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Abstract

We develop CellSIUS (Cell Subtype Identification from Upregulated gene Sets) to fill a methodology gap for rare
cell population identification for scRNA-seq data. CellSIUS outperforms existing algorithms for specificity and
selectivity for rare cell types and their transcriptomic signature identification in synthetic and complex biological
data. Characterization of a human pluripotent cell differentiation protocol recapitulating deep-layer corticogenesis
using CellSIUS reveals unrecognized complexity in human stem cell-derived cellular populations. CellSIUS enables
identification of novel rare cell populations and their signature genes providing the means to study those
populations in vitro in light of their role in health and disease.
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Background
Single-cell RNA sequencing (scRNA-seq) enables
genome-wide mRNA expression profiling with single-cell
granularity. With recent technological advances [1, 2] and
the rise of fully commercialized systems [3], throughput
and availability of this technology are increasing at a fast
pace [4]. Evolving from the first scRNA-seq dataset
measuring gene expression from a single mouse blasto-
mere in 2009 [5], scRNA-seq datasets now typically
include expression profiles of thousands [1–3] to more
than one million cells [6, 7]. One of the main applications
of scRNA-seq is uncovering and characterizing novel
and/or rare cell types from complex tissue in health
and disease [8–13].
From an analytical point of view, the high dimensionality

and complexity of scRNA-seq data pose significant chal-
lenges. Following the platform development, a multitude of
computational approaches for the analysis of scRNA-seq
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data emerged. These comprise tools for cell-centric ana-
lyses, such as unsupervised clustering for cell type identifi-
cation [14–16], analysis of developmental trajectories [17,
18], or identification of rare cell populations [8, 9, 19], as
well as approaches for gene-centric analyses such as
differential expression (DE) analysis [20–22].
Whereas a large number of computational methods

tailored to scRNA-seq analysis are available, comprehen-
sive performance comparisons between those are scarce.
This is mainly due to the lack of reference datasets with
known cellular composition. Prior knowledge or synthetic
data are commonly used to circumvent the problem of a
missing ground truth.
Here, we generated a benchmark dataset of ~ 12,000

single-cell transcriptomes from eight human cell lines to
investigate the performance of scRNA-seq feature selection
and clustering approaches. Strikingly, results highlighted a
methodology gap for sensitive and specific identification of
rare cell types. To fill this gap, we developed a method
which we called CellSIUS (Cell Subtype Identification from
Upregulated gene Sets). For complex scRNA-seq datasets
containing both abundant and rare cell populations, we
propose a two-step approach consisting of an initial coarse
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clustering step followed by CellSIUS. Using synthetic and
biological datasets containing rare cell populations, we
showed that CellSIUS outperforms existing algorithms in
both specificity and selectivity for rare cell type and their
transcriptomic signature identification. In addition, and in
contrast to existing approaches, CellSIUS simultaneously
reveals transcriptomic signatures indicative of rare cell
type’s function(s).
To exemplify the use of CellSIUS, we applied the work-

flow and our two-step clustering approach to complex
biological data. We profiled the gene expression of 4857
human pluripotent stem cell (hPSC)-derived cortical neu-
rons generated by a 3D spheroid differentiation protocol.
Analysis of this in vitro model of corticogenesis revealed
distinct progenitor, neuronal, and glial populations con-
sistent with developing human telencephalon. Trajectory
analysis identified a lineage bifurcation point between
Cajal-Retzius cells and layer V/VI cortical neurons, which
was not clearly demonstrated in other in vitro hPSC
models of corticogenesis [23–26]. Importantly, CellSIUS
revealed known as well as novel rare cell populations that
differ by migratory, metabolic, or cell cycle status. These
include a rare choroid plexus (CP) lineage, a population
that was either not detected, or detected only partly by
existing approaches for rare cell type identification. We
experimentally validated the presence of CP neuroepi-
thelia in our 3D cortical spheroid cultures by confocal
microscopy and validated the CP-specific signature gene
list output from CellSIUS using primary pre-natal human
data. For the CP lineage in particular and other identified
rare cell populations in general, the signature gene lists
output from CellSIUS provide the means to isolate these
populations for in vitro propagation and characterization
of their role in neurological disorders.

