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Abstract

The driver tissues or cell types in which susceptibility genes initiate diseases remain elusive. We develop a unified
framework to detect the causal tissues of complex diseases or traits according to selective expression of disease-
associated genes in genome-wide association studies (GWASs). This framework consists of three components which
run iteratively to produce a converged prioritization list of driver tissues. Additionally, this framework also outputs a

list of prioritized genes as a byproduct. We apply the framework to six representative complex diseases or traits with
GWAS summary statistics, which leads to the estimation of the lung as an associated tissue of rheumatoid arthritis.
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Background

Tissue selectivity is an important characteristic of many
complex diseases or traits [1]. A complex phenotype often
involves multiple related tissues, some of which are impli-
cit [2]. Unfortunately, our current knowledge on the
causal tissues of complex diseases is often limited in clin-
ical observations. For example, it is certain that the brain
must be a relevant organ of schizophrenia. However, as
human brains consist of multiple heterogeneous regions,
it is crucial to know which regions are the actual drivers
[3]. Human height is another typical example. It is gener-
ally known that cell proliferation in multiple tissues (e.g.,
skeletal and cardiac muscle) may contribute to the devel-
opment of human height [4]. But it is unclear which tis-
sues are primarily more important for the development of
height. For most of human diseases and traits, the primary
driver tissues remain elusive [5].
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The pathology of tissue selective may be attributed to
the selective expression of their susceptibility genes [6,
7]. Many studies showed that disease causal genes tend
to have elevated selective expression in the pathogenic
tissues [1, 6], implicating a basis for the tissue selectivity
of diseases. Analyses of genes’ selective expression pro-
files can expand the knowledge on human diseases [8]
and even can facilitate characterizing new causal genes
[9]. Recently, Ongen et al. proposed to estimate the
causal tissues for complex traits and diseases by measur-
ing the genome-wide association study (GWAS)-associ-
ated variants’ eQTL activity in different tissues [10].
Finucane et al. also developed a method to estimate
disease-relevant tissues according to heritability enrich-
ment in specifically expressed genes by linkage-
disequilibrium (LD) score regression approach [11]. But
neither of the methods directly employs the quantity of
genes’ selectivity expression for driver-tissue estimation
nor do they directly characterize susceptibility genes
based on the estimation.

Tissue-selective expression refers to much higher or
lower expression of a gene in one or some minority tissues
compared to majority tissues [12]. However, it is difficult
to quantify the relative difference due to ambiguous
boundaries between the minority and the majority in
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practice. There have been several methods for detecting
tissue-selective expression of genes (see method descrip-
tion in the review [13]). Most early methods are omnibus
tests and can only tell whether a gene has overall selective
expression [14, 15], and most recent methods are under-
powered to detect selective expression at individual tissues
when there is more than one tissue with selective expres-
sion [16]. Meanwhile, these ever-increasing transcriptomic
resources [17-21] (including GTEx) are calling for more
powerful selective expression measures and more studies
on tissue-selective pathology of human diseases.

In this study, we proposed a unified framework to esti-
mate driver tissues or cell types of complex diseases or
traits based on selective expression of phenotype-
associated genes of GWAS. After investigating the select-
ive expression in GTEx Project [20] by a new measure, we
further applied this framework to identify potential driver
tissues of six representative complex phenotypes with
GWAS summary statistics and investigated how the prior-
itized tissues can help enhance detection of susceptibility
genes in secondary analyses of GWAS data. For simplicity,
being tissue selective means being tissue- or cell-type se-
lective throughout the paper.

Results

The proposed framework of estimating driver tissues and
its robust z-score for selective expression

The framework, named driver-tissue estimation by select-
ive expression (DESE), aims to estimate driver tissues by
tissue-selective expression of phenotype-associated genes
in GWAS (see the workflow in Fig. 1). The assumption is
that the tissue-selective expression of causal or susceptibil-
ity genes indicates the tissues where complex phenotypes
happen primarily [1], which are called driver or causal tis-
sues. Therefore, a driver tissue is very likely to be enriched
with selective expression of susceptibility genes of a
phenotype. The framework requires two types of input
data, gene expression values of multiple tissues and
GWAS summary statistics or association p values at vari-
ants for a tested phenotype. The expression values at
genes and transcripts or even exons can be used for the
estimation. The GWAS p values are used to detect suscep-
tibility genes by a conditional gene-based association test
we published recently [22]. The framework has three com-
ponents running iteratively and converges when statistical
p values of estimated driver tissues become stable (see the
workflow in Fig. 1). A byproduct of the framework is a list
of prioritized genes which have both significant selective
expression in the estimated driver tissues and significant
conditional gene-based p values for the tested diseases or
traits. DESE has been implemented into our platform
KGG (see the graphic interface in Additional file 1: Figure
S8), http://grass.cgs.hku.hk/limx/kgg/.
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A critical datatype of the unified estimation framework
is the tissue-selective expression. We proposed a measure
(named robust-regression z-score) of selective expression
by extending the Huber robust linear regression. The
method fits a robust line for ranked expression values of
genes to calculate expression deviation and integrates ex-
pression variation to measure selective expression (see de-
tails in the “Methods” section). Under null hypothesis, it
produces p values approximately under uniform distribu-
tion (see the QQ plots in Additional file 1: Figures S2 and
S3), which will greatly facilitate statistical inference of se-
lective expression. Extensive computer simulations show
that the robust-regression z-score is more powerful than
the conventional z-score when there are multiple select-
ively expressed tissues (Additional file 1: Table S1). We
also provide a webserver for an online query of the robust
selective expression of genes in different tissues or cell
types, http://grass.cgs.hkuhk/limx/rez/.

Tissue-selective expression profiles in 50 tissues produced
by the robust-regression z-score

The robust-regression z-score approach was applied to
generate tissue-selective expression profiles by using
RNA-Seq data from GTEx project (V7) [20] after stringent
quality control (see details in the “Methods” section).
While the number of selectively expressed genes varied
from tissues to tissues (Additional file 1: Table S5), the
profiles had three common interesting patterns. First, the
pair-wise Pearson correlations between tissues based on
the robust-regression z-scores were substantially different
from those based on the original expression values by
transcripts per million (TPM) (Fig. 2). Most tissue pairs
had the correlation over 0.7 (Pearson coefficients) based
on the expression values (Fig. 2a and Additional file 1:
Figure S4) while most of them had zero correlation based
on the robust-regression z-score (Fig. 2b and Additional
file 1: Figure S5). However, tissues of similar origins had
high Pearson correlations (> 0.8) of the robust-regression
z-scores, such as Skin-SunExposed (Lowerleg) vs. Skin-
NotSunExposed (Suprapubic) pair. The biologically sens-
ible consistency suggested the robust-regression z-score
quantified tissue-selective expression of genes correctly.
Second, the original expression values of a tissue had low
correlation with the selective expression values of the
same tissue. As shown in Additional file 1: Figures S6 and
S7, only 12 tissues have moderate Spearman correlation
coefficient, r€[0.3, 0.6] between the original expression
values and selective expression values at gene level. Most
tissues had nearly zero or even negative correlations. This
observation means high expression does not necessarily
mean high selective expression. Third, the expression data
at the transcript level led to the discovery of much more
selectively expressed genes. In most tissues, the usage of
transcript-level expression detected on average 54% extra
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Fig. 1 The diagram of the unified framework. The unified framework, DESE, consists of three components which run iteratively. The iteration converged
until the p values of estimated tissues get stable. DESE needs two input datasets, the tissue-selective expression profiles and GWAS summary statistics.

It outputs estimated driver tissues and prioritized genes

selectively expressed genes which were missed by the
usage of gene-level expression (Additional file 1: Table
S5). Although the conservative Bonferroni correction for
multiple transcripts of a gene may lead to the missing of
some selectively expressed genes, the unique genes select-
ively expressed according to transcript-level expression
were still on average 5.5 times more than that according
to gene-level expression in the 50 tested tissues.

Estimate driver tissues in six complex diseases/traits
Based on the selective expression, we then applied DESE
to estimate driver tissues with the usage of public available
GWAS summary statistics. Six representative complex
diseases/traits were used as proof-of-principle examples.

