsistence groups. b Bray-Curtis distances on 16S rRNA V4 bacterial
abundances show that most Cameroonians cluster separately from US individuals (PERMANOVA p value =
0.001). c 16S rRNA V4 clustering of US versus most Cameroonians along separate axes is largely reflective of
the differences between two highly abundant genera, Prevotella and Bacteroides. Several pastoralists and
agropastoralists overlap with the US samples. Age and sex clusters were not significant by PERMANOVA. d
Most abundant bacterial genera per population, averaged across populations, studied in 16S analysis. e
Most abundant bacterial families per population, averaged across populations, studied in 16S analysis. f
Bray-Curtis on Cameroonians, showing 16S rRNA V4 bacterial abundances colored by “ANTS” parasite
positivity. ANTS-positive samples are significantly different from ANTS-negative samples by PERMANOVA (p
value = 0.001) across all Cameroonians. ANTS-positive samples remain significantly different by PERMANOVA
from ANTS-negative samples when only considering Bantu agropastoralists (Additional file 1: Fig. S11B),
who are the only individual population with large cohorts of both positive and negative individuals in this
study (p value = 0.001)
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subsistence categories (including total ANTS and parasite counts, being positive for

Trichuris and Ascaris, and subsistence) explained the most variance in gut compos-

ition (largest R2 values).

ANTS-positive individuals also had significantly different bacterial composition

compared to ANTS-negative individuals (Fig. 3f) (PERMANOVA p values < 0.006;

Tables S5, S6). Given the uneven distribution of ANTS among the different popu-

lations, we repeated the analysis considering only the Bantu agropastoralists, who

had sufficient ANTS cases and controls for statistical comparison, and found a

similar result (PERMANOVA p values < 0.006). A possible confounding factor is

that ANTS are more common in Bantu populations from the South and East than

the Northwest, so we looked for differences in the gut microbiomes between Bantu

individuals by region. Bacterial abundances were still significantly different based

on ANTS occurrence (p = 0.004) in a PERMANOVA model accounting for both

local geography and parasite occurrence. The majority of differences among Bantu

populations were driven by taxa in the Firmicutes and Bacteroidetes phlya (Add-

itional file 1: Figure S5A-C).

We used a supervised machine learning technique, random forest classifier

(RFC), to determine which gut microbiota best predict the metadata variables iden-

tified as significantly associated with bacterial prevalence or abundance by PERMA-

NOVA in the pooled Cameroonian dataset (Tables S5, S6). RFC analysis revealed

that the country of origin could be predicted from the microbiome composition

with ~ 90% accuracy (Table S7). Previous studies indicate that moderate to heavy

parasite load is associated with increased morbidity [27] and could affect the gut

microbiome composition. Therefore, we binned individuals based on the highest

quartile of qPCR copy number for any of the four ANTS (referred to as “highly

positive for ANTS”). Individuals who were highly positive for ANTS could be pre-

dicted with 83.97% accuracy. Pastoralist and hunter-gatherer subsistence, as well as

individual presence of Microfilaria spp., A. lumbricoides, or T. trichuris, could be

predicted with 81–82% accuracy. Finally, positivity for any ANTS parasite could be

predicted with ~81% accuracy (Table S7).

To determine the importance of a given taxon predicted by RFC for a particular vari-

able, we plotted the proportional abundance of the top ten taxa from the RFC analysis.

This revealed that hunter-gatherers have statistically significantly higher abundances of

Bacteroidales, Prevotella stercorea, Succinivibrio, Phascolarctobacterium, and Treponema;

pastoralists have higher abundances of Odoribacter, Rikenellaceae, Bacteroides caccae,

and Bacteroides ovatus; and agropastoralists have comparatively lower abundances for all

of these taxa (Fig. 4a; Table S7). Bacteroidales, CF231, Treponema, Prevotella stercorea,

Anaerovibrio, and Succinivibrio were statistically significantly increased with ANTS posi-

tivity (Wilcoxon rank-sum test with continuity correction p values < 0.05; Additional file 1:

Figure S6; Table S7). In addition, we analyzed the Bantu agropastoralists separately, to

avoid confounding with subsistence. In this subset of individuals, we found that the mi-

crobial taxa most associated with ANTS positivity were CF231, Bacteroidales, Succinivi-

brio, Treponema, and Clostridiaceae (Fig. 4b). From these analyses, we find that the only

bacteria predictive solely of ANTS occurrence and not also predictive of subsistence were

Ruminococcus bromii (increased abundance in ANTS-negative individuals) and CF231

(increased abundance in ANTS-positive individuals).
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Association of microbiome structure and blood-borne pathogens

P. falciparum infection also correlated with gut microbiome composition and could be

predicted from the gut microbiome composition with ~ 73% accuracy. The top five taxa

that best predicted P. falciparum infection status were Bacteroidales, Roseburia faecis,

Lachnospiraceae, Coprococcus, and Desulfovibrio (Table S7). However, P. falciparum

detection explained less variance in the gut composition in PERMANOVA analysis

than did ANTS (Tables S5, S6), so we focused on the ANTS in most of the analysis

here.

Twenty-eight of the subjects were found to be HIV-positive. Comparison of the

members of this group to HIV-negative individuals showed no distinction based on

weighted and unweighted UniFrac distances in PERMANOVA analysis (Tables S5, S6).

Relationship between ANTS infection and the microbiome using shotgun metagenomic

sequencing

We performed shotgun metagenomic sequencing on a subset of 175 Cameroonian fecal

samples (94 Bantu, 37 Baka, 22 Bagyeli, 22 Fulani) to investigate the association of both

bacterial and non-bacterial members of the microbiome and ANTS detection and to as-

sess the associations between ANTS detection and gene function. These samples were

selected to include ANTS-positive and ANTS-negative individuals and diverse subsist-

ence groups. Where possible, ANTS-positive subjects and controls were matched by

sex, age, and sampling site (Table S1). The Cameroonian cohort was compared to 27

healthy US human gut microbiome samples from the HMP cohort [21, 22].

Alpha diversity (Shannon Index) and evenness (Simpson’s Index) results derived from

shotgun metagenomic sequencing data paralleled the 16S rRNA marker gene sequen-

cing (Additional file 1: Figure S7). The Fulani pastoralists were the only population that

had significantly different microbial diversity from all other Cameroonian populations

Fig. 4 RFC on subsistence (all Cameroonians) and ANTS occurrence in Bantu. a Top ten most important
taxa in predicting Cameroonian subsistence in 16S rRNA data, shown by model importance on the left and
relative bacterial abundance (z-scores) on the right. b Top ten most important taxa in predicting ANTS
occurrence in Bantu agropastoralists only in 16S rRNA data, shown by model importance on the left and
relative bacterial abundance (z-scores) on the right
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(1-way ANOVA with Tukey’s honest significant difference test, adjusted p values <

0.05) and had comparatively reduced alpha diversity by both metrics. Samples from

healthy US urban individuals from the HMP cohort had significantly lower alpha diver-

sity than the Fulani population (p = 0.035 1-way ANOVA with Tukey's honest signifi-

cant difference test on Simpson Index, p = 0.035).

Metagenomic reads were pre-processed using the Sunbeam pipeline [28] and

assigned to microbial taxa using several methods, including MetaPhlAn2 [29], Krake-

nUniq [30], and alignment to the Greengenes reference database of 16S gene sequences

[31, 32]. The top three bacterial genera within the Cameroonian cohort using the meta-

genomics databases were Prevotella, Bacteroides, and Faecalibacterium (Fig. 5a). Shot-

gun metagenomic sequencing also showed that the Fulani pastoralists had higher levels

of Bacteroides (median proportional abundance 29%) and lower levels of Prevotella

(median proportional abundance 1%) than other Cameroonian populations, as was ob-

served by 16S gene sequencing (Additional file 1: Figure S8). Fulani and US samples

shared high relative bacterial abundances of Bacteroides (median 59% US, median 29%

Fulani) and Alistipes (median 4% US, median 3% Fulani) compared to the other

Cameroon populations (Fig. 5b). As an additional point of comparison, we queried our

reads against a representative set of ~ 5,000 metagenome-assembled genomes (MAGs)

from Pasolli et al. [33] (Additional file 1: Figure S9) and found that the results of this

analysis were concordant with those above.