Results
Investigation of feature selection and clustering
approaches for scRNA-seq data reveals a methodology
gap for the detection of rare cell populations
To assess and compare the performance of some of the
most recent and widely used feature selection and clus-
tering methodologies for scRNA-seq data, we generated
a scRNA-seq dataset with known cellular composition
generated from mixtures of eight human cell lines. To
this end, a total of ~ 12,000 cells from eight human cell
lines (A549, H1437, HCT116, HEK293, IMR90, Jurkat,
K562, and Ramos) were sequenced using the 10X
Genomics Chromium platform [3]. Cells were processed
in batches containing mixtures of two or three cell lines
each. One of the cell lines was present in two separate
batches and indicated that technical batch effects were
minor as compared to the biological variability (Fig. 1).
To infer cell type identity, we profiled each cell line indi-
vidually using bulk RNA sequencing. Correlation of the
single-cell to bulk expression profiles was used for cell type
assignment as described in the “Methods” section (Fig. 1a,
b). Cells that did not pass quality control (QC) or could not
be unambiguously assigned to a cell line (614 cells, ~ 5%)
were discarded, leaving 11,678 cells of known cell type
(Fig. 1c and Additional file 1: Figure S1, Table S1).
We assembled a modular workflow for the analysis of

scRNA-seq data (Fig. 2a). The quality control, normalization,
and marker gene identification modules were based on
recent publications and described in methods. For a
data-driven choice of the most appropriate feature
selection method upstream of the clustering module,
we compared methods using either a mean-variance
trend to find highly variable genes (HVG, [27]) or a
depth-adjusted negative binomial model (DANB [28])
for selection of genes with unexpected dropout rates
(NBDrop) or dispersions (NBDisp). Using linear modeling
as implemented in the plotExplanatoryVariables function
from scater [29], we quantified the influence of these
feature selection methods on the contribution of four
predictors to the total observed variance: cell line, total
counts per cell, total detected features per cell, and
predicted cell cycle phase (Fig. 2b). Results highlighted
that (i) for HVG selected genes, cell line accounted for
10% of the total variance only; (ii) for NBDisp and
NBDrop selected genes, the percentage of total variance
explained by cell line increased to 37% and 47%, respec-
tively, with half of the selected features common to both
methods; (iii) genes selected only by NBDisp were gener-
ally low expressed (data not shown), highlighting a draw-
back of variance-based feature selection [28]; and (iv)
NBDrop selected features showed an increased contribu-
tion of library size (i.e., total detected features and total
counts per cell) to the total variance. For our benchmark
dataset, the number of total features co-varied with cell
type and cell cycle indicating that library size is partially
dependent on the cell line (Additional file 1: Figure S1),
and thus determined by both technical and biological
factors. Therefore, and because in our benchmark dataset,
the genes selected by NBDrop explained more cell-line-
based variance, we compared some of the most recent or
widely used clustering methods after feature selection
using NBDrop.
For the clustering module, we investigated seven un-