Schizophrenia

We used p values from a large-scale Meta-GWAS study
[23] to estimate driver tissues of schizophrenia by DESE
with selective expression. While consistent with the
known biology that the top 10 tissues are all brain re-
gions (see details in Fig. 3), there were several interesting
points in the results. First, the statistical significance of
estimated driver tissues based on transcript-level select-
ive expression was much higher than that based on
gene-level selective expression. For example, the p value
of the top tissue according to the transcript-level select-
ive expression by the robust-regression z-score was 5.3E
-13 while that according to gene-level selective expres-
sion was only 2.0E-5. This pattern was also true when
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Fig. 2 Pearson correlation of the tissues by original expression and selective expression. a The correlation by original TPM expression values at
the transcript level. b The correlation by selective expression measured by the robust-regression z-score expression at the transcript level
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selective expression was measured by three alternative
methods, conventional z-score, MAD robust z-score,
and ratio of vector-scalar projection. Second, the ranking
order of the prioritized tissues by the four different mea-
sures of selective expression was similar generally al-
though the significance level varied. With the gene-level
selective expression, the ratio of vector-scalar projection
measure led to the highest significance level as small as
1E-10. The most significant tissue by the proposed
robust-regression z-score and conventional z-score only
achieved the p value 2.0E-5 and 4.8E-5 respectively.
The robust z-score by MAD achieved the lowest signifi-
cance level. With the transcript-level selective expres-
sion, the pattern was similar in which the ratio of
vector-scalar projection measure achieved the highest
significance level among the four measures. Because,
however, there were also fluctuations in the ranking
order according to different selective expression mea-
sures, we produced a combined ranking by averaging the
-log(p) of the four selective expression measures. The
top 2 estimated driver tissues according to both gene
and transcript levels of selective expression were the
frontal cortex and anterior cingulate cortex. It has been
widely accepted that the frontal cortex [24] and anterior
cingulate cortex [25] are critical brain regions for schizo-
phrenia. Meanwhile, it should also be noted that most
brain regions (e.g., nucleus accumbens and amygdala)
are significant. A quick literature search in the NCBI
PubMed database showed these estimated brain regions
were supported by numerous published papers, which
suggests DESE produced correct and consistent results
for this complex brain disorder.

Bipolar disorder (BD)

For bipolar disorder, we used the summary statistics from
a GWAS dataset containing 20,129 BD cases and 54,065
control cases [26]. Again, the transcript-level selective
expression led to higher statistical significance than the
gene-level selective expression (Fig. 3). With the
transcript-level selective expression, the proposed
robust-regression z-score produced the smallest p value
among the four selective expression methods. However,
probably due to fewer genuine susceptibility genes in
this GWAS with smaller sample size, the statistical sig-
nificance of prioritized tissues was less than that of
schizophrenia in general. The top estimated driver tis-
sues based on the transcript- and gene-level selective
expression were the cerebellar hemisphere (p = 1.3E-09
and 9.0E-06 respectively according to the robust-
regression z-score). There have been many studies
implicating the cerebellum as a causal region of BD
(e.g., [27-29]. The frontal cortex and anterior cingulate
cortex were ranked as the second and third driver brain
regions, at which the transcript-level selective expres-
sion by the robust-regression z-score led to significant
p values (1.6E-6 and 2.4E-5). Note the two regions were
ranked as the top driver brain regions of schizophrenia in
above analysis. The common driver brain region is con-
sistent with the high comorbidity and common genetic
determinants of the two brain disorders [30]. Besides the
three significant brain regions, there were also several
other significant regions for BD, including the hypothal-
amus [31] and basal ganglia [32]. The consistency of the
estimated brain tissues and known biology of this brain
disease suggests the effectiveness of DESE.
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Fig. 3 Driver tissues estimated by DESE and two exiting methods in six representative complex diseases/traits. Note: Each row shows one
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disease/trait. The first, second, and third columns show the estimated driver tissues according to GTEx transcript-level, GTEx gene-level, and GEO
gene-level selective expression respectively. The bar denotes the averaged -log;o(p) based on selective expression of four different measures. The

-log;o(p) based on each selective expression measure is denoted by a line. The fourth column shows estimated driver tissues by Ongen et al.'s
method, which is extracted from Supplementary Table 5 of their published paper [10]. The fifth column shows estimated driver tissues by the
LDSC-SEG method, which is extracted from Supplementary Table 6 of their published paper [11]. The pink horizontal denotes the significance
level. The tissues are classified into 15 groups according to anatomy. The tissues are sorted by the averaged -log;o(p) on y axis in descending

order. SCZ schizophrenia, BD bipolar disorder, CAD coronary artery disease, RA rheumatoid arthritis, TC total cholesterol

Coronary artery disease (CAD)

Coronary artery disease causes impaired blood flow in
the arteries that deliver blood from the heart to other
body parts [33]. As expected, the coronary artery was re-
ported as the top tissue according to the combined rank-
ing at both gene and transcript levels (see details in
Fig. 3). Meanwhile, the transcript-level selective expres-
sion led to a higher statistical significance than the gene-
level (4.3E-6 vs. 9E-4) by the robust-regression z-score
at the coronary artery. We also found that the aorta and
tibial artery had significant p values (1.4E-4 and 6.1E-4)
for CAD, probably because CAD-associated genes were
also selectively expressed among different types of artery.
It should be noted that the adipose tissue was prioritized
as the fifth driver tissue with significant p value (5E-5
according to the proposed robust-regression z-score) by
transcript-level selective expression, which is consistent
with the studies suggesting the relevance between adi-
pose tissues and CAD [34-36]. Golia et al. reviewed the

role of adipocytokines as a possible link between obesity
and vascular disease recently [34], suggesting the pos-
sible pathogenic mechanisms of adipose tissues in CAD.
Interestingly, some of the female reproductive organs
[such as the ovary (p = 6.1E-6) and uterus (p =5.2E-5)]
and adrenal gland (p=1.7E-5) were also estimated as
significant driver tissues of CAD. Although epidemio-
logic studies have reported the relatedness between
ovary disease, uterine disease, adrenal insufficiency and
CAD, or other cardiovascular diseases respectively [37—
39], the underlying genetic mechanism has not been
clear yet. The estimated causal tissues of CAD may shed
some insights into the mechanism.

Rheumatoid arthritis (RA)

RA is a common autoimmune disease mainly attacking
the joints [40]. Consistent with the pathology of auto-
immune disease, two tissues among the top 5 driver tis-
sues fell into the immune system (Fig. 3), spleen and
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lymphocytes (p =7E-8 and 1.3E-6 respectively accord-
ing to the proposed robust-regression z-score at the
transcript level). As a non-immune tissue, the lung was
prioritized as the second significant driver tissue (p =
4.2E-9) according to the robust-regression z-score at the
transcript level. Demoruelle et al. recently reviewed the
role of the lung in the pathogenesis of RA [41]. Multiple
studies have identified a high prevalence of lung disease,
both airways and parenchymal disease, in subjects with
clinically classifiable RA. Demoruelle et al. proposed a
model of the role of the lung in pathogenesis of RA,
which basically suggested the RA-related autoantibodies
may be initiated from lung autoimmuneresponse [41].
While confirming the strong associations between the
lung and RA, the selective expression of RA associated
genes in lung from our analysis may also provide new
insights into the underlying mechanism. In addition, the
ileum and transverse colon had significant p values for
RA (5.5E-11 and 5.2E-10 respectively according to the
robust-regression z-score at the transcript level), which
is also consistent with the previous study showing the
high prevalence of ileocolonic abnormality in RA [42].

Total cholesterol (TC)

For a complex clinical trait, TC, our analysis detected the
liver as the most significant tissue. This is consistent with
known knowledge that the liver is responsible for 80% of
the endogenous cholesterol synthesis. We noticed that the
significance level of the second tissue decreased substan-
tially (p =6.9E-8 vs. 3.3E-5 according to the proposed
robust-regression z-score at the transcript level, see details
in Fig. 3), which suggests that the liver is the major driver
tissue for total cholesterol. The lung and spleen were also
estimated as significant driver tissues (p = 3.3E-5 and 3.5E
-5 respectively according to the robust-regression z-score
at the transcript level) and have been shown to be in-
volved in lipid metabolism [43, 44].