When identifying sequences using the KrakenUniq database, we found that a larger

fraction of metagenomic sequences remained unclassified in Cameroonian fecal sam-

ples compared to those from US urban dwellers in the HMP dataset. Among the Cam-

eroonian groups, the Fulani had the lowest proportion of unclassified sequences, which

Fig. 5 Shotgun sequencing composition of the gut microbiome. a The most abundant bacterial genera per
population, averaged across populations, studied in shotgun metagenomics analysis. b The most abundant
bacterial genera per population studied in shotgun metagenomics analysis. Individual vertical bars
represent different samples. Human Microbiome Project (HMP) samples are included for comparison
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is likely attributable in part to their high Bacteroides abundance, members of which are

well-studied and well-represented in genomic sequence databases [33]. The Baka had

the greatest number of reads unclassifiable at any level.

Reads classified as viral, fungal, and parasitic-eukaryotic represented a small fraction

of the average total reads across samples (average 0.05%, max 1.5%). Although samples

were not purified for virus-like particles, we occasionally detected eukaryotic viruses

(Additional file 1: Figure S10), notably human mastadenovirus D. Human mastadeno-

virus D species have associations with gastrointestinal, respiratory, and eye infections

and have been found in river and drinking water in South Africa [34] and could be in

Cameroonian water sources. However, we did not find significant differences between

subsistence groups, sampling sites, and regions in frequency of human mastadenovirus

D (Fisher’s exact test with Bonferroni test correction, p values > 0.05). The detection of

other eukaryotic viruses was too infrequent to test for statistically significant differences

between populations.

Metagenomic samples from four Cameroonian populations significantly clustered by

Bray-Curtis dissimilarities based on ANTS positivity (PERMANOVA p values < 0.05)

(Additional file 1: Figure S11A). ANTS-positive Bantu agropastoralists were signifi-

cantly different from ANTS-negative Bantu agropastoralists (first principal component

tested, Wilcoxon rank-sum test with continuity correction p value = 0.008) (Add-

itional file 1: Figure S11B); as mentioned above, the Bantu are the only group with ad-

equate cases and healthy controls for within-group ANTS statistical tests.

As a check on data quality, we compared ANTS detection in the metagenomic data

versus qPCR. There was a significant positive correlation between molecular (qPCR

cycle of threshold) and metagenomic detection (total k-mers) of A. lumbricoides (p

value < 0.001, Spearman’s ρ = − 0.74), N. americanus (p value < 0.001, Spearman’s ρ = −

0.63 and T. trichiura (p value = 0.0008, Spearman’s ρ = − 0.36) (Fig. 6a). We used

unique k-mers (called by KrakenUniq) as a measure of genome coverage for this ana-

lysis rather than reads, as unique k-mer counts are robust to potentially spurious read

pileups over short genomic regions. Genome size was also a factor—we detected para-

sites with large genomes (N. americanus, A. lumbricoides) more efficiently than para-

sites with smaller genomes (T. trichiura, Cryptosporidium spp.). For Cryptosporidium

spp. and S. stercoralis, a positive trend was observed between molecular and metage-

nomics detection.

Analysis of additional eukaryotic gut organisms

By analyzing the shotgun metagenomic data, we were able to identify potential presence

of parasite species other than those identified by qPCR. We identified different species of

Entamoeba in the shotgun analysis which were not detected by species-specific qPCR for

Entamoeba histolytica. Of those known to infect humans [35], Entamoeba dispar, Ent-

amoeba coli, and Entamoeba hartmanni were co-detected with E. histolytica in 33 sam-

ples (Fig. 6b). With the exception of one Fulani individual who was positive for both E.

hartmanii and E. histolytica, all other Entamoeba detections occurred in agropastoralists

and hunter-gatherers. Given the different species of Entamoeba detected in shotgun se-

quencing, three additional classification RFCs were run to test whether the gut microbiota

composition could predict positivity for commensal Entamoeba (E. coli, E. dispar, E.
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hartmanni), pathogenic Entamoeba (E. histolytica), or any Entamoeba, which had 69%,

54%, and 72% model accuracy, respectively. Of these, eight taxa had significantly different

abundances between Entamoeba-negative and Entamoeba-positive categories (FDR-cor-

rected Wilcoxon rank-sum test p values < 0.05). We note that assignment of multiple spe-

cies is complex and could be confounded by the presence of new species with genome

sequence intermediate between known species.

Bacterial taxa that had significantly higher abundances in Entamoeba-negative

(Ent-) individuals were Flavobacterium magnum, Shigella dysenteriae (S. dysenter-

iae), and Anoxybacillus kamchatkensis. The taxa that had significantly higher abun-

dances in Entamoeba positive (Ent+) individuals were Erysipelotrichaceae,

Trueperella pyogenes, Staphylococcus aureus (S. aureus), and Blastocystis hominis (B.

hominis). Members of the Erysipelotrichaceae family have been associated specific-

ally with Entamoeba infection in western lowland gorillas [36] and in humans [10].

Both S. aureus (associated with Ent+) and S. dysenteriae (associated with Ent-) can

induce changes in E. histolytica virulence and host response through the modifica-

tion of E. histolytica surface lectin expression, adhesion, cytotoxicity, and proteoly-

sis [37]. Trueperella pyogenes (Ent+), Flavobacterium magnum (Ent-), and

Anoxybacillus kamchatkensis (Ent-) have not been associated before, to our know-

ledge, with Entamoeba positivity.

Finally, B. hominis is a unicellular protozoan found in human large intestines and

stool at rates higher than any other parasite in non-industrialized countries [38, 39]. Al-

though B. hominis is usually considered a non-pathogenic commensal, and we had not

Fig. 6 Comparisons of parasite detections using qPCR and shotgun sequencing. a Comparison of average
Ct (cycle threshold) values are shown along the y-axis for ANTS (to the left of a), Cryptosporidium spp.,
Entamoeba histolytica, and Giardia lamblia. The x-axis corresponds to log10-transformed total k-mers from
shotgun metagenomic sequencing. A lower average Ct translates to an earlier cycle fluorescence threshold
and higher initial parasite genomic copy number. Lower Ct values have higher total k-mer counts and
correspond to a higher copy of parasite genomes. The dashed line represents the Ct value of the highest
standard. Blue dots along the y-axis represent positive controls, which were not shotgun sequenced. Filled
dots are samples that were positive in qPCR detection, and green filled dots were simultaneously positive
in fecal microscopy. b Metagenomic read counts in samples that were qPCR tested for Entamoeba
histolytica only; however, given the amount of hits to qPCR negative targets, we only looked at reads
assigned to species of Entamoeba known to infect humans
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detected it with microscopy, B. hominis has been noted to associate with increased di-

versity of human gut bacteria [40].

Features of subsistence groups in metagenomic data

Random forest classifiers using shotgun data were less accurate than 16S RFC models

at the prediction for subsistence group (64% accuracy vs. 72%), but still detected three

genus-level and species-level taxa that matched those identified in the 16S marker gene

analysis: Bacteroidales bacterium CF, Phascolarctobacterium succinatutens, Treponema

succinifaciens, and Bacteroides caccae (Additional file 1: Figure S12A). ANTS positivity

was again a strong predictor of microbiome composition (77% accuracy) among the

tested metadata variables in shotgun RFC classification (Additional file 1: Figure S12B)

and had higher accuracy than the RFC for Bantu individuals who were ANTS-positive

(RFC 59% accuracy) (Additional file 1: Figure S12C). Two taxa that predicted ANTS

positivity independent of subsistence were Peptoclostridium acidaminophilum and

Candidatus Azobacteroides pseudotrichonymphae. Both taxa had significantly higher

abundances in ANTS-positive individuals in the shotgun cohort and within Bantu-only

(two-tailed Wilcoxon rank-sum test, p values < 0.05).