supervised clustering methods for scRNA-seq data (SC3
[15], Seurat [1], pcaReduce, hclust [30], mclust [31],
DBSCAN [32], MCL [33, 34], Additional file 1: Table S2)
by in silico subsampling of our dataset of known
composition in two subsets with different cell type pro-
portions (later referred to as subset 1 and subset 2,
Fig. 2c–e, Additional file 1: Table S1). Subset 1 consisted
of 4999 cells from eight cell types with abundance varying
between 2 and 32%. Subset 2 consisted of 3989 cells with
two major cell populations including 90% of all cells of
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Fig. 1 Generation of a scRNA-seq dataset with known cellular composition. a Schematic illustration of the experimental setup. Eight human cell
lines were individually profiled by bulk RNA-seq and mixed in four batches containing mixtures of two or three cell lines each for scRNA-seq
profiling. Correlation of the single-cell to bulk expression profiles was used for cell type assignment as described in the Methods section.
b Visualization of correlations between single-cell and bulk expression profiles for each batch. The top row represents cell type assignment.
Single cells were assigned to the cell type correlating most with their expression profile as described in the Methods section. Cells with z-
scored correlations below 0.2 were not assigned to any cluster. Cells that correlate strongly with more than one bulk expression profile likely
represent doublets and were excluded from future analyses. c Heatmap of gene expression values, clustered by their Pearson’s correlation
across rows (genes) and columns (cells). The color bars indicate the cell type and the corresponding batch. Only the top 10% genes selected
by NBDrop are shown
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this subset, four medium to low abundant (between 1%
and 5%), and two rarer cell types with abundances below
1%, containing 3 (0.08%) and 6 (0.15%) cells, respectively.
We applied each clustering method to the complete data-
set as well as to both subsets, using principal component
analysis (PCA) [35, 36] to project the original expression
values to vectors in a lower dimensional space and calcu-
lating all distances based on these projections. For all
clustering methods, we adjusted parameters such that they
resulted in the expected number of 8 clusters. We then
assessed the quality of the classification by calculating the
adjusted Rand index (ARI) [37] between assignment and
true cell line annotation.
On the full dataset, most methods resulted in a perfect

assignment (Fig. 2f) with only two of the stochastic
methods—pcaReduce and mclust—yielding a lower ave-
rage ARI of 0.90 and 0.92. In contrast, on subset 1, where
cell type proportions were no longer equal, k-means-based
methods and mclust failed to identify the different cell
types correctly and resulted in average ARI of 0.85 (SC3),
0.78 (pcaReduce), and 0.69 (mclust) (Fig. 1g). On subset 2,
all methods failed to correctly identify rarer (6 cells, 0.16%
of total cells) cell types (Fig. 1h). DBSCAN achieved the
highest ARI (0.99) classifying rare cells as outliers (“border
points”). All other methods merged rare cells with clusters
of abundant cell types resulting in lower ARI of 0.98
(hclust on Euclidean distance), 0.96 (MCL), 0.96 (hclust
on correlation distance), and 0.76 (Seurat).
In conclusion, and consistently with a recent review