Height

For the anthropometric trait, height, 27 significant tis-
sues (p <107%) were detected according to the selective
expression by the robust-regression z-score at the tran-
script level (see details in Fig. 3), which implies complex
biological mechanisms in the development of human
height. The most significant tissue was fibroblast, which
is the most common cell type of connective tissue in
mammals. Consistent with our results, several studies
have also reported connective tissue as the most
enriched tissue type for height [45, 46]. Besides the
fibroblast cell, the top 10 driver tissues include the car-
diovascular tissues (i.e., heart-atrialappendag, artery-
coronary, artery-aorta, artery-tibial), esophagus, adipose,
lung, and uterus, which may provide some new insights
into the mechanism of height.
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Validate estimated driver tissues by existing tools

We first validated the above estimated driver tissues with
two existing tools, Ongen et al. [10] and LDSC-SEG [11].
The two tools estimated driver tissues based on different
techniques (see details in the “Methods” section). We as-
sume that the driver tissues replicated by independent ap-
proaches are more likely to be true. Figure 3 visualizes the
validation and comparison results of the three tools.

Schizophrenia

Among the top 10 significant driver tissues of schizophre-
nia by Ongen et al, six were sub-brain regions. They are
brain frontal cortex_BA9, brain anterior cingulate cortex_
BA24, brain putamen basal ganglia, brain hippocampus,
brain cerebellar hemisphere, and brain hypothalamus. Five
out of the six (except for the brain cerebellar hemisphere)
were also among the top 10 estimated significant driver tis-
sues by DESE. Interestingly both tools ranked the brain
frontal cortex (BA9) as the top driver tissue of schizophre-
nia. Consistent with DESE, all the top 10 estimated driver
tissues by LDSC-SEG were brain regions. Three of the top
5 estimated brain regions by the two different tools were
overlapped (brain frontal cortex-BA9, brain anterior cingu-
late cortex-BA24, and brain cortex), in which the brain
frontal cortex-BA9 was also ranked as the top driver tissue
by LDSC-SEG. The contribution of the frontal cortex and
the other brain regions to schizophrenia was also success-
fully validated with tissue-specific chromatin data in the
paper introducing LDSC-SEG (see details in Supp Table 7
of [11]). The high consistency between the results by DESE
and that of the other tools clearly confirmed the validity of
DESE for driver-tissue estimation. Moreover, DESE outper-
formed Ongen et al. in terms of false positive finding.

Bipolar disorder (BD)

Estimation of driver tissues for BD seemed more difficult
than that for schizophrenia. Among the top 10 estimated
significant driver tissues by Ongen et al.,, only two were
sub-brain regions, brain anterior cingulate cortex (BA24)
and hippocampus, for this brain disorder. Both of the
sub-brain regions were also significant, p = 3.3E-5 and
1.8E-3 (suggestively), according to the p values by DESE
with the transcript-level selective expression. The top
significant driver tissue by Ongen at al’s approach was
prostate, which we failed to verify through a literature
survey. The results of DESE and LDSC-SEG were much
more similar. The top 8 estimated driver tissues by both
tools were all brain regions. There were three common
brain regions among the top 5 estimated driver regions
by the two tools, brain frontal cortex (BA9), brain anter-
ior cingulate cortex (BA24), and brain cortex. As stated
above, these tissues were implicated with BD by many
studies. The top driver tissue by DESE, cerebellum, was
also significant by LDSC-SEG (p = 1.9E-5) although it
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was not the top tissue by the latter. Therefore, DESE’s
estimated driver tissues for BD were highly constant
with that estimated by LDSC-SEG and were concordant
with known biology of this brain disease.

Coronary artery disease (CAD)

The top significant tissue by DESE, the coronary artery,
was estimated as the third and eighth significant tissues
for CAD by Ongen et al’s approach and LDSC-SEG re-
spectively. Consistent with our results, the female repro-
ductive organs (such as ovary, cervix and uterus)
prioritized by DESE were detected as the top 5 significant
tissues by LDSE-SEG, and the adrenal gland prioritized by
DESE was detected as the top 5 significant tissue by
Ongen et al’s approach. However, the adipose tissue esti-
mated as the driver tissue by DESE was not detected
among the top 10 tissues by the two existing approaches.
LDSC-SEG estimated the ileum as the most significant tis-
sue, and we failed to find literatures supporting this. The
liver was detected as the top significant tissue for CAD by
Ongen et al’s approach but failed by LDSC-SEG and
DESE. Therefore, DESE produced not only consistent
driver tissues with existing tools but also extra promising
driver tissues of CAD.

Rheumatoid arthritis (RA)

The immune tissues, spleen and lymphocytes, were pri-
oritized in the top five driver tissues by DESE, which
were supported by the similar findings from LDSC-SEG.
Ongen et al. prioritized spleen as the tenth significant
driver tissue, the only immune tissue in the top 10. Un-
expectedly, it estimated the brain region hypothalamus
as the most significant tissues. We only found subtle al-
terations in hypothalamic-pituitary-adrenal system axis
mainly affect the adrenal level [47]. Hence, the effect of
hypothalamic in RA is unclear.

Total cholesterol (TC)

Due to lack of TC results in LDSC-SEG study, we selected
the similar trait LDL (low-density lipoproteins) for com-
parison in this part. The liver was also detected as the
most significant tissue for TC (or LDL) by both LDSC-
SEG and Ongen et al’s approach, which is consistent with
the fact that liver contributes to most of lipoprotein me-
tabolism [48]. Similarly, the significance of the liver by
Ongen et al.’s approach was much higher than the subse-
quent tissues, such as the second tissue pancreas (7.0 vs.
2.8 according to the enrichment over the null). Therefore,
the strong consistence of the three approaches and patho-
logical knowledge confirmed the validity of DESE for esti-
mation of driver tissues of clinical traits.
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Height

Cardiovascular tissues for height by DESE were almost
perfectly validated among the top 10 significant tissues
by both Ongen et al’s approach and LDSC-SEG (Ar-
tery_Coronary, Artery_Aorta by Ongen et al.’s approach;
Artery_Tibial, Artery_Coronary, Artery_Aorta by LDSC-
SEG), suggesting the important role of cardiovascular
tissues in height. Moreover, both LDSC-SEG and DESE
detected the connective tissues (i.e., transformed fibro-
blasts) among the top tissues, which is consistent with
previous studies [45, 46] as described above. However,
Ongen et al’s approach detected several brain tissues
(such as basal ganglia, cerebellar hemisphere) in the top
10 tissues, which was supported by an association study
[49]. Unexpectedly, LDSC-SEG estimated two female re-
productive tissues (uterus and endocervix) as the top 2
tissues, but we failed to find supporting literatures.

Validate estimated driver tissues with independent
expression data

Besides the above validation at technique level, we also
carried out validation at data level. The validation was
performed by microarray data of 55 tissues curated with
stringent quality control from the GEO database (see de-
tails in the “Methods” section).

Schizophrenia

Consistent with the above results based on the RNA-Seq
expression from GTEx project, all the top 8 driver tissues
by DESE with the GEO dataset for schizophrenia were
parts of brain regions (Fig. 3). This is a simple system-
level validation. Among the eight brain regions, two re-
gions [prefrontal-cortex (p=7.2E-5) and hippocampus
(p = 3.4E-5)] were exactly matched with the GTEx brain
regions. Their p values according to the GTEx data by the
same selective expression measure (the proposed robust-
regression z-score) were also highly significant based on
the transcript-level selective expression, p = 1.5E-14 and
9.4E-12, respectively. Note this was also a successful val-
idation with different data types (RNA-Seq vs. microarray
data) and independent samples. There have been numer-
ous studies implicating the contribution of the two brain
regions to schizophrenia [50, 51].

Bipolar disorder (BD)

For another brain disorder, BD had only one significant
driver tissue, brain parietal lobe (p = 1.9E-4 based on se-
lective expression by the robust-regression z-score) ac-
cording to the GEO expression data. However, all the
three subsequent suggestively significant driver tissues
were also parts of the brain tissues, superior frontal
gyrus, cerebral gray matter, and cerebral gyrus. Unfortu-
nately, except for the cerebral gray matter, three of the
other tissues had no matched region in the GTEx
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dataset. According to the structure of BRENDA tissue,
the cerebral gray matter (BTO_0000823) is a part of
the spinal cord. The p value of brain-spinal cord (cer-
vicalc-1) based on the transcript-level selective expres-
sion from GTEx was significant, p =3E-4. Anyhow,
the top driver tissue based on the GEO data, parietal
lobe, responsible for cognition (including attention
and memory), has been implicated with BD by many
studies [52].