Association of ANTS parasite detection and bacterial gene content

To begin to assess functional interactions between ANTS and bacteria, shotgun reads

were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [41, 42]

using DIAMOND [43]. Pathways affected were identified using linear discriminant ana-

lysis effect size (LefSe) [44]. Several KEGG classes were significantly differentially

enriched among specific subsistence groups (Fig. 7a; Table S8). In agropastoralists, we

found an enrichment of bacterial gene pathways involved in streptomycin biosynthesis,

acarbose and validamycin biosynthesis, beta-lactam resistance, and cationic antimicro-

bial peptide (CAMP) resistance. These gene pathways are all involved in the production

of antibiotics or antibiotic resistance. Hunter-gatherers had an enrichment of genetic

information processing (GIP) pathways (e.g., aminoacyl tRNA biosynthesis, RNA poly-

merase) and microbially mediated disease pathways in addition to enrichment in me-

thane, purine, and pyrimidine metabolism. The Fulani had enrichment for pathways

involved in galactose, starch and sucrose, glycan, and lipid metabolism (glycosphingoli-

pid, glycerolipid, glycerophospholipid, and sphingolipid metabolism and glycosphingoli-

pid biosynthesis; Fig. 7a).

We again considered Bantu ANTS-positive and ANTS-negative individuals in a

separate analysis, but found no significantly different pathways after multiple test

correction. Across the entire Cameroon cohort, ANTS-negative individuals tended

to have pathway differentiation that closely followed the results for subsistence,

which is likely a reflection of the comparatively larger populations of ANTS-

positive individuals in hunter-gatherer and agropastoralist groups versus pastoralists

(Fig. 7b). However, ANTS-positive individuals had enrichment for genes that play a

role in bacterial purine and pyrimidine metabolism as well as nutrient signaling

pathways implicated in aging (also known as the “longevity regulating pathways”).

Auxotrophic parasites that are deficient in purines and pyrimidines must salvage

these nucleotides from extraneous sources to synthesize DNA for their survival
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and proliferation [45]. Purine-salvaging parasites that were found in the Cameroo-

nians included the protozoans Giardia spp., Plasmodia spp., Entamoeba spp., and

Cryptosporidium spp., as well as the nematode S. stercoralis [46]. We assessed bac-

teria contributing to the enrichment of KEGG pathways in ANTS-positive individ-

uals and identified a 100% overlap between these bacteria and the top ten taxa

that were most predictive of ANTS positivity in RFC analyses using shotgun se-

quencing data (Table S9). This result serves as a cross validation that these taxa

and their functional pathways are significantly different in ANTS-positive samples.

Fig. 7 Functional analysis of gene content by pathway and association of ANTS with cytokine levels. a
Functional analysis of gene content by pathway for subsistence using KEGG. Each row represents a
subsistence group, and each column represents a gene pathway. Columns are grouped according to the
KEGG class. The intensity in each cell represents the mean value of relative enrichment, with dark purple
representing high pathway enrichment and dark red representing low pathway enrichment. Cells marked
with asterisks denote significance, with *p = 0.05, **p = 0.001, and ***p < 0.001. EIP, environmental
information processing; GIP, genetic information processing. b Functional analysis of gene content by
pathway for Cameroonians positive or negative for ANTS using KEGG. Each row represents a subsistence
group, and each column represents a gene pathway. Columns are grouped according to the KEGG class.
The intensity in each cell represents the mean value of relative enrichment, with dark purple representing
high pathway enrichment and dark red representing low pathway enrichment. Cells marked with asterisks
denote significance, with *p = 0.05, **p = 0.001, and ***p < 0.001. EIP, environmental information processing;
GIP, genetic information processing. c Boxplots showing the levels of all cytokines determined as positively
correlated with ANTS parasites (Tables S10, S11), binned by positive/negative status. d Boxplots showing the
same cytokines indicated as significantly correlated from c but compared across counts of unique ANTS
(e.g., a dot in the “4” boxplot is an individual who was positive for all four ANTS). Individuals are counted
only once
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Comparison of microbial data to human immune responses reported by cytokine

production

The concentrations of 19 cytokines across 72 Cameroonian plasma samples were mea-

sured and visualized in separate correlation plots by ANTS detection (“ANTS binary”),

ANTS total count (where count is 0–4), HIV (presence/absence), and P. falciparum

(presence/absence). ANTS detection was significantly positively associated with Th1-

associated cytokines IL-7 and IL-2, Th2 cytokines IL-5 and IL-13, Th17 cytokine IL-

17a, and proinflammatory cytokines MIP1b/CCL3 and IL-1b (Sup. Fig. 12A; Fig. 7c)

(Spearman’s correlation coefficient, p values < 0.01, Table S10). The count of ANTS

was positively associated with the same cytokines, except IL-2 (Additional file 1: Figure

S13B; Fig. 7d) (Spearman’s correlation coefficient, p values < 0.01, Table S11). Levels of

cytokines IL-13, IL-17a, and IL-1b increased with ANTS count, whereas cytokine values

peaked at an ANTS count of two for MIP-1b, IL-5, and IL-7. HIV and P. falciparum

had positive, significant associations with proinflammatory cytokine TNFα (Spearman’s

correlation coefficient, p values < 0.01, Additional file 1: Figure S13C, Table S12) and

IL-10 (Spearman’s correlation coefficient, p values < 0.01, Additional file 1: Figure

S13D, Table S13), respectively.

Regression-based RFC was performed on all cytokines in conjunction with 16S gene

and shotgun metagenomic data to assess whether the microbiome composition could

be used to predict cytokine values (Table S6, Additional file 1: Figure S14). Regression-

based RFCs indicated that microbiome data could most accurately predict IL-5 levels

among all tested cytokines (16S rRNA sequencing data, 31% accuracy; shotgun sequen-

cing data, 75% accuracy). IL-5 is essential in the development and recruitment of eosin-

ophils to sites of infection and stimulates the production of anti-microbial peptides and

mucus in the intestinal epithelium during helminthiasis [47, 48]. The higher accuracy

of shotgun sequencing data in predicting IL-5 levels as compared to 16S gene sequen-

cing data is likely the result of a larger percentage of ANTS-positive individuals in the

shotgun sequencing dataset, as IL-5 is positively associated with helminthiasis (Fig. 7c,

d; Sup. Figure 12A, B). Of note, the unassigned bacteria within the Bacteroidales class

were most predictive of IL-5 levels based on shotgun sequence data and were the sec-

ond most predictive class of bacteria using the 16S sequencing data (Sup Table 6). In

both datasets, Bacteroidales abundance had a significant, positive relationship with IL-5

levels (Spearman’s test for correlation in 16S p value < 0.001; ANOVA in shotgun p

value < 0.001). Bacteroidales was also the most explanatory taxon in highly positive

ANTS and ANTS detection (“ANTS binary”) using shotgun and 16S sequence datasets.

Bacteroidales bacterium CF had significantly higher abundance in ANTS-positive ver-

sus ANTS-negative individuals (Wilcoxon rank-sum test with continuity correction, p

value < 0.001) using both shotgun and 16S sequencing data (p value < 0.001).

Further analysis of gut microbiota, subsistence strategy, and diet: gut microbiota are not

associated with the lactase persistence phenotype in Cameroonians

The ability to digest milk as an adult is suggested to be an adaptive trait that can confer

nutritional benefits and can provide a critical source of water in arid regions [49]. Prior

gut microbiome studies have contrasted industrialized populations with hunter-

gatherer or agropastoralist populations, and only one has included African pastoralists
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known to consume high volumes of dairy [50]. Here, we compared functional measures

of the ability to breakdown milk sugars with microbiome data for Cameroonians, which

includes a pastoralist population.

The ability to break down lactose milk sugar in the small intestine past weaning and

into adulthood is known as the lactase persistence (LP) phenotype [51]. We predicted

that hosts who are lactase non-persistent (LNP) would not be capable of metabolizing

lactose in the small intestine, and instead, the lactose would be catabolized by bacteria

containing the LAC operon in the distal colon. The LAC operon, which produces beta-

galactosidase, cleaves the milk sugar lactose into galactose and glucose, and gut bacteria

with this operon may play a role in the digestion of dairy products (Additional file 1:

Figure S15).