describing the challenges in unsupervised clustering of
single-cell RNA-seq data [16], our results showed that
most clustering methods performed well in identifying
populations defined by more than 2% of total cells. Yet,
none of the methods could identify rarer populations,
highlighting the need for dedicated tools tailored to
detecting rare cell types.
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Fig. 2 Performance assessment of feature selection and clustering methods. a Overview of the computational analysis workflow. b Benchmarking
of feature selection methods. In each case, the top 10% of features were selected using either a mean-variance trend to find highly variable
genes (HVG, left) or a depth-adjusted negative binomial model (DANB) followed by selecting genes with unexpected dropout rates (NBDrop,
middle) or dispersions (NBDisp, right). Plots show the percentage of variance explained by each of the four predictors to the total observed
variance: cell line, total counts per cell, total detected features per cell, and predicted cell cycle phase. The blue dashed line indicates the average
for the predictor cell line. c–e tSNE projections of the full dataset (c) and two sub-sampled datasets with unequal proportions between different
cell lines (d, e). f–h Comparison of clustering assignments by different methods on the full dataset (f), subset 1 (g), and subset 2 (h). Stochastic
methods (SC3, mclust, pcaReduce) were run 25 times. Bars and indicated values represent mean adjusted rand index (ARI), and dots correspond
to results from individual runs. All other methods are deterministic and were run only once
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Development of CellSIUS for rare cell population
identification and characterization
To overcome the abovementioned limitations, we deve-
loped a novel method to identify rare cell populations
which we called CellSIUS (Cell Subtype Identification
from Upregulated gene Sets). CellSIUS takes as input
the expression values of N cells grouped into M clus-
ters (Fig. 3a). For each cluster Cm, candidate marker
genes gm1, gm2, …, gmj that exhibit a bimodal distribution
of expression values with a fold change above a certain
threshold (fc_within) across all cells within Cm are identi-
fied by one-dimensional k-means clustering (with k = 2).
For each candidate gene gmi, the mean expression in the
second mode is then compared to this gene’s mean
expression level outside Cm (fc_between), considering only
cells that have non-zero expression of gmi to avoid biases
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Fig. 3 Development and benchmarking of CellSIUS. a Schematic overview of CellSIUS. Starting from an initial assignment of N cells in M clusters
(i), within each cluster, genes with a bimodal distribution are identified (ii) and only genes with cluster-specific expression are retained (iii). Among the
candidate genes, sets with correlated expression patterns are identified by graph-based clustering (iv). Cells are assigned to subgroups based on their
average expression of each gene set (v). b, c Performance comparison of CellSIUS to GiniClust2 and RaceID3 in detecting cells from sub-clusters and
their signatures. b Recall, precision, and true negative rate (TNR) with regard to the detection of rare cells in synthetic data when varying the number
of rare cells from 2 (0.2%) to 100 (10%) c Recall, precision, and true negative rate (TNR) with regard to the detection of outlier genes (gene signature)
in synthetic data when varying and the number of signature genes from 2 to 100
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arising from stochastic zeroes. Only genes with sig-
nificantly higher expression within the second mode of
Cm (by default, at least a twofold difference in mean ex-
pression) are retained. For these remaining cluster-specific
candidate marker genes, gene sets with correlated expres-
sion patterns are identified using the graph-based cluster-
ing algorithm MCL. MCL does not require a pre-specified
number of clusters and works on the gene correlation
network derived from single-cell RNAseq data and detects
communities in this network. These (gene) communities
are guaranteed to contain genes that are co-expressed, by
design. In contrast, in a k-means clustering with a pre-
specified k, we cannot be sure that all genes within all
clusters are co-expressed to the same degree: genes are
assigned the closest centroid, but this is only a relative
measure. Thus, by using communities of a gene corre-
lation network, with a pre-specified correlation threshold,
we can be sure that those communities (if such exist)
satisfy the criteria of containing correlated genes. In a last
step, cells within each cluster Cm are assigned to sub-
groups by one-dimensional k-means clustering of their
average expression of each gene set.
The overall idea behind CellSIUS is similar to RaceID3

[38] and GiniClust2 [19], two recent methods for the
identification of rare cell types in scRNA-seq datasets.
All of these algorithms combine a global clustering with
a second assignment method tailored to the identifi-
cation of rare cell types. However, in contrast to existing
methods, CellSIUS requires candidate marker genes to
be cluster specific, and therefore, we hypothesized that
our method will be more specific and less sensitive to
genes that co-vary with confounders such as the total
number of detected genes per cell. To overcome biases
associated to the high dropout rates in scRNA-seq,
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CellSIUS considers only cells that have non-zero expression
for the selected marker genes. Finally, in contrast to both
RaceID3 and GiniClust2, CellSIUS directly returns a gene
signature for each of the new cell subpopulations recovered.