Coronary artery disease (CAD)

The adipose tissue and two cardiovascular tissues (myo-
cardium and left ventricle) were estimated among the
top 4 driver tissues for CAD based on the GEO expres-
sion (p = 2.3E-4, 4.5E-2, and 3.2E-2 respectively by the
proposed robust-regression z-score), which was consist-
ent with the results based on GTEx dataset. Interest-
ingly, the female reproductive tissue uterus was also
replicated in the GEO dataset. Moreover, another female
reproductive cell type oocyte was estimated as the sec-
ond top tissues based on GEO dataset although its p
value was no longer significant (p = 2.1E-2 according to
the proposed robust-regression z-score). The high
consistency of estimated driver tissues (including the fe-
male reproductive tissues) with independent sample suc-
cessfully validated the results of DESE for CAD.

Rheumatoid arthritis (RA)

Consistent with results based on GTEx dataset, two im-
mune tissues (tonsil and lymph node) were estimated as
top 2 driver tissues based on GEO dataset (p =7.2E-5
and 24E-4 respectively by the robust-regression z-
score). Following the immune tissues, the colon and
ileum (p =3E-4 and 2.4E-3 respectively) were detected
as the third and fourth driver tissues respectively, which
were also consistent with the results based on GTEx.
Due to lacking of expression data of the lung in GEO,
we could not replicate the results of the lung. It should
be noted that the blood was detected as driver tissues
based on GEO dataset and also detected by LDSE-SEG
while the GTEx whole blood was excluded in the QC
procedure (see the “Methods” section).

Total cholesterol (TC)

Consistent with the results based on GTEXx, the top tissue
for TC based on GEO was hepatocyte (p value 3.4E-3 by
the proposed robust-regression z-score). As we failed to
collect sufficient number of expression profiles of lung
and spleen in in GEO, their significant results in GTEx
dataset cannot be validated. We also noticed that the sig-
nificance of estimated tissues following hepatocyte was
low, such as the second driver tissue with p value only
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3.3E-2, which was also consistent with the pattern based
on the GTEx data.

Height

Due to the tissue difference in GEO and GTEx dataset, we
could not validate the results at the exact driver tissues
but can do it at the system level. The top 2 driver tissues
for height based on GEO data included two connective
tissues knee and synovium with significant p values (1E-8
and 2.2E-4 respectively by the robust-regression z-score),
which was consistent with the results based on GTEx
dataset. Furthermore, the cardiovascular tissues (i.e., left
ventricle), adipose, and uterus were also validated by GEO
dataset with significant p values (5.7E-3, 1.5E-4, and 3.0E
-4 respectively by the proposed robust-regression z-score)
among the top 10 tissues.

Fine estimation with brain-only expression data

For the brain disorders, it may be more interesting to
finely prioritize the brain regions with expression only in
the brain. We produced selective expression values
among the 13 brain regions from GTEx and 16 brain re-
gions from BrainSpan dataset and input them into DESE
to estimate driver brain regions for schizophrenia and
BD.

Schizophrenia

For schizophrenia, the top driver tissue remained the
frontal cortex (BA9) (p=3.3E-11 and 2.5E-7, based on
the transcript-level and gene-level selective expression
from GTEx by the robust-regression z-score) (see details
at Additional file 2: Table S15 and S16). The ranking order
was also similar to that based on the 50 GTEx tissues al-
though there were some minor fluctuations. The major
difference may be the significance level at the cerebellum.
The p value at the cerebellum by DESE based on the 50
GTEXx tissues was 1.1E-7 while that based on the 13 GTEx
brain regions was only 0.015. We also validated the results
with another independent brain dataset, BrainSpan. The
significance at the frontal cortex was successfully repli-
cated by both of the exon-level and gene-level selective ex-
pression at the orbital frontal cortex and ventrolateral
prefrontal cortex (see details in Additional file 2: Table
S17 and S18). Consistent with the results in the GTEx
brain dataset, the cerebellar cortex was also ranked as the
least significant region for schizophrenia. The significant
brain regions inferred by the brain-only expression data
may suggest a unique contribution of significant regions
to this complex brain disorder.

Bipolar disorder (BD)
With the brain-only expression data, BD also showed
several common significant driver tissues with those of
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schizophrenia. For examples, the top 2 driver regions of
schizophrenia, frontal cortex (BA9) and anterior cingu-
late cortex (BA24), were also among the top 3 driver re-
gions of BD (see details in Additional file 2: Table S19
and S20). The common regions also support the high
comorbidity of the two brain disorders [53]. However,
the two diseases also had unique estimated driver re-
gions which may support different characteristics of the
two diseases. The cerebellum, for example, was ranked
as the top significant brain region of BD (p = 8.8E-6,
based on the robust-regression z-score with transcript
expression), while it had the lowest significance for
schizophrenia (p=0.015, based on the robust-
regression z-score with transcript expression). The
caudate nucleus was ranked as the fourth significant
tissue for schizophrenia (p =4.0E-8, based on the
robust-regression z-score with transcript expression)
while it was insignificant for BD (p =0.1, based on the
robust-regression z-score with transcript expression).
Multiple regions were successfully replicated by the
expression values from BrainSpan (see details in
Additional file 2: Table S21 and S22). The orbital
frontal cortex remained the top driver tissue of BD
with the gene- and exon-level selective expression
data from BrainSpan. The significance of the anterior
cingulate cortex (BA24) with the GTEx data (p=
1.1E-5, based on the robust-regression z-score with
transcript expression) was replicated by that of the
anterior (rostral) cingulate (medial prefrontal) cortex
from BrainSpan (p=1.3E-3, based on the robust-
regression z-score with gene-level).
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Investigate the contribution of lowly expressed genes
We noticed that lowly expressed genes also contributed to
the prioritization of disease-related tissues when the
transcript-level selective expression was used. A removal
of lowly expressed genes led to substantial decrease in the
statistical significance of estimated driver tissues at almost
all the six complex phenotypes. As shown in Table 1,
when minimal expression cutoffs were increased from
0.01 to 0.5 and 1.0 TPM for the GTEx data, the statistical
significance of the top driver brain region of schizophrenia
[frontal cortex (BA9)] was decreased from 5.3E-13 to 1.3E
-07 and 1.5E-06 based on the transcript-level selective
expression by the proposed robust-regression score. This
was also true for other significant top brain regions al-
though the ranking order of these brain regions was simi-
lar. The underlying cause is that a higher cutoff removed
some genes that had relatively low expression but high se-
lective expression. For example, CACNAILC is a well-
known candidate susceptibility gene of schizophrenia [54].
CACNAI1C encodes calcium voltage-gated channel sub-
unit alphal C which is important for brain functions. This
gene has 26 transcripts with expression in GTEx dataset,
and 23 have very low expression. The transcript
(ENST00000399641) had a large selective expression z-
score 210.3 in the frontal cortex (p < 1.0E-200). However,
it had only 0.2 TPM expression in the frontal cortex and
nearly zero TPM in most tissues. A TPM cutoff even as
low as 0.4 will exclude these important candidate genes of
schizophrenia.

The nontrivial contribution of lowly expressed genes
further suggested the selective expression may be more

Table 1 The enrichment statistical significance for different minimal expression cutoffs

Bipolar disorder

Brain-frontal
cortex (BA9)

Brain-cerebellar hemisphere Brain-cerebellum

Cutoff Schizophrenia
Brain-anterior cingulate Brain-frontal Brain-cortex
cortex (BA24) cortex (BA9)
0.01 53E-13 53E-13 1.8E-12
05 9.3E-8 1.3E-7 7E-8
1.0 3.8E-7 1.5E-6 70E=7
Coronary artery disease
Artery-coronary Adrenal gland Ovary
0.01 43E-6 1.7E-5 6.1E-6
05 42E-4 8.9E-3 29E-5
1.0 42E-3 47E=-2 1.8E-4
Total cholesterol
Liver Lung Spleen
0.01 6.9E-8 33E-5 3.5E-5
05 9.1E-5 1E-2 2.6E-2
1.0 9.7E-3 64E-3 55E-2

13E-9 7.3E-09 1.6E-6
1.7E-5 1.9E-5 6.4E-3
3.0E-5 5.0E-5 0.024
Rheumatoid arthritis

Small intestine-terminal ileum Lung Spleen
5.5E-11 4.2E-9 7E-8
6.3E-7 29E-8 6E-5
1.2E-6 52E-8 1.7E-4
Height

Cells-transformed fibroblasts Heart-atrial appendage Lung
1.3E=-11 6E-12 53E-11
1.9E-2 3.7E-3 6.6E-5
43E-2 5.5E-3 1.5E-4

Note: The p values of driver tissues were calculated according to the proposed robust-regression z-scores. According to a cutoff x, gene or transcripts having
TPM < x in 40 or more tissues were excluded
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effective for driver-tissue estimation than original
expression. In another experimental analysis, we also used
the original expression for estimating the driver tissues by
DESE to validate this argument. As shown in
Additional file 1: Table S7, the p values of top driver tis-
sues based on the original expression were much less sig-
nificant than those based on the selective expression,
around two orders of magnitude larger. Given that select-
ive expression is different from expression (Additional file 1:
Figures S6 and S7), selective expression (when available)
instead of original expression may be preferable for priori-
tizing causal tissues and genes of phenotypes.