We administered a lactose-tolerance test (LTT) to 154 Cameroonians to test for the

association of the gut microbiome with the LP/LNP phenotype. Of the Cameroonians,

102 were LNP, 21 were LP, and 31 were lactose intermediate-persistent (LIP). The lat-

ter two groups were both considered “positive” in LP binary analysis, where samples

were considered as either lactase-persistent (LP = 52) or non-persistent (LNP = 102)

(see the “Methods” section, Table S1). Bacterial microbiome composition (16S) across

the entire Cameroonian cohort did not differ by lactase persistence phenotype in

weighted or unweighted PERMANOVA (Tables S4, S5). In addition, microbiome com-

position was not a strong predictor of lactase persistence phenotype in either 16S

(65.56% accuracy) or shotgun data (48.84% accuracy).

However, we found an enrichment of genes in the galactose and lipid metabolism

pathways for Fulani pastoralists compared to other populations using shotgun sequen-

cing data (Fig. 7a). The most highly abundant bacteria contributing to genes in these

enriched pathways were Bacteroides vulgatus for galactose metabolism, and Prevotella

enoeca, Bacteroides fragilis, and Bacteroides vulgatus for lipid metabolism.

Discussion
Here, we present a large-scale study of the microbiome of 575 Cameroonians, interro-

gated using both shotgun and shotgun metagenomic and 16S rRNA amplicon sequen-

cing, and compare the results to data on pathogen load, anthropometrics, immune

parameters, and lactose tolerance. Several previous studies have provided data on the

gut microbiota of rural populations with traditional subsistence strategies [3, 4, 8, 33,

52–57], and two compared data on parasite infection in Africans [9, 10]. Our data pro-

vide detailed insights thanks to a greater power from the larger sample set, allowing,

for example, the finding that presence of multiple parasites showed relatively stronger

effects on the gut microbiota. We found that the occurrence of Plasmodium had a de-

tectable effect on the gut microbiome, as in previous studies [58, 59], but the presence

of ANTS had a much larger effect, and so, ANTS are the focus here. Below, we discuss

first the features of the gut microbiota newly seen here, then the interaction with

ANTS; lastly, we discuss a few additional findings on subsistence strategy and micro-

biome structure.

We show that Cameroonians have higher amounts of Prevotella relative to Bacter-

oides-enriched US samples. Bacteroides relative abundance is higher in Fulani than in

other Cameroonian populations. Our ability to identify microbes from remote, rural

settings is limited by the availability of appropriate reference microbial genomes. As a
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result, we have a larger fraction of “unknown” reads that could not be classified at any

taxonomic level in Cameroonian samples as compared to US samples. Our sample

set also allows us to ask how the different baseline microbiotas in rural populations are

associated with colonization with multiple parasites.

We show that increasing parasite count correlated with higher alpha bacterial di-

versity. We speculate that this higher diversity associated with helminth positivity

could result from direct or indirect communication with other microbes and/or

with immunomodulatory mechanisms (i.e., cytokines). Increased gut bacterial diver-

sity has been both positively and negatively associated with intestinal helminth and

protist infections [14].

Two studies, Gomez et al. [4] and Morton et al. [9], have previously characterized the

bacterial gut microbiomes of some Central African rainforest hunter-gatherer popula-

tions and neighboring Bantu agropastoralists. Gomez et al. [4] hypothesized that en-

richment of Firmicutes in the Bantu as compared to the Baka may be associated with

an increased ability to catabolize dietary energy. In contrast to this, we did not find an

enrichment of Firmicutes in the Bantu as compared to the Baka. From 16S rRNA se-

quencing, we found that the median proportional abundance for Firmicutes to Bacteroi-

detes was approximately 1:1 for both the Baka and the Bantu. The difference in the

Firmicutes to Bacteroidetes ratios between our study and Gomez et al. [4] may be due

in part to several factors, including distance from the sampling location in Gomez et al.

[4] to our nearest sampling location (> 350 km apart) diet, bias in assessment of micro-

bial abundances introduced by different primers and amplicons between studies, and

the comparatively larger number of individuals sampled in our study (117 Baka and

322 Bantu) compared to Gomez et al. [4] (28 Baka and 29 Bantu).

Morton et al. [9] characterized the bacterial microbiome of rural populations in

Southwest Cameroon that were highly parasitized by protists and helminths through

16S rRNA gene sequencing. Morton and colleagues found that E. histolytica

colonization was predictive of microbiome diversity and composition (79% accuracy)

[9]. Here, we found that A. lumbricoides, N. americanus, T. trichiura, and S. stercoralis

(ANTS) occurrence is highly predictive of microbiome composition, particularly when

more than one species is present at the same time (81% accuracy). Microbiome com-

position could be used to predict ANTS parasite co-occurrence with greater accuracy

than all other tested variables save country and subsistence, indicating the importance

of considering gut parasite co-occurrence when studying microbiome composition in

populations known to have helminthiasis.

Shotgun sequencing suggested that several Cameroonians harbored multiple types of

commensal and pathogenic Entamoeba. Co-occurrence of commensal and pathogenic

Entamoeba species has been previously documented in human and non-human pri-

mate hosts in east Cameroon [60]. The degree to which human commensal and patho-

genic enteric Entamoeba interact, enhance, or inhibit one another remains an open

area of investigation.

Multiple RFC models testing different categories of ANTS parasite detection indi-

cated that Bacteroidales, a known occupant of intestinal mucosal surfaces with mucin

degrading species, was an important predictive taxon. Bacteroidales was consistently

found at elevated abundances in ANTS-positive individuals. Previously, Bacteroidales

has been found in lower abundances in the guts of humans infected with Entamoeba
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histolytica [9]. In murine models, infection with helminths led to the reduction of Bac-

teroidales and the concurrent expansion of Clostridiales communities [61], which was

hypothesized to stimulate an anti-inflammatory response (increased IL-5 and IL-13) in

the host. Bacteroidales have been shown in multiple studies to modulate intestinal and

immune functions in the host [62–64]; here, Bacteroidales may be found in higher

abundances due to the unexplored direct interactions with ANTS, through indirect

means via immunomodulatory signaling as a result of ANTS positivity, or due to an in-

crease in mucin production consequent to nematode-induced morbidity [65]. Our ob-

servations are consistent with similar Bacteroidales expansions detected in the gut

microbiomes of rural Malaysians infected with T. trichiura [13]; however, we cannot

rule out that Bacteroidales abundances found here may be confounded with subsistence

practice.

RFC results suggested that four taxa, Ruminococcus bromii, CF231, Peptoclostridium

acidaminophilum, and Candidatus Azobacteroides pseudotrichonymphae, were associ-

ated with ANTS detection after correction for subsistence strategy. CF231 is a common

occupant of ruminant guts [66] which has occasionally been found in humans [67] but

has not, to our knowledge, been associated with human fecal parasites. Ruminococcus

bromii can degrade foods high in resistant starch and has been associated with fishing

subsistence in coastal Cameroonians [9]. In our study, we found that individuals with

this bacterium were less likely to be ANTS-positive even when controlling for subsist-

ence. Diets rich in resistant starch have been linked to reductions in gastrointestinal in-

flammation [68]; thus, it is possible that R. bromii could have a protective effect against

helminthic disease, or at least in alleviating inflammation associated with helminthic

disease. Peptoclostridium acidaminophilum, previously known as Eubacterium acidami-

nophilum [69], is a versatile, amino acid-degrading anaerobe that has not been

associated, to our knowledge, with helminthiasis in prior research. However, Hadza

hunter-gatherers were previously described to have an enrichment of KEGG ortholo-

gous genes involved in amino acid metabolism, and greater functional potential to

metabolize proline, serine, glycine, and threonine [56]. Candidatus Azobacteroides

pseudotrichonymphae is a termite endosymbiont [70]. These bacteria, together with the

taxa in the carbohydrate-metabolizing Ruminococcaceae family and non-pathogenic

species in the genus Treponema (all of which are present in our data), are considered

common occupants of termite guts [71]. Treponema is also a common constituent of

healthy non-human primate guts [72, 73]. Termites are a substantial component of

hunter-gatherer and agropastoralist diets in many parts of Cameroon [74, 75]. Termite

consumption could be more common in ANTS-positive individuals, which could be af-

fected by bioavailability of termites, subject to climate and location (i.e., more tropical

locations, which are correlated with a higher infectious disease burden of helminths).