CellSIUS outperforms existing algorithms in the
identification of rare cell populations
We first compared CellSIUS performance to RaceID3
[38] and GiniClust2 [19] using a synthetic dataset. Briefly,
we used the expression values of 1000 K562 cells from our
dataset to estimate the parameters for the simulation and
generated two homogeneous populations of 500 cells
(later referred to as clusters 1 and 2). We confirmed the
mean-variance and mean-dropout relationships, library
sizes, and percentage of zero counts per cells and per gene
were similar to the underlying real data (Additional file 1:
Figure S2a-f). For this data, both CellSIUS and GiniClust
correctly identified the two predefined clusters whereas
RaceID3 detected a large number of false positives
(Additional file 1: Figure S2 g).
We then assessed each algorithm’s ability to detect an

increasingly rare cell type by adding between 2 and 100
(0.2–10% of the cluster size) cells of a third type to the
two homogenous populations described above. This new
synthetic cell type was generated by increasing the log2
expression values of 20 randomly selected genes by an
average of 2.5.
We compared (i) recall as the fraction of rare cells

correctly assigned to new clusters, i.e., the number of
correctly identified rare cells divided by the total number
of rare cells; (ii) precision as the fraction of true rare cells
among all cells not assigned to the two main clusters; and
(iii) true negative rate (TNR) as the fraction of abundant
cells that were correctly assigned to the two main
clusters. To enable a more direct comparison between
the methods, benchmarking analyses were carried out
with a predefined initial clustering for all approaches.
CellSIUS had a recall of 1 for rare cell populations
consisting of more than 2 cells. In contrast Gini-
Clust2 did not identify any rare cell populations and
RaceID3 recalled only ~ 50% of true positives (Fig. 3b, top
panel). Additionally, CellSIUS exhibited a TNR of 1.0 and
thus a precision of 1.0 (except in the one case where no
true positives were recovered). While GiniClust2’s TNR
was also 1.0, the precision could not be defined due to the
lack of identification of true and false positives. RaceID3
had a low TNR (mean = 0.95, sd = 0.01), resulting in low
precision (mean = 0.1, sd = 0.1) (Fig. 3b, middle and bot-
tom panel). We then repeated this comparison for the
identification of signature genes. To this end, we ge-
nerated a second set of populations. Briefly, the number of
rare cells was fixed at 20 (~ 2% of total cells), and we
increased the log2 expression values of between 2 and 100
genes by 2.5 on average. We compared (i) recall, (ii)
precision, and (iii) TNR as above but with respect to
genes. In comparison to CellSIUS, GiniClust2 showed a
poor performance (Fig. 3c, top panel), consistent with
failing to detect rare cell population. In contrast, RaceID3
performed slightly better than CellSIUS in terms of recall,
however, with a precision cost. Whereas both precision
and TNR were 1.0 for CellSIUS, RaceID3 had a low TNR
(0.5) and consequently a low precision (mean = 0.012,
sd = 0.007) (Fig. 3c, top and bottom panels).
To systematically investigate the stability of Cell-

SIUS’ output to parameter changes, we repeated the
above-described analysis when varying fc_within, fc_
between and corr_cutoff (Additional file 1: Figure S3;
Methods). Results that highlighted the stability of
both sensitivity and specificity are across a wide range
of parameters.
In summary, using synthetic data, we showed an in-

creased sensitivity and specificity of our algorithm for
rare cell type identification and outlier gene identifi-
cation compared to GiniClust2 and RaceID3 (Fig. 3b,
c) and demonstrated robustness to parameter choices
(Additional file 1: Figure S3).
We next benchmarked CellSIUS’ specificity and selectiv-

ity using our dataset of known cell composition, randomly
subsampling 100 HEK293 cells and 125 Ramos cells, and
including 2, 5, or 10 Jurkat cells. Only cells assigned to be
in cell cycle phase G1 were considered to ensure within-
cluster homogeneity. To simulate varying degrees of tran-
scriptional difference between the rare cell type (Jurkat)
and its closest more abundant cell type (Ramos), we
adapted an approach recently presented by Crow et al.
[39] (Fig. 4a). Briefly, from the initial dataset, 25 Ramos
cells were held out. Subsequently, an increasing fraction
of gene expression values in the Jurkat cells were replaced
by the respective values in the held out Ramos cells,
thus diluting the Jurkat-specific gene expression profile
and making the Jurkat cells more and more similar to
Ramos. Using this approach, we generated datasets
with two equally sized abundant populations (HEK293
and Ramos, 100 cells each) and one rare population
(Jurkat, varying between 2, 5, and 10 cells). We pre-
defined two initial clusters: cluster 1 contained all
HEK293 cells and cluster 2 combined the two lymphomas
(Ramos and Jurkat).
We then tested the ability of CellSIUS, RaceID3, and