Tissue selectivity prioritization enhances detection of
susceptibility genes in post GWAS analyses

Finally, we asked how tissue selectivity in the estimated
driver tissues can be used to enhance detection of genuine
susceptibility genes in secondary analysis of GWAS data.
The investigation was performed in the same six represen-
tative complex phenotypes as proof-of-principle examples.

Schizophrenia

In the schizophrenia dataset, the selective expression
ranking led to ~ 32% significant genes which were not
significant according to the disease-association p value
ranking in the conditional gene-based test [22]. Among
the different significant genes, a rough in silico valid-
ation in PubMed showed the selective expression rank-
ing resulted in more genes implicated in schizophrenia
by literature than the disease-association p value ranking
(n = 6 vs. 0 with at least 9 supporting papers, see details
in Additional file 2: Table S9). Here are some individual
examples. In a set of physically close genes, the tissue-
selective expression ranking and p value ranking led to
two different significant genes, DRD2 and MIR4301, re-
spectively. The DRD2 gene was selectively expressed in
multiple prioritized pathogenic tissues of schizophrenia
(including brain-anterior cingulate cortex, brain-cortex,
brain-putamen (basal ganglia), and brain-spinal cord),
and there were 100 papers co-mentioning the gene and
schizophrenia in their titles or abstracts in PubMed
database (see details in Additional file 2: Table S9). In
contrast, there is no paper suggesting MIR4301’s contri-
bution to schizophrenia. In another set of physically
close genes, the tissue-selective expression ranking and p
value ranking led to two different significant genes,
CACNA1C and CACNAIC-AS4 respectively. CACN
A1C was specifically expressed in above multiple priori-
tized tissues for schizophrenia (including brain-frontal
cortex (BA9), brain-anterior cingulate cortex, and brain-
hypothalamus). In PubMed database, there have been
over 100 papers linking CACNAIC to schizophrenia
(e.g., [55]). The CACNAIC-AS4 (named CACNAIC
antisense RNA 4), however, had no selective expression
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in estimated driver tissues of schizophrenia. There are
also no papers implicating this gene with schizophrenia.
In addtion, there are also six genes (PPP2R2A, NGEF,
KLC1, EPN2, DMTFI, and ATG13) having large select-
ive expression score (>900) in estimated driver tissues
but having no supporting papers in PubMed, which are
promising candidate susceptibility genes of this disease.
Therefore, the selective expression in the estimated driver
tissues is useful for discovering functionally important
genes for schizophrenia.

Bipolar disorder (BD)

In the bipolar disorder dataset, the selective expression-
based ranking led to three more conditionally significant
genes, 76 vs. 73. Nineteen significant (= 25%) genes based
on the selective expression ranking order in the condi-
tional gene-based test [22] were not significant based on
the statistical p value ranking order (Additional file 2:
Table S10). However, probably because bipolar disorder is
less studied than schizophrenia, none of the 19 genes had
over nine PubMed hit papers in the rough in silico valid-
ation. Among the 19 genes, two had the selective-
expression score over 400, CACNAI1I (402.9) and
LRRFIP2 (421.1). CACNA1], encoding a subunit of cal-
cium voltage-gated channel, has been implicated with
schizophrenia [56] although it has not yet been linked to
bipolar disorder. CACNA1I had four transcripts in GTEx
dataset. Only two of them (ENST00000402142 and
ENST00000404898) had strong selective expression in the
estimated driver tissues of bipolar disorder, brain-frontal
cortex (BA9) and brain-cerebellar hemisphere. LRRFIP2
encoding Leucine-rich Repeat Flightless-interacting Pro-
tein 2 had 21 transcripts in the GTEx dataset. Only two
transcripts (ENST00000440742 and ENST00000487246)
had selective expression in the estimated driver tissues,
brain-frontal cortex (BA9) and brain-cerebellar hemi-
sphere. Probably, because most majorities of transcripts
are not selectively expressed in the brain regions, this gene
was seldom studied for this brain disorder.

Coronary artery disease (CAD)

In the coronary artery disease dataset, the selective
expression-based ranking led to five more conditionally
significant genes, 48 vs. 43 (see details in Additional file 2:
Table S11). Among the different significant genes, 11 sig-
nificant genes according to selective expression ranking
had PubMed hits, while only 6 significant genes according
to the p value ranking had PubMed hits. For example,
TCF21 had a significant conditional p value 9.31E-8 for
association with CAD according to the tissue-selective ex-
pression ranking while it had an insignificant p value 0.08
according to the statistical p value ranking. The TCF21
was selectively expressed in multiple prioritized patho-
genic tissues for CAD such as the artery coronary and
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adipose. Recent studies have investigated the disease
mechanism of TCF21 in CAD [57, 58]. Iyer et al. proposed
that TCF21 played a protective role in CAD development
by inhibiting SMAD3, a central transcription factor (TF)
inhibiting the cellular processes that allow smooth muscle
cell (SMC) to repair the vascular lesions [57].

Rheumatoid arthritis (RA)

For rheumatoid arthritis, the selective expression rank-
ing led to ~28% more conditionally significant genes
than p value ranking in the conditional gene-based test
(see details in Additional file 2: Table S12). Among the
uniquely significant genes by different ranking, selective
expression ranking detected 40 genes with PubMed hits
and p value ranking detected only 17 such genes. For ex-
ample, PTPN22 had a very significant p value for rheuma-
toid arthritis, 2.34E-121, according to the tissue-selective
expression ranking while it only had a p value 1 according
to the statistical significance ranking. The PTPN22 was se-
lectively expressed in immune-related tissues (i.e., lym-
phocytes cells and spleen), and there are over 100 papers
of PubMed database co-mentioning the gene and rheuma-
toid arthritis in the titles or abstracts. The PTPN22 acts as
a negative regulator of T cell receptor (TCR), which has
been suggested contributing to rheumatoid arthritis by
many papers [59, 60]. However, p value ranking led to a
physically close gene of PTPN22, RSBN1, as a significant
gene (p = 2.59E-140) while a p value 1 for PTPN22. The
RSBN1 was selectively expressed in the brain cerebellar
hemisphere but not in RA-related tissues. We failed to
find the literature supporting the role of the RSBN1 in the
development of RA.

Total cholesterol (TC)

For total cholesterol, the selective expression ranking led
to seven more conditionally significant genes than p
value ranking in the conditional gene-based test. How-
ever, among the uniquely significant genes for the two
different ranking strategies, 23 out of 54 significant
genes according to selective expression ranking (~ 43%)
had PubMed hits, while only 12 out of 47 significant
genes according to p value ranking (~26%) have
PubMed hits (see details in Additional file 2: Table S13).
This suggests the selective expression ranking led not
only to more significant genes but also to higher true
positive rate than p value ranking. Here is an interesting
individual example. ABCG5 and ABCGS8 are physically
close. The tissue-selective expression ranking made both
ABCG5 and ABCGS8 as candidate susceptibility genes
with significant p values (2.56E-13 and 3.45E-25), while p
value ranking led to an insignificant p value at ABCG5
(p = 2.8E-4). ABCG5 and ABCGS, encoding ATP-binding
cassette (ABC) transporters, were selectively expressed in
liver with very high significances (robust-regression z-
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scores 9955.90 and 936.422). According to literature
search, over 50 papers co-mention the ABCG5/8 and total
cholesterol in their titles or abstracts in PubMed database.
The role of ABCG5/8 in cholesterol metabolism has been
reviewed recently [61]. Actually, ABCG5 and ABCGS8
form an obligate heterodimer that limits intestinal absorp-
tion and facilitate biliary secretion of cholesterol and phy-
tosterols [61]. Hence, both ABCG5 and ABCGS8 are
promsing driver genes of cholesterol metabolism.