Whether the presence of these taxa has any effect on susceptibility or response to

ANTS parasites remains an open question.

We found no detectable microbial community alterations in HIV+ compared to

HIV− subjects (Sup. Figures. 15 and 16), paralleling some, but not all, studies of

lentiviral infection and the gut microbiome [76–80]. We did find a modest statisti-

cally significant positive correlation between TNFα and HIV infection. The TNFα/

TNFR pathway has been established as a component of immune activation and the

development of viral reservoirs during HIV infection [81]. We found an additional
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modest but significant correlation between P. falciparum and IL-10. IL-10 is a

potent anti-inflammatory cytokine that can ameliorate malaria pathology and pro-

mote secretion of antibodies that can protect against malaria reinfection [82, 83].

We also observed significant differences in microbiome composition and subsistence

strategy. We had expected that many of the Fulani pastoralists would produce the lac-

tase enzyme given their dairy-rich diets and a reported 50% prevalence of clinical lac-

tose tolerance [84–86]. If the host can successfully take up lactose in the small

intestine, then less is passed to the distal colon, which would hypothetically result in

lower abundances of gut bacteria capable of catabolizing lactose in lactase-persistent

hosts as compared to lactase non-persistent hosts. When we tested for the association

of the gut microbiome with the lactase persistence phenotype, we did not detect signifi-

cant differences in the gut microbes of LP and LNP individuals, including the taxon

Bifidobacterium, which has been extensively associated with dairy catabolism in popula-

tions with majority European ancestry [87]. This result implies that Cameroonians may

not possess the same colonic bacteria that catabolize dairy sugar as Europeans.

However, we found that the Fulani pastoralists had higher levels of galactose-

metabolizing microbial genes compared to the other Cameroonians. Galactose and glu-

cose are products of catabolism of lactose, and the enrichment of galactose-

metabolizing gene pathways may indicate a role of the microbiome in the digestion of

dairy products (Additional file 1: Figure S15). Several taxa with small relative abun-

dances cumulatively produced the galactose metabolism pathway result in the Fulani,

suggesting that their gut bacteria may act in consortium within an individual to catabo-

lize dairy sugar. This observation is in contrast to a single taxon (i.e., Bifidobacteria) be-

ing attributed with much of the dairy sugar breakdown in the guts of Europeans.

Finally, we observed an enrichment for microbial genes that play a role in lipid metab-

olism in the Fulani. Unpasteurized cow’s milk, such as that consumed by rural pastoral-

ists, contains an average of ~ 3–4% milk fat (lipids), potentially explaining this

observation.

In summary, we present an analysis of 575 Cameroonian subjects, which provides a

detailed look at the influence of intestinal parasites and subsistence on the gut micro-

biome. Further studies would benefit from longitudinally sampling populations and in-

tegrating individualized dietary information to distinguish healthy host microbiome

structure from parasitized states and to test for the association of microbial diversity

with seasonality. Long-term, deeper understanding of the gut microbiome and its inter-

actions with pathogens may provide data useful for optimizing health outcomes in

Cameroon and elsewhere.

Conclusions
This study represents the largest work to date on the correlations between subsistence,

polyparasitemia (fecal and blood), and gut microbiota in sub-Saharan Africans. We find

high levels of helminths and Plasmodium falciparum blood parasites in the Cameroo-

nians and particularly in hunter-gatherers. We establish that co-occurrence of gut para-

sites is significantly associated with microbial community structure in the gut and that

increased diversity is correlated with increasing occurrence of ANTS. We identify puta-

tive taxa associated with subsistence type, cytokine response, and the presence of

ANTS. We did not find an association between the host’s ability to digest dairy and gut
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microbiota composition in the Cameroonians. However, Fulani pastoralists possessed

an enrichment of lipid and galactose-metabolizing pathways in their gut microbiomes.

The gut microbiota are an intriguing potential therapeutic target in the treatment or

prevention of helminthiasis, motivating further investigation into the mechanisms be-

hind parasite-host-microbiota interactions.

Methods
Participant details

Cameroon samples were collected from nine villages in the Northwest (Ntambang,

Sabga), South (Bidou I, Ndtoua), and East (Nkolbikong, Missoume, Njibot, Aviation,

Bosquet) regions of Cameroon (Fig. 1a), all of which represented rural communities.

The villages in the East and South Administrative regions are located in densely for-

ested areas with primarily tropical monsoon and rainforest climates, while the villages

in the Northwest are primarily in tropical savanna climates ((Köppen-Geiger climate

classification, https://en.climate-data.org/location/2905/)). The traditional wet season

for Cameroon is April through September, and the traditional dry season runs October

through March. The Cameroon populations were sampled between January and July.

All populations sampled in this study speak languages in the Niger-Kordofanian family.

Ethnicity, sample sizes, sampling coordinates, and subsistence classifications are listed

in Table S1.

For the Cameroon populations included in this study, we were able to obtain nutri-

tion questionnaires that included types of food grown, foraged or hunted, sold, given to

livestock, and consumed, with general frequencies (daily, weekly) of food consumption

(Table S2). We also note what sources of water are used, where food is prepared, and if

there had been recent periods of food insecurity. Our results were consistent with prior

research [4, 9, 50] indicating that Baka and Bagyeli have high-fiber diets, incorporate

food from foraging and hunting, and have some small-scale subsistence farming and

raising of small livestock (primarily chickens). Bantu agropastoralists rely primarily on

small-scale subsistence farming of grains and vegetables for their food and have a larger

array of livestock used for meat and trade. The Fulani have similar diets to the Bantu

with the notable exception that their diets include a substantial amount of dairy.

DNA extracted from fecal samples from 37 healthy, omnivorous, US participants in the

greater Philadelphia area was used here for comparative purposes in the 16S rRNA ana-

lyses. Eleven of the US participants self-described their ethnicity as African-American,

and 26 self-described as European-American. These samples were collected for a prior re-

search study, the details of which can be found in Wu et al. [23]. Data for age, sex, height,

weight, location, and BMI were included in the diversity metric analyses (Table S1).

Sample collection and storage

Fecal samples were obtained from asymptomatic subjects with no signs of clinical ill-

ness and who self-reported as not pregnant. Participants produced a fecal sample in a

sterile plastic container that was immediately returned to researchers at the field site. A

midsection sample of stool (~ 5 g aliquots) was harvested into a 5 -ml container and im-

mediately frozen in liquid nitrogen. Samples were stored at − 80 °C before transporta-

tion to the USA in dry ice, where it was again stored at − 80 °C until extraction.
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Relative percentages of lymphocytes, monocytes, eosinophils, basophils, and neutro-

phils were measured for 570 individuals. For 524 of these individuals, contemporan-

eous plasma samples were also collected. Blood was drawn into 10 ml capacity BD

Vacutainers containing EDTA, and small drops of blood were taken from this tube to

measure white blood cell count (HemoCue WBC analyzer and HemoCue WBC

cuvettes) and to make thick and thin blood smears on slides for malaria and filarial

parasite testing. Following this step, the tube of blood was immediately spun down,

and plasma was processed through a Leukolock kit (Ambion Inc.). Plasma was

aliquoted into 0.5-ml Eppendorf SafeLock tubes and frozen in liquid nitrogen. The

plasma was frozen at − 20 °C, and all samples were analyzed simultaneously.

Fecal sample processing and DNA sequencing

Fecal DNA extraction

Cameroonian and US fecal samples were processed with the same laboratory and com-

putational pipelines for extraction and 16S rRNA analysis. Total DNA from fecal mate-

rials was extracted from ~ 220-mg aliquots using a PSP Spin Stool DNA Plus Kit

(Stratec Biomedical; Birkenfeld, Germany) with a modified bead-beating method [88].