GiniClust2 to identify rare cell types for varying incidence
(i.e., total number of rare cells) and subtlety (i.e., fraction
of Jurkat genes replaced by Ramos genes). We assessed
the recall (Fig. 4b) and precision (Fig. 4c) as above.
Results showed a high sensitivity of all three methods
for very subtle transcriptional signatures (99.5% of
genes replaced, corresponding to 230 unperturbed
genes) and low incidence (down to two cells except
for GiniClust2). However, CellSIUS exhibited high precision



Fig. 4 CellSIUS benchmarking on cell line data. a Schematic overview of dataset perturbations. Starting from a dataset containing three cell types
(abundant cell type 1, abundant cell type 2, and rare cell type), we first generated a defined number of rare cells by subsampling. In addition, we
partitioned the type 2 cells in two, leaving out 25 cells from the dataset for later use. Next, we adjusted the subtlety of the transcriptional
difference between the rare cells and their closest neighbor (cell type 2) by swapping a fraction of gene expression values in the type 2 cells
with the corresponding value in the left-out rare cells. We then pre-defined an initial cluster assignment as cluster 1 = type 1, cluster 2 = the
union of type 2 and rare cells and assessed whether different algorithms for detecting rare cell types are able to correctly classify the rare cells
as such. b, c Comparison of CellSIUS to GiniClust2 and RaceID3 for varying incidence of the rare cell type and varying subtlety of the transcriptional
signature here, we used 100 HEK293 cells as type 1, 100 Ramos cells as type 2, and up to 10 Jurkat cells as the rare cell type and we swapped between
0 and 99.5% of gene expression values. For each algorithm, we assessed the recall (b), i.e., the fraction of correctly identified rare cells, and precision (c),
i.e., the probability that a cell which is classified as rare is actually a rare cell. d tSNE projection of subset 2 of the cell line dataset, colored by CellSIUS
assignment. Cluster numbers correspond to the main clusters identified by MCL, clusters labeled x.sub indicate the CellSIUS subgroups.
Symbols correspond to the cell line annotation. e Violin plot showing the main markers identified by CellSIUS, grouped by cluster
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(88.4% on average), in comparison to GiniClust2 (51.6% on
average) and RaceID3 (15.6% on average).
Having shown that CellSIUS is more sensitive and

specific for the identification of rare cell types and outlier
genes using synthetic and simulated biological data, we
tested its ability to reveal transcriptomic signatures indi-
cative of rare cell type’s function(s). We applied CellSIUS
to subset 2 of our dataset of known composition
(Additional file 1: Table S1) with 6 clusters predefined
using MCL (Fig. 4d). CellSIUS identified three subgroups
(Jurkat, H1437, and a small subgroup of IMR90 cells)
within the 6 initial clusters characterized by upregulation
of three or more genes (Fig. 4e). Notably, the two stron-
gest signatures were obtained for the two subgroups
corresponding to Jurkat and H1437 cells with top marker
genes consistent with previous knowledge: CD3G and
CD3D, both of which are known T cell markers [40] being
the top markers for Jurkat (T cell lymphoma), and TFF1
and BPIFA2, both shown to function in the respiratory
tract [41, 42] being the top markers for H1437 (lung
adenocarcinoma, epithelial/glandular cell type).
Taken together, these results show that CellSIUS

outperforms existing methods in identifying rare cell
populations and outlier genes from both synthetic and
biological data. In addition, CellSIUS simultaneously
reveals transcriptomic signatures indicative of rare cell
type’s function.