Height

Similarly, the selective expression ranking led to 20 more
conditionally significant genes than p value ranking in the
conditional gene-based test for height (see details in
Additional file 2: Table S14). Among the uniquely signifi-
cant genes detected by the two approaches, here is a rep-
resentative example. The gene HFE is physically close to
multi-genes encoding histone, such as HIST1HIA,
HIST1H1C, HIST1H4C, and HIST1H2BC. The p value
ranking led to a significant p value 1.97E-22 at
HIST1HIA but an insignificant p value 1 at HFE. In con-
trast, selective expression ranking led to HFE as a candi-
date gene with significant p value (8.52E-18) and
HIST1HIA as an insignificant gene (p = 1). The HFE was
selectively expressed in the estimated driver-tissue fibro-
blast cells, and it regulates iron absorption by influencing
the interaction of the transferrin receptor with transferrin.
A study suggested the sustained enhanced iron absorption
in patients with HFE hemochromatosis might have a
beneficial effect on growth [62]. However, we failed to find
evidence supporting the role of histone for height.

Discussion

In the present study, we proposed a novel framework for
estimating driver tissues of complex diseases and traits
with gene expression and GWAS summary statistics.
Using the GWAS data, this approach provides a
hypothesis-free way to comprehensively explore related
tissues of complex phenotypes. In the application study,
it successfully detected highly related tissues consistent
with known knowledge in all the six representative com-
plex phenotypes. For instance, the brain frontal cortex
(BA9) and coronary artery were ranked as the top tissues
of schizophrenia and CAD respectively. More interest-
ingly, it also suggested some cryptic driver tissues of the
complex phenotypes, e.g., the adipose tissue for CAD,
the lung for RA, the spleen for TC, and cardiovascular
tissues for height. Some of these tissues may be not
straightforward in clinical observations. Mostly, majority
of the estimated tissues were validated by both inde-
pendent methods and independent expression data
(Fig. 3). As the expression data and GWAS summary
data used in our analysis framework can be downloaded
from public domains for free and have no privacy issue,
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the easy framework may encourage many explorations
of causal tissues or cell types of complex diseases in the
future, which will further facilitate molecular genetic
studies and even drug target discovery [63].

Compared to two existing methods (Ongen et al. [10]
and LDSC-SEQG) for driver-tissue estimation, DESE has
its own technique advances. First, DESE integrates the
quantity of selective expression into gene-based associ-
ation analysis for the estimation. Ongen et al.’s estima-
tion was essentially built on variant-level disease
association. In previous studies, we showed that gene-
based association was more powerful than variant-based
association [64]. This might be the reason why DESE es-
timated more biologically sensible tissues for almost all
the tested phenotypes. Moreover, DESE also facilitates
prioritizing candidate susceptibility genes, which corres-
pondingly interprets the estimation of driver tissues. In
contrast, neither of the existing tools had this important
function although LDSC-SEG also extracted selectively
expressed genes for inferring causal tissues. Second,
DESE can directly integrate different levels of selective
expression, including gene level, transcript level, and
even exon level. In the present paper, we have clearly
shown that a transcript (or even exon) level of selectively
expression was much more powerful than the gene-level
selective expression. To use the lower-level expression,
Ongen et al. must calculate transcript-level or exon-level
eQTLs. The substantially increased number of related
transcripts and exons will complicate the analysis. By de-
sign, LDSC-SEG cannot integrate the lower level of se-
lective expression because it did not consider the
expression quantities in their analysis basically. Finally,
DESE does not use any cutoffs for the selective expres-
sion, which may produce more robust estimation results.
Ongen et al. needed a cutoff to select significant eQTL
for driver-tissue estimation. LDSC-SEG arbitrarily se-
lected the top 10% of genes with selective expression for
driver-tissue estimation.

The observation that transcript-level selective expres-
sion is more powerful for detecting driver tissues of com-
plex diseases than that of the gene level is biologically
sensible. In cells, it is essentially the mRNA transcripts
that are translated for biological functions. Different tran-
scripts may have different functions. Therefore, the
transcript-level selective expression may more precisely
capture a gene’s function in specific cell types. The gene-
level expression is basically an averaged expression of dif-
ferent transcripts, which may attenuate the tissue selectiv-
ity property of some transcripts and miss its important
characteristic expressions. This may be the reason why
the p values of estimated driver tissues based on
transcript-level expression were much more significant
than that based on the gene-level expression in all the
proof-of-principle examples (see details in Fig. 3). These
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results suggest studies on transcriptome of complex dis-
eases should pay more attention to transcript-level expres-
sion, which was often not so deeply investigated.
Moreover, our results also suggest some lowly expressed
transcripts may be also important for complex diseases,
which led to more significant p values at the estimated
driver tissues (see details in Table 1). The importance of
these genes can be highlighted by their large selective ex-
pression values at some transcripts.

Given the importance of transcript-level selective ex-
pression, it may be tricky to select a suitable transcript
representing its gene in the driver-tissue estimation. In
the present study, we used the transcript with the max-
imal selective expression in a tested tissue for the esti-
mation analysis. This may have bias toward genes with
more transcripts as they tend to have larger selective ex-
pression by chance. However, this tendency equally oc-
curs at every tissue. In the analysis of real examples, the
usage of maximal selective expression led to the esti-
mated driver tissues accordant with known biology of
the phenotypes. There are also alternative ways of using
the transcript-level selective expression. The averaged
selective expression should be similar to the gene-level
selective expression which led to less powerful estima-
tion (Fig. 3). When the minimal selective expression of a
gene was used, we found it almost had no power to de-
tect significant driver tissues (Additional file 1: Table
S8). Therefore, the maximal selective expression is at
least an effective way for the driver-tissue estimation al-
though it might not be the best way.

The hypothesis that genes associated with complex
diseases tend to have selective expression in primary
pathogenic tissues looks relatively strong. Although it
has been widely accepted that causal genes of Mendelian
diseases often have selective expression in the patho-
genic tissues or cell types [6], it is generally unclear for
complex phenotypes. The high concordance between the
estimated driver tissues and known biology at all the six
tested phenotypes suggested the validity of the hypoth-
esis. It is unlikely that the high concordance in our
analysis just occurred by chance. Probably, genetic
perturbation in the primary causal tissues has higher
functional impact on the genes with selective expres-
sion which then lead to higher impact on pheno-
types. It should be noted that not all genes having
selective expression in the primary pathogenic tissues
are the susceptibility genes. We observed many
selectively expressed genes had no significant disease-
associated p values. A gene supported by both select-
ive expression in the estimated driver tissues and
significant phenotype-associated p values is more
likely to be the true susceptibility gene. However, the
underlying mechanism is beyond the scope of the
present study.
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The secondary function of DESE will also greatly facili-
tate genetic fine-mapping of susceptibility genes in
GWAS analyses. LD is a tricky problem in GWAS for
discriminating true susceptibility genes from many indir-
ectly associated genes. Li et al. proposed a powerful stat-
istical framework to help isolate directly associated
genes [22]. However, the original analysis was carried
out according to a rank of statistical significance (i.e.,
p value) assuming the true susceptibility genes had more
significant p values. But this is not always true due to sam-
pling fluctuations. After ranking genes according to their
selective expression in the prioritized tissues for a disease,
we reperformed the conditional gene-based analysis with
the new rank. It turned out the selective expression rank-
ing led to more significant genes and higher proportion of
genes supported by literatures for all the six representative
complex diseases/traits. These results suggest that integra-
tion of selective expression can efficiently enhance the
power of identifying susceptibility genes. We believe this
strategy will also work for many other complex pheno-
types. It will be an effective framework to mine new sus-
ceptibility genes in the secondary analysis of GWAS data
with free data in public domains.

We used four types of measures of selective expression
for the driver-tissue estimation, including the proposed
robust-regression z-score and three existing methods.
This is because we found that different measures led to
different significance levels in different datasets and phe-
notypes. For example, the proposed robust-regression z-
score with transcript-level expression led to the highest
significant p values for BD (Fig. 3) while the ratio of vec-
tor projection with same expression data led to more
significant p values for schizophrenia. With the expres-
sion from GEO dataset, the proposed robust-regression
z-score also led to the most significant p values at the es-
timated driver tissues of schizophrenia. Therefore, we
used all the four measures for the estimation analysis.
However, compared to the other three measures, the
proposed robust-regression z-score has some technique
advances. First, it integrates standard errors of expres-
sion means into the analysis. The variances of estimated
means (i.e., standard errors) vary from tissues to tissues
because of expression fluctuation and sample sizes. In
GTEx dataset, for instance, the sample size of a tissue
varies from 5 to 564. The means estimated in larger
samples tend to be more accurate than those in smaller
samples and should be given higher weights. The pro-
posed robust-regression z-score extended a robust re-
gression to subtly integrate the standard errors as
weights for measuring selection expression. In contrast,
existing measures can only use the estimated expression
mean of each tissue for the selective expression analysis.
Moreover, the proposed robust-regression z-score
produced p values close to uniform distribution
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(Additional file 1: Figures S2 and S3). The property of
being uniform greatly facilitates statistical inference of
selectively expressed genes. To our knowledge, most se-
lective expression measures (including the three ones in
the present paper) cannot be used to declare selectively
expressed genes by statistical p values.