PCR and extraction blanks were used to control for reagent and environmental con-

tamination, and all extractions were conducted in a laminar flow hood. Eluted DNA

was quantified by fluorometry and stored at − 20 °C.

Bacterial 16S rRNA amplicon sequencing

PCR reactions were performed on extracted fecal DNA in triplicate using Accuprime

Pfx Supermix (Invitrogen, Carlsbad, CA) and barcoded composite primers with Illu-

mina adapters to amplify the V4 region of the bacterial 16S rDNA genome following

the methods of Kozich et al. [89] on a GeneAmp 9700 PCR System. Sequences of DNA

primers used in this study are reported in Table S1. PCR conditions were as follows:

95 °C for 2 min, followed by 30 cycles of 95 °C for 20 s, 55 °C for 15 s, 72 °C for 5 min.,

and then a final elongation step at 72 °C for 10 min. A gene block mock community of

eight archaeal species not normally detected in experimental data was used as a positive

control following Kim et al. [90] (Table S14). Samples containing the resulting ~ 250-

bp products were pooled, and a subset was visualized by gel electrophoresis on a 1%

agarose gel. Library clean-up was performed using SequalPrep Plate Normalization Kits

(Invitrogen; Carlsbad, CA), and average library fragment size was checked on a subset

of samples using a Tapestation d1000 ScreenTape System (Agilent; Santa Clara, CA).

Libraries were quantified using Qubit dsDNA HS Assays (Thermo Fisher Scientific,

Waltham, MA) and pooled in equal amounts. Libraries were sequenced on an Illumina

MiSeq across 4 runs using 2 × 250 bp cycles in the Bushman Lab. Sequence data are de-

posited under project accession PRJNA547591 in the NCBI Sequence Read Archive;

sample details are in Table S1.

Shotgun metagenomic sequencing

A total of 178 fecal DNA sample aliquots were normalized to 0.2 ng/μl DNA, and 1 ng

of DNA per sample was used as input for the Nextera XT DNA Sample Prep Kit (Illu-

mina, San Diego, CA) using manufacturer protocols. PCR amplification using unique
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combinations of barcoded primers was performed on a GeneAmp 9700 PCR System,

and short DNA fragments were removed using AMPure XP bead purification. Library

fragment size was visualized on a Tapestation d1000 ScreenTape System (Agilent, Santa

Clara, CA), and libraries were quantified using PicoGreen before being pooled in equi-

molar ratios for sequencing. Three extraction negative controls (denoted “EB” in the

metadata) and two library negative controls (“Lib Neg”) were included on the run. The

pooled library was subjected to a second round of quantification on a BioAnalyzer 2100

(Agilent, Santa Clara, CA), followed by a MiSeq Nano sequencing run for quality con-

trol. After this, the pooled library was diluted in hybridization buffer, heat denatured,

and paired-end sequenced on an Illumina HiSeq 2500 using V4 reagents in the

Penn CHOP Microbiome Core.

Pathogen testing

Microscopy

Stool samples were examined in the field for parasite presence using wet-mount fecal

microscopy. Samples were examined with and without iodine staining and visualized

with standard light microscopy to identify visible gastrointestinal parasites or parasite

ova, including hookworm (species indeterminate with light microscopy), amebiasis

(Entamoeba spp.), giant roundworm (Ascaris lumbricoides), human whipworm (Tri-

churis trichiura), giardia (Giardia spp.), human roundworm (Strongyloides stercoralis),

and flatworms (Schistosoma mansoni). We note that there were no positives for S. man-

soni by light microscopy or by qPCR test of 100 randomly selected samples, and there-

fore, it was not included in further analyses. Thick and thin blood smear slides were

prepared with Giemsa staining to identify blood parasites in the field, including plas-

modia (Plasmodium spp.) and filaria (Microfilaria loa loa, Microfilaria spp., Manso-

nella perstans, Wuchereria bancrofti). Details on microscopy positivity are in Table S1.

Quantitative PCR

DNA oligonucleotide sequences used in qPCRs are listed in Table S15. A gBlocks gene

fragment (Integrated DNA Technologies, Coralville, IA) containing parasite target se-

quences was synthesized and cloned into a TOPO cloning vector, transformed into

TOP10 competent E. coli cells, and purified with a Qiaprep Spin Miniprep Kit (Qiagen,

Hilden, Germany). Purified plasmid DNA was quantified by Picogreen, and the se-

quence was validated with Sanger sequencing. Plasmids were diluted to a known con-

centration, and serial 1:5 dilutions were performed to generate a 9-point standard

curve. Unknown samples were compared against this standard curve for quantification.

Positive control DNA was extracted from three parasite samples: Cryptosporidium

parvum from infected mouse stool sample, and Giardia lamblia and Strongyloides ster-

coralis from infected canine stool samples using the same methods as human stool

DNA extraction. Wells with no template were used as negative controls, and all con-

trols and standards were tested in duplicate. Species-specific primers and probes used

in Mejia et al. [24] were used to assay parasite genome copy number for Ascaris lum-

bricoides, Necator americanus, Ancylostoma duodenale, Giardia lamblia, Entamoeba

histolytica, Trichuris trichiura, and Strongyloides stercoralis parasites. The pan-Crypto-

sporidium spp. qPCR uses primers and probes from Jothikumar et al., [91], which tests
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for ten Cryptosporidium species: C. hominis, C. parvum, C. canis, C. felis, C. parvum-

like (from lemurs), C. muris, C. andersoni, C. baileyi, C. wrairi, and C. serpentis. All

qPCRs were conducted on individual parasites using 384-well MicroAmp EnduraPlate

Optical 384-Well Clear Reaction Plates (Applied Biosystems, Waltham, MA) in tripli-

cate on a QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems, Waltham,

MA). The total volume per reaction was 7 μl, consisting of 3.5 μl of TaqMan Fast Ad-

vanced Master Mix (Applied Biosystems, Waltham, MA), 2 μl of template DNA and

1.44 μl of species-specific primers (final concentration of 900 nM) and probes (final

concentration of 250 nM), and 0.06 μl Sigma water (Sigma-Aldrich, St. Louis, MI).

qPCRs were run with default parameters and 40 cycles.

In this study, we report the quantification cycle threshold (Ct), which corresponds to

the PCR cycle values measuring when fluorescence from template amplification exceeds

the background fluorescence. Cycle threshold is an inverse measure of nucleic acid

quantity. At least two of the three replicates had to fluoresce within the standard range

for the sample to be positive. We had no samples that were positive for Ancylostoma

duodenale, and thus, this parasite was removed from all downstream analyses. All asso-

ciation testing with the microbiome and other analyses were performed using parasite

positivity and parasite genomic copy number taken from qPCR results only.

HIV testing

Testing for human immunodeficiency virus (HIV) p24 antigen and antibodies to HIV

type 1 (HIV-1 groups M and O) and HIV type 2 (HIV-2) was done using a GS HIV

Combo Ag/Ab EIA immunoassay (BioRad, Hercules, CA). Testing was performed on

75 μl per sample of thawed plasma according to the manufacturer’s instructions. The

results were read on a SpectraMax 190 absorbance microplate reader (Molecular De-

vices, San Jose, CA). In addition to positive controls from the GS HIV Combo Ag/Ab

EIA kit, human serum from an anonymous, seropositive donor from the US who had

not yet been treated with antiretroviral drugs was used on every test plate.