Application to hPSC-derived cortical neurons generated
by 3D spheroid directed-differentiation approach
As a proof of concept, we applied our two-step approach
consisting of an initial coarse clustering step followed by
CellSIUS to a high-quality scRNA-seq dataset of 4857
hPSC-derived cortical neurons generated by a 3D cortical
spheroid differentiation protocol generated using the 10X
Genomics Chromium platform [3] (Additional file 1:
Figure S4a and Table S3; see the “Methods” section).
During this in vitro differentiation process, hPSCs are
expected to commit to definitive neuroepithelia, restrict to
dorsal telencephalic identity, and generate neocortical
progenitors (NP), Cajal-Retzius (CR) cells, EOMES+ inter-
mediate progenitors (IP), layer V/VI cortical excitatory
neurons (N), and outer radial-glia (oRG) (Additional file 1:
Figure S4b). We confirmed that our 3D spheroid protocol
generates cortical neurons with expected transcriptional
identity that continue to mature upon platedown with
expression of synaptic markers and features of neuronal
connectivity at network level [43] (Additional file 1:
Figure S4c, d, e, and see the “Methods” section).
Initial coarse-grained clustering using MCL identified

four major groups of cells that specifically express known
markers for NPs [44], mixed glial cells (G), CR cells [45],
and neurons (N) [46] (Fig. 5a, b). A small population of
contaminating fibroblasts (0.1% of total cells) was removed
from the dataset for downstream analyses. CR cells
expressed DCX, CALB2, STMN2, and MAPT consistently
with developing mouse and human cortex (Fig. 5b) [49–
51]. The robust expression of FOXG1 in the general popu-
lation (Additional file 1: Figure S5a) and the expression of
PAX6, EMX2, and LHX2 in NPs (Fig. 5b) indicated our
differentiation protocol mainly generates cells with dorsal
telencephalic identity [52].
Applying CellSIUS to this data identified 7 subpopula-

tions (Fig. 5c, d). Notably, within the mixed glial cells
(G), CellSIUS identified a rare subgroup (1.1% of total
population, G.sub_1) characterized by a signature of 10
genes. Nine of those ((TRPM3, PTGDS, TTR, CXCL14,
HTR2C, WIF1, IGFBP7, MT1E, DLK1) are known to be
enriched in primary pre-natal human choroid plexus
(CP) (Fig. 5e) compared to the other tissues from the de-
veloping human cortex (harmonizome database [47, 48]
using a cutoff of 1.3 for the standardized value, corre-
sponding to a Benjamini-Hochberg-corrected p adjusted
< 0.05). This G.sub_1 population is therefore consistent
with the formation of CP, a secretory neuroepithelial
tissue that produces cerebrospinal fluid (CSF) and that
has multiple origins along the rostro-caudal axis of the
developing nervous system including the dorsal telence-
phalic midline [53]. We further validated the presence of
CP neuroepithelia in our 3D human cortical cultures by
confocal microscopy analysis. Using neurosphere cryo-
sections, we demonstrated co-localization of canonical
CP marker transthyretin (TTR) with prostaglandin D2
synthase (PTGDS), another CP enriched protein de-
scribed in primary mouse and human tissue, in a limited
number of cells located almost exclusively on the per-
iphery of neurospheres (Fig. 5f ). Collectively, these
results suggest that the 3D spheroid human cortical
differentiation protocol described here can generate
developmentally relevant cell types and that CellSIUS
can identify rare cell populations within the heteroge-
neity and complexity of stem cell-based models.
CellSIUS identified a second subgroup in the mixed