Due to lack of data, the selective expression profiles in
the collected tissues are far from complete and the de-
velopmental stages of tissues are unavailable either,
which is a limitation of the present study. For example, a
liver has lobes, surfaces, and impressions. In GTEx data-
set, the liver has no sub-tissues. Because of this issue,
some estimated driver tissues may be still rough in our
analysis. Probably also due to the same reason, some
genes with significant phenotype-association p values
have no significant selective expression in the estimated
driver tissues of a disease. The significance in the driver-
tissue estimation analysis may be increased when expres-
sion in higher resolution tissues at suitable developmen-
tal stage is available. However, as more and more
expression data are accumulating, this limitation is
diminishing. The tissue-selective expression will become
a powerful resource for identifying driver tissues and
new susceptibility genes of human diseases.

Methods

A unified framework of estimating driver tissues by genes’
selective expression

The framework, named driver-tissue estimation by se-
lective expression (DESE), consists of main three compo-
nents, conditional gene-based association analysis by an
effective chi-square test, estimating driver tissues accord-
ing to selective expression of the conditionally associated
genes, and ranking genes according to their selective ex-
pression in the estimated driver tissues. Based on the in-
puts of GWAS summary statistics and gene expression
of multiple tissues, they run iteratively to output a con-
verged list of driver tissues and susceptibility genes (as
byproduct) with statistical p values (see the pipeline in
Fig. 1). The following are detailed description of the
three components.

I. Conditional gene-based association analysis with GWAS p
values

The iterative procedure starts with production of associ-
ated genes of a disease or trait by our recent conditional
gene-based association test (effective chi-square, ECS) [22]
with GWAS summary statistics, which is available on the
KGG platform (http://grass.cgs.hkuhk/limx/kgg/) [65].
ECS has a unique advantage of removing redundantly as-
sociated genes with the GWAS p values of sequence vari-
ants. The variants within upstream and downstream (say
5kb) of a gene are assigned onto the gene according to a
gene model, e.g., RefSeqGene, https://www.ncbi.nlm.nih.
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gov/refseq/rsg/. The ancestrally matched genotypes (e.g.,
Phase3 v5 Shapeit2 in 1000 Genomes Project [66]) are
employed as reference genotypes for the removal of re-
dundant association by LD in the gene-based association
test. In the first iteration, genes with smaller p values are
given higher priority to enter the conditional gene-based
association analysis one by one (see details in the original
paper [22]). In the following-up iteration, genes with
higher tissue selectivity score are given higher priority to
enter the conditional association analysis one by one (see
production of the scores below). The basic assumption is
that genes selectively expressed in driver tissues of a com-
plex phenotype are more likely to be causal genes. If the
true causal genes enter preferentially, the conditional
gene-based association analysis will more effectively re-
move indirectly associated genes.

Il. Estimate driver tissue of diseases by selective expression
of disease- or trait-associated genes

Given the phenotype-associated genes from the above
conditional analysis, the driver tissues of a disease are esti-
mated by the Mann-Whitney U test (Wilcoxon rank-sum
test) [67]. It basically tests whether the selective expression
median of the phenotype-associated genes is significantly
higher than that of other genes in an interrogated tissue.
When a gene has multiple transcripts, the one with largest
selective expression value represents the gene in the
transcript-level analysis. We assume that tissue-selective
expression of the associated genes determines the tissue
where complex phenotype develops primarily [68]. There-
fore, in the causal or driver tissue, one can observe higher
selectively expression of the phenotype-associated genes.
Alternatively, one can use hypergeometric distribution test
to evaluate the enrichment of significant selective expres-
sion among the phenotype-associated genes. However, the
enrichment results may be sensitive to the cutoff for defin-
ing significant selective expression. The Mann-Whitney U
test has an advantage of being cutoff-free and may pro-
duce more robust results. A significant p value suggests
the phenotype-associated genes tend to have higher select-
ive expression in the tested tissue, indicating its potential
of being a driver tissue of the corresponding disease.

Ill. Rank genes by tissue-selective expression in estimated
driver tissues

The driver-tissue estimation results are then used to rank
candidate genes according to their selective expression in
the corresponding tissues. Denote the p values of above
Mann-Whitney U test in N tissues as py, -+, pn- Sort the
selective expression of all genes (7}) in a tissue i in ascend-
ing order and a gene j is ranked at k;;’s place. The gene’s
selective expression score of the gene j in all tissues is:
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A gene having strong selective expression in multiple
estimated driver tissues will obtain a high score. The
ranking score is then used to determine the order in the
next conditional gene-based association analysis [22],
where genes with higher ranking scores will be given
higher priority to enter the conditioning procedure. A
gene supporting by both high-ranking score and signifi-
cant phenotype-associated p values are highly prioritized
for the phenotype as well.

The three steps are iterated until the p values of all tis-
sues do not change almost. The iterative procedure for
estimating driver tissues and genes has been imple-
mented into our platform KGG, http://grass.cgs.hku.hk/
limx/kgg/. See description about the implementation at
Additional file 1: Text 1.

Measures of genes’ selective expression

There have been multiple measures for evaluating the se-
lective expression of genes [13]. Because selective expression
is a relative quantity, it is often challenging to define the
background reference tissues. In the present study, besides
adopting three existing measures of selective expression, we
also proposed a robust measure of selective expression by
extending the Huber robust linear regression [69].

Let us define N different tissues, and each tissue has
multiple transcriptome samples. A gene (or transcript)
has expression means and standard errors (SE) in the N
tissues, y1, ..., yn and sy, ..., Sy- Assume majority expres-
sion values approximately follow a certain distribution
(say, normal distribution, or uniform distribution) while
a minority of values deviate from the majority due to se-
lective expression.

I. The proposed measure of tissue-selective
expression, robust-regression z-score (REZ)
We notice that the seemingly mussy values in the
majority group can often approximately form a line
after sorting (see illustration in Additional file 1:
Figure S1). But the selective expression values will
deviate from the line. In addition, as expression
means of a gene in tissues with smaller SEs are often
more reliable than those with larger SEs, we extended
the Huber robust linear regression [69] to weight the
expression deviation and reliability. The reason why
we choose the Huber regression is that it is
particularly efficient for outliers in the response
variable than other alternative approaches [70, 71].
The regression produces smaller weights at the
expression values with larger deviation from the
fitted line and larger SEs:
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where 5, and f3; are the regression parameters and
i € [1...N] is the rank of a gene expression in an
ascendingly sorted list of the N tissues. The y(; de-
notes the ith expression mean, s, is the corresponding
SE of y(;, and e(; denotes the residual. When each tis-
sue only has one subject, y;, is the expression value of
the subject and s; is set to be 1. The w(; is named a
weight of y(;. The k is a tuning constant and is equal to
1.345 x standard deviation of the weighted residuals
[69]. The iteratively reweighted least-square procedure
of robust linear regression is used to generate the con-
verged weights of thegene at the N tissues, wy, ..., wa.
The converged weights are then standardized,

(1)

Wi
N
> =1Wj

and are used to produce a robust mean,

Wi = )

Hy = Wi X Y;

i=1

and a robust standard deviation,
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The proposed robust-regression z-score for selective
expression at tissue i is defined as:

\_yz'_/:tw
SIS

The z ; quantifies the expression deviation from the
homogenous majority expression values. The A is a
constant factor to adjust the p values to follow uniform
distribution for hypothesis test. Extensive simulations
suggested that an empirical factor of v/1.5 led to
approximately uniformly distributed p values
(Additional file 1: Figures S2 and S3). The p value is
then approximated based on the standard normal
distribution,
{2 x [1-@(z;)], ;20

2 X (D(‘Zl'),:’c'i <0
cumulative distribution function of the standard
normal distribution.

, where @(x) is the

i

The conventional z-score for selective expression
When tissue number is sufficiently large, the
conventional z-score for standardization may also
be effective for selective expression. The z-score for
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selective expression at a gene in tissue i is
calculated by,

where /i is the mean of the gene expression values in
all the N tissues and ¢ is the standard deviation.