Serum cytokine measurements

We measured 21 cytokines from the plasma using a high-sensitivity multiplex cyto-

kine panel (Milliplex MAP Human High Sensitivity T Cell Magnetic Bead Panel, 21-

Plex). The cytokine panel included Fractalkine/CX3CL1, granulocyte-macrophage

colony-stimulating factor (GM-CSF), interferon-gamma (IFNγ), interleukin (IL) 1β,

IL-2, Il-4, IL-5, IL-6, IL-7, Il-8/CXCL8, IL-10, IL-12 (p70), IL-13, IL-17A/CTLA8, IL-

21, IL-23, I-TAC/CCL11, MIP-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, and TNFα

(tumor necrosis factor α). The panel was run on a Bio-Plex 200 machine using the

manufacturer’s protocols (Sigma-Aldrich, St. Louis, MI). Cytokine concentrations

were determined using standard curves, with the limits of detection for analytes re-

ported in Table S1. A total of 72 Cameroonian samples were analyzed in two batches,

with high and low cytokine-specific controls used across both batches. Measurements

for each sample and standard curve were performed in duplicate, with the average of

the two measurements reported. For two cytokines (MIP-1α/CCL3 and IL-2), we had

an insufficient amount of non-NA values to conduct statistical tests, and we removed

these from further analysis.
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Lactose tolerance test and lactase persistence phenotype calculation

Lactose tolerance test

To test for the association of the gut microbiome with the lactase persistence pheno-

type, 154 individuals from the Cameroonian cohort were given a lactose tolerance test

(LTT) (Ranciaro et al., in preparation). Participants fasted overnight and had baseline

glucose measured before beginning the test using either a CodeFree glucometer with

SD CodeFree strips or an Accu-Chek Active glucometer with Accu-Chek Active strips.

Exclusion criteria included having a baseline glucose outside of 60–100 mg/dl and dia-

betes. Participants drank a 50-g lactose powder solution (QuinTron, Milwaukee, WI)

dissolved in 250ml water which was equivalent to ~ 1–2 l of cow’s milk [51]. Blood glu-

cose was measured in 20-min intervals over the next hour.

Lactase persistence phenotype calculation

Glucose values were first adjusted to correct for test strip error using the regression

equation y = 0.985x − 7.5, where x is the measured glucose value. The maximum rise in

glucose level was ascertained by comparing observed glucose values against the baseline

value and used to classify the lactase phenotype. Individuals were classified as either

lactase persistent (LP) (rise in blood glucose > 1.7 mmol/l), lactase non-persistent

(LNP) (rise in blood glucose < 1.1 mmol/l), or lactase intermediate persistent (LIP) (rise

in blood glucose between 1.1 and 1.7 mmol/l).

Anthropometry

BMI: height and weight calculations

Height was measured using a Shorrboard Stadiometer (www.shorrproductions.com),

with the individual in an erect position with the Frankfurt plane as horizontal as pos-

sible. Height was measured with shoes if worn (this was noted in the anthropometry

form). Height was recorded in centimeters to the nearest millimeter.

Weight was measured using a set of Seca 876 scales and recorded in kilograms to

one decimal place. Weight was measured with shoes if worn. Care was taken to ensure

that the scales were firmly seated and level.

Temperature

Temperature was measured in triplicate on a non-contact infrared thermometer.

Quantification and statistical analysis

ASV inference

The V4 region of the bacterial 16S rRNA gene was sequenced on the Illumina MiSeq

platform across 4 MiSeq runs. FASTQ files were generated from raw BCL files using

“configureBclToFastq.pl” (Illumina, San Diego, CA), and paired-ends were assembled

using the QIIME2 pipeline. All sequences went through quality filtering, demultiplex-

ing, chimera removal, denoising, and merging using the demux and DADA2 plugins

with default settings. DADA2 produces an amplicon sequencing variant (ASV) table

that can resolve unique sequences down to single-nucleotide differences and attaches

biological meaning to sequences independent of a reference database. All ASV feature

tables were then merged (https://github.com/marubel/R-ubelMisc). We used a classifier
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that was pretrained on the V4 region targeted by the 515F and 806R primer sets [92,

93] with 99% OTU sequence similarity using the most recent version of the Green-

Genes (http://greengenes.secondgenome.com/) database. Sequences classified as mito-

chondria and chloroplasts were removed. To conduct phylogenetic analyses of

microbiome sequences, sequences were aligned with MAFFT [94] and a phylogenetic

tree was produced with FastTree2 [95] using default settings. Sequences derived from

plastids and mitochondria were removed. A gene block mock community of eight ar-

chaeal species not normally detected in experimental data was used as a positive con-

trol across runs (Table S14), following the methods used in Kim et al. [90]. The four

gene block controls, 12 negative extraction, and PCR controls were dropped from fur-

ther analysis. This produced a total of 14,138 ASVs.

Shotgun metagenomic sequencing processing and analysis

Illumina BaseSpace output metrics from the shotgun metagenomics run are

available in Tables S16-S18. In brief, there were 1,820,262,487 raw reads and 1,

820,262,480 reads that passed the Illumina chastity filter. The Illumina chastity

filter measures the ratio of the intensity base call divided by the sum of the

brightest and second brightest intensity base calls. Raw shotgun metagenomic

data files were de-multiplexed and converted from BCL to FASTQ using

bcl2fastq (Illumina, San Diego, CA), which drops unassigned reads, including

those mapping to PhiX, a common sequencing control. Demultiplexed FASTQ

files were analyzed using the Sunbeam pipeline [28], as detailed in https://

github.com/sunbeam-labs/sunbeam/. In short, quality filtering was done using

default settings of Trimmomatic [96] (reads below 36 bases, trailing or leading

bases with quality scores below three, and base reads scanned in a 4-nt sliding

window with average quality/base < 15 were dropped), and adapters were

trimmed from sequences with Cutadapt (fwd_adapters [“GTTTCCCAGTCAC-

GATC,” “GTTTCCCAGTCACGATCNNNNNNNNNGTTTCCCAGTCACGATC”]

and rev_adapters [“GTTTCCCAGTCACGATC,” “GTTTCCCAGTCAC-

GATCNNNNNNNNNGTTTCCCAGTCACGATC”]) software [97]. This effect-

ively dropped the two library negatives and the three extraction blanks from

further shotgun analyses. FastQC (Babraham Bioinformatics) was used to assess

the read quality on read pairs surviving quality filtering (Table S17). Low com-

plexity sequences were masked using https://github.com/eclarke/komplexity with

a normalized complexity score of < 0.55. For k = 4, this scores that across a 64–

120-bp region, the sequence is strongly suggestive of being low-complexity, re-

petitive sequence, and thus is unlikely to be informative. Reads that mapped to

a human reference sequence (Genome Reference Consortium Human Build 38,

GRCh38) were identified using bwa [98]. Sample reads with > 60% of the read

fraction mapping to GRCh38 or with a percent identity > 50% were removed.

Per sample, non-host (microbial) reads can be found in Table S18. The output

from the Sunbeam quality control was inspected manually using the sbx_report

extension (https://github.com/sunbeam-labs/sbx_report). This produced a total

amount of 1.65 billion host-filtered, quality-controlled reads (controls not in-

cluded). This amounts to a median of 8.5 million reads and an average of 9.3
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million reads per sample. KrakenUniq [30] was used to classify human-filtered,

quality-controlled reads using the Sunbeam extension sbx_kraken_uniq (https://

github.com/ArwaAbbas/sbx_kraken_uniq) on a low-complexity masked database

of bacterial, archaeal, viral, fungal, and protozoal sequences from NCBI nt

(downloaded 13 December 2018). Classifications reported at the genus and spe-

cies level are reported as relative abundances and were further filtered based on

meeting a threshold of the number of reads and read to k-mer ratio, as de-

scribed in the figure legends. Shotgun metagenomic reads were also classified

using two alternate methods for comparison: MetaPhlAn2 [29] on the MetaPh-

lAn2 mpa_v20 database using the sbx_metaphlan Sunbeam extension (https://

github.com/sunbeam-labs/sbx_metaphlan/) and the GreenGenes 16S database

using Kraken2 (https://ccb.jhu.edu/software/kraken2/). As expected, given the

differences in the database used, and known 16S primer biases, the relative pro-

portions of bacterial genera classified by amplicon and shotgun sequencing did

not always correspond. In a comparison across MetaPhlAn2, KrakenUniq, and

16S Greengenes classification for both V4 and shotgun data, comparisons be-

tween V4 and shotgun data annotated against the same Greengenes Database

most closely paralleled each other (Additional file 1: Figure S8). Second to that,

the KrakenUniq database showed the least divergence between V4 and shotgun

taxonomic identification. Some relevant genera were highly divergent in Krake-

nUniq to V4 comparison, including Klebsiella and Eubacterium, which were ab-

sent from V4 datasets. This could be the result of primer or database bias or

nomenclature differences.

We noted that average 16S copy number across Prevotella and Bacteroides genomes

varies (average 16S copies across 24 species of Prevotella = 4, average across 24 species

Bacteroides = 5.3) (https://rrndb.umms.med.umich.edu/genomes/). In our shotgun

metagenomics data, the average size of Bacteroides genomes was 5.3 Mbp and the aver-

age size of Prevotella genomes was 2.7 Mbp. Larger genome size and more 16S copy

numbers in Bacteroides could account for some of the variations we see in higher rela-

tive abundances of this taxon in 16S versus shotgun sequencing compared to Prevo-

tella. Quality-controlled reads were aligned to the KEGG database [41, 42, 99] using

DIAMOND [43] with an e value cutoff 1 × 10−6. The resulting KO numbers were

mapped to the associated pathway, module, and enzyme identifiers (https://github.com/

marubel/kegg-r-ator). Where a single KO mapped to multiple pathways, enzymes, or

modules, weighted counts were used such that each KO contributed a single count

equally distributed across all pathways, enzymes, or modules mapped to it.

As a further validation, we compared the percentages of reads that could be classified

to the family level for shotgun metagenomic data KrakenUniq with metagenome-

assembled genome (MAG) taxonomic information. We obtained the sequences for the

representative MAGs from http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html [33].

Using the taxonomic information provided in the published metadata and correspond-

ing NCBI Taxonomy identifiers [100] kindly provided by the members of the Segata

lab, we constructed a custom Kraken2 database [101] and classified the quality-

controlled metagenomic reads described above using Kraken2 as run by version 3.0 of

the Sunbeam pipeline [102]. Downstream visualization was performed using R and

packages in the tidyverse, including ggplot2 [103–105].
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To detect helminths in shotgun metagenomic sequences, human-filtered, quality-

controlled reads were aligned to nine representative genomes downloaded from NCBI

Genome (Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis, Ascaris

lumbricoides, Necator americanus, Entamoeba histolytica, Giardia lamblia, Cryptospor-

idium hominis, and Cryptosporidium parvum) or WormBase ParaSite (Ascaris lumbri-

coides). Read alignments were performed using hisss (https://github.com/louiejtaylor/

hisss) [99] with the following modifications to Bowtie2 (-end-to-end --very fast).

The results from all analyses were visualized in R [106] using packages tidyverse [107],

taxonomizr [108], magrittr [109], reshape2 [110], ggplot2 [104], vegan [111], and ape

[112]. Pathway, module, and enzyme differential enrichment were calculated using LefSe

[44], which produces absolute values of log10-transformed LDA scores as effect sizes for a

given taxa/group. The code used to generate LefSe metrics and heatmaps can be found at

https://github.com/ressy/LEfSe. FDR correction was applied to all LefSe results.

Diversity metric analysis

For 16S data, alpha diversity was assessed by three metrics in QIIME2: the observed num-

ber of OTUs (bacterial “richness”), Shannon’s Index (bacterial abundance and evenness of

species present), and Faith’s Phylogenetic Diversity Index [113], which incorporates phylo-

genetic relatedness of taxa in each sample. Beta diversity was assessed using the Bray-

Curtis dissimilarity index, which measures abundance information, and the Jaccard simi-

larity coefficient, which measures presence/absence information. Both metrics quantify

the compositional dissimilarity between two different samples, bound between 0 and 1,

where 0 is the same composition and 1 is maximally dissimilar composition. Metadata co-

variates were tested for associations with the microbiome using permutational multivari-

ate analysis of variance (PERMANOVA) tests in R using the “adonis” function of the

vegan package. PERMANOVA tests were done on both unweighted and weighted Uni-

Frac distance matrices, which allows for comparison of intragroup and intergroup dis-

tances using a permutation scheme to obtain p values. PERMANOVA tests were done

with 999 randomizations. Low variance ASVs were removed for differential sample abun-

dance analysis, which was determined with the edgeR [114] and phyloseq [115] packages

in R. False discovery rate correction was performed on all resulting PERMANOVA and

differential abundance p values using the Benjamini-Hochberg (FDR/BH) criterion.

For shotgun metagenomic data, alpha diversity was calculated with Simpson’s and Shan-

non’s Diversity Indices. Simpson’s Diversity Index is a measure which considers the num-

ber of species present, as well as the relative abundance of each species. The distribution

of reads classified at the prokaryotic genus level and at > 1% abundance in each fecal sam-

ple ranged between a minimum of 195,404 and a maximum of 7,662,130 reads. For diver-

sity metrics, reads were randomly subsampled to 150,000 reads. The R function vegdist in

the vegan package [116] computed dissimilarity indices using Bray-Curtis, which quanti-

fies the compositional dissimilarity between two different samples.

Random forests

Random forest classifiers (RFCs) were implemented using the randomForest package

[117] in R. Parameters included 5001 decision trees, which were trained on taxa abun-

dance data consisting of 14,138 ASVs for our 16S dataset and 20,844 taxa for our
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shotgun metagenomics dataset. Binary variables (e.g., positive, negative) were analyzed

using classificatory RFC, and continuous variables (e.g., cytokine values) were analyzed

using regression RFC. Discriminating taxa were identified by random forest using im-

portance values, which were calculated as mean decrease in Gini index for classification

random forests and percent increase in mean squared error (%IncMSE) for regression

random forests. The top ten importance values are reported for each random forest

test. The error of the model was assessed using out of bag (OOB) error. To increase

the classifier’s ability to detect true positives, we introduced a positive control consist-

ing of statistical noise with a probability density equal to the values within the variable

of interest (i.e., values within those present in the classification/regression variable)

(https://github.com/marubel/R-ubelMisc). In RFC classification, the prediction accuracy

of the model was tested by randomly sampling half the samples of whichever of the

two groups was smaller and training the classifier on this subset, for variables that had

a minimum of at least five samples in each group. For example, if there were 80 posi-

tives and 100 negatives for a parasite, 40 positive and 40 negatives would be input as

the training set for the classifier. RFC uses bootstrap sampling, which means that some

training set samples in each downsampled category will be selected more than once,

over a total of 5001 iterations, to produce a consensus tree.

Co-occurrence analysis

Probabilistic co-occurrence analysis was done in R using the cooccur package [118, 119].

Parasite pairs were removed if they shared less than one site. For parasite groups with

presence/absence data, all pairwise combinations were tested using the hypergeometric

distribution, which produced an observed-expected ratio and effect size for significant

species combinations. All p values for FDR were corrected for multiple test correction.

Sample pairs were dubbed “random” if they did not significantly differ from their expected

number of co-occurrences and if they did not deviate by < 10% of the total number of

sites, following the power analysis recommendations in Veech et al. (2013) [119]. Pairwise

combinations were visualized as heatmaps using ggplot2, where parasite combinations are

measured from most negative to most positive interactions (left to right in the heatmap).

Deviation from expected co-occurrence values was plotted against observed values.

Correlation analysis

Correlation analysis was conducted using the corrplot package in R [25]. Correlations were

calculated using Spearman’s non-parametric rank-based correlation tests to control for poten-

tial outliers and hierarchical clustering was used to aggregate the correlation matrix. Correl-

ation values and figures are available in Tables S4, S10, S11, and S12 and Sup. Figs. 3 and 13.

Correlation values were considered significant if p values were less than or equal to 0.01. Cyto-

kine plots incorporated 19 cytokines across 72 Cameroonians. For the metadata correlation

analysis, we excluded 82 samples due to null values in metadata variables (n= 492 Cameroo-

nians). Variables for the metadata correlation analysis were as follows: ANTS binary, total par-

asites, total parasites and blood parasites, total ANTS, body mass index, average temperature,

WBC, subsistence, population, region, HIV status, neutrophil, lymphocyte, monocyte, eosino-

phil,Wuchereria bancroftii,Mf. M. perstans, P. falciparum,Mf. Loa loa,W. bancrofti,Microfil-

aria spp., and highly positive ANTS.
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