III. Median absolute deviation (MAD) robust z-score
As the mean is sensitive to outlier, the MAD robust
z-score was also previously proposed for selective
expression [72]. The median is a robust measure of
central tendency and MAD is a robust measure of
statistical dispersion. The MAD robust z-score of a
gene’s selective expression in tissue i is estimated
by:

o | yi—M |
ZMAD,i = 7MAD )

where M is the expression median of the gene
among the N tissues and MAD = 1.4826 x median(|
y1—-M]|, | y2 - M|, ...,| yn—M]|). Note we removed
the zero values of | y,-M | to avoid the zero
MAD for the analysis.

IV. The ratio of vector-scalar projection (RVP)
Xiao et al. proposed a ratio of vector-scalar projec-
tion for measuring selection expression of a gene in
multiple tissues [16]. The RVP of a gene’s selective
expression in tissue i is estimated by:

N
RVP; :3’?/2;:13’?-

The RVP ranges from 0 to 1.0. A value close to 1.0
indicates that tissue i is the major contributor to the
projected length of vector Y= (yy, ¥, ..., y) in high-
dimension tissue spaces or, biologically, high tissue
selectivity.

Gene expression datasets and quality control

We adopted three independent expression datasets for
driver-tissue estimation and validation. The calculated and
QC-pass expression means and SE of these datasets are
available for download at http://grass.cgs.hku.hk/limx/rez/.

The RNA-Seq profiles from GTEx project

The normalized expression datasets at the gene level and
transcript level were downloaded from GTEx project (V7)
[73], GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_
gene_tpm.gct.gz and GTEx_Analysis_2016-01-15_v7_
RSEMvV1.2.22_transcript_tpm.txt.gz. The sample sizes of
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each tissue were different, ranging from 5 to 564 (Add-
itional file 1: Table S2). There were initially 196,520 tran-
scripts and 56,205 genes in 53 tissues. The expression
values were measured by transcripts per kilobase million
(TPM). As TPM is effective for cross-tissue comparison
[74], we did not retransform the expression values by
other measurements. A series of quality control proce-
dures were carried out. The mean and standard deviation
of expression values of all genes in each tissue were calcu-
lated. In the evaluation according to correlation, three tis-
sues (the whole blood, pancreas, and pituitary) had low
Pearson correlation with other tissues (Fig. 2a and Add-
itional file 1: Figure S4) and were excluded. In the calcula-
tion of tissue-selective expression, genes or transcripts
having <0.01 TPM in all tissues were excluded. Genes
whose Ensembl IDs had no corresponding official HGNC
gene symbols were excluded as well. Finally, 131,292 tran-
scripts and 31,659 genes in 50 tissues were retained for
subsequent analysis.

The microarray expression profiles from Gene Expression
Omnibus (GEO) repository

We also curated microarray expression profiles of multiple
tissues from GEO database for validation. We adopted the
tissue-tree structure in Open Biomedical Ontologies
(https://www.ebi.ac.uk/ols/ontologies/bto) to collect the
expression data. Stringent quality controls were carried out
in the expression data. For each individual subject, the ex-
pression values of genes were ranked. The gene expression
values were standardized corresponding to the quantile of
the genes in the ranking list under standard normal distri-
bution. This transformation converted data to normal dis-
tribution and eliminated systematic batch effects. Within
each GEO-GSE dataset of the same tissue, we removed
samples which had relatively low and high correction with
majority samples according to the Pearson correlation co-
efficients. The correlations below 5% of all correlations and
above 95% correlations were defined as the low and the
high correlation respectively. We explored the GEO data-
base and retrieved GSE datasets according to tissue-tree
structure. If a tissue had over 200 subjects, its offspring tis-
sues were checked. If one or more offspring tissues also
had the sample size over 200, the exploration went further
into the offspring of the offspring tissues. Otherwise, the
exploration stopped at the current tissue node with 200 or
more subjects. In total, 55 different tissues were collected
from the GEO database. Additional file 1: Table S3 lists the
tissue names and the corresponding sample sizes. Genes
with 9 or few expression values were removed. Finally, 19,
012 genes were retained.

The RNA-Seq profiles from BrainSpan
We also downloaded gene- and exon-level transcription pro-
files from BrainSpan as an independent dataset for validation
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analysis. According to our previous study, the expression in
prenatal brains may be less effective for illustrating disease
association based on common variants [22]. We therefore
removed expression profiles of prenatal brains. Genes or
exons with 9 or few expression values were removed. Finally,
16 brain regions were retained for the driver-tissue estima-
tion analysis. The number of genes and exons were 34,172
and 187,184 respectively. The region names and sample
sizes are listed in Additional file 1: Table S4.

Produce genes associated with six representative complex
diseases or traits

We collected the GWAS meta-analysis p values at single
nucleotide polymorphisms (SNPs) of six representative
complex diseases or traits developing in different bio-
logical systems, schizophrenia [23], bipolar disorder [26]
(brain diseases), rheumatoid arthritis (RA) [75] (an auto-
immune disease), coronary artery disease (CAD) [76] (a
cardiovascular disease), total cholesterol [77] (a meta-
bolic trait), and height [46] (an anthropometric trait).
Additional file 1: Table S6 lists the sample sizes and
downloading links of the datasets. The p values of SNPs
were combined for gene-based association on KGG (see
detailed methods in the above section). The significantly
associated genes (after multiple testing correction) were
used to detect potential driver tissues and to finely map
susceptibility genes by the conditional gene-based test
[22] (see pipeline in Fig. 1).

Validate and compare estimated driver tissues by the
proposed framework with existing methods

The method of Ongen et al.

Ongen et al. estimated the driver tissues of a complex
disease based on concordance of active expression quan-
titative trait loci (eQTLs) and GWAS-associated variants
[10]. They assumed the causal tissue showed signifi-
cantly higher concordance than irrelevant tissues, which
is different from the hypothesis of DESE. Because Ongen
et al’s method had no publicly available tools, we dir-
ectly extracted enrichment values from the Supplemen-
tary Table S5 of their published paper for the validation
and performance comparison [10]. According to Ongen
et al,, the tissues with the enrichment value over the null
greater than 1 were considered as the significant causal
tissues for the diseases/traits.

LDSC-SEG

Finucane et al. proposed to infer causal tissues according
to heritability enrichment at selectively expressed genes
[11], which was named LD score regression applied to
specifically expressed genes (LDSC-SEG). They adopted
a t-statistic to evaluate selective expression of genes for
a focal tissue. The top 10% of genes according to large ¢-
statistic were chosen as specifically expressed gene set.


https://www.ebi.ac.uk/ols/ontologies/bto

Jiang et al. Genome Biology (2019) 20:233

Sequence variants within 100 kb upstream and down-
stream of selectively expressed genes were included for
calculating heritability by stratified LD score regression.
The selectively expressed genes were assumed to con-
tribute higher heritability in causal tissues than in irrele-
vant tissues. Therefore, the enriched heritability was
used to infer causal tissues of complex diseases in turn.
Their estimated driver tissues were successfully validated
by chromatin data. In the present study, we directly
adopted the results in the Supplementary Table 6 (their
main results) and the Supplementary Table 7 (chromatin
validation results) of Finucane et al. [11] for the valid-
ation and comparison.

In silico validation by PubMed search

We used PubMed search function to roughly validate the
detected genes for a complex disease. The underlying as-
sumption is that a gene’s contribution to a disease can be
indicated by the observation that multiple papers co-
mention the gene and the disease name in the title or ab-
stract. The more involved papers, the more likelihood the
gene is related to the disease. Although this may be crude
for one individual gene, it can produce a reliable evalu-
ation when there are many genes. We employed the web
application programming interfaces (APIs) of PubMed to
execute the search. The search link was http://eutils.ncbi.
nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=
“DiseaseNames  (inlcuding homonymies)”[tiab]%29 +
AND+“GeneSymbol (including RefSeq mRNA IDs)” [tiab].
The search results included PubMed ID and relevant data
of the papers, if available, in extensible markup language
(XML).

Additional files

Additional file 1: Supplementary text, figures and tables (PDF 1711 kb)
Additional file 2: Supplementary Excel tables (XLSX 233 kb)
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