glial cells (G) characterized by high expression levels of
glycolytic enzymes (G.sub_2, 2.6%) (Fig. 5c, d and
Additional file 1: Figure S6a). Analysis between G.sub_2
and the rest of the G cells revealed upregulation of
HOPX, PTPRZ1, CLU, BCAN, ID4, and TTYH1 in the
main group, a transcriptional signature consistent with
developing human outer radial glia (oRG) [54], (Add-
itional file 1: Figure S6a Additional file 2: Table S4). oRG
cells also upregulated mitochondrial genes (Additional
file 2: Table S4) that are crucial for oxidative phosphory-
lation, highlighting the metabolic difference between
these two groups. We hypothesize the G.sub_2 subgroup
to be a progenitor population that is located closer to
the hypoxic interior of neurospheres, a common feature
of the 3D spheroid differentiation protocols.
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Fig. 5 Characterization of hPSC-derived cortical excitatory neurons by scRNA-seq. a tSNE projection of 4857 single-cell transcriptomes of hPSC-
derived neuronal cell types after 86 days of differentiation. Unsupervised clustering using MCL groups cells into four major classes: Neurons (N),
neuroepithelial progenitors (NP), mixed glial cells (G), and Cajal-Retzius cells (CR). In addition, a small population of fibroblasts (Fib) is identified. b
The identified cell populations are characterized by expression of known markers for the expected cell types. Expression values are shown as log2
(normalized UMI counts + 1). c tSNE projection, colored by CellSIUS assignment. Main clusters are denoted .main, subclusters .sub. d Mean expression
of each marker gene set identified by CellSIUS, projected onto the same tSNE map as shown in a. The top markers are indicated for each gene sets;
numbers in brackets refer to how many additional genes are part of the marker gene set. e Comparison of the gene signature uncovered by CellSIUS
to genes found to be enriched (p < 0.05) in choroid plexus of the fourth ventricle according to harmonizome [47, 48]. f Single optical
sections of neurosphere cryosections acquired by confocal microscopy showing co-localization of TTR and PTGDS in cells predominantly
on the periphery of neurospheres (panel left—composite image of a neurosphere; panels right—split images from a different neurosphere)
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In addition, CellSIUS identified a subgroup of NP cells
(NP.sub, 10.6%) defined by upregulation of cell-cycle-
related genes such as HMGB2, TOP2A, and MKI67
(Fig. 5c, d, Additional file 1: Figure S6a) as well as a sub-
group of CR cells (CR.sub, 0.8%) characterized by
SEMA3E, BTG1, and PCDH11X (Fig. 5b and Additional
file 1: Figure S6A) which may represent CR cells at a
different stage of migration [55–57].
Finally, CellSIUS revealed a split in the neuronal popu-

lation (N), identifying 2 groups, N.sub_2 (8.6%) and
N.sub_1 (16.7%) (Fig. 5c, d, Additional file 1: Figure S6a)
. In addition to NHLH1 and PPP1R17 known to be
enriched in immature neurons [54], N.sub_2 expressed
EOMES (Additional file 1: Figure S5b), a well-characterized
marker of cortical intermediate progenitors [46, 54] that
give rise to TBR1+ cortical neurons (Additional file 1:
Figure S5c) and is likely a mixed population of interme-
diate progenitors and immature neurons. In contrast,
markers identified by CellSIUS for the N.sub_1 neuronal
population were unexpected. Although co-expression of
FEZF2, CRYM, PCDH17, and RUNX1T1 in this cortical
neuronal population is consistent with recent scRNA-seq
data from the developing human cortex (Additional file 1:
Figure S7b, EN-V1–1: Early-born deep-layer/sub-plate
excitatory neurons, EN-PFC1: Early-born deep-layer/sub-
plate excitatory neurons prefrontal cortex), robust NTS
expression in developing cortical neurons has not been
reported so far to the best of our knowledge. The expres-
sion of FEZF2 (Additional file 1: Figure S5d) in this culture
which is consistent with the general dorsal telencephalic
identity of these cells and co-expression of FEZF2 and
BCL11B (CTIP2) in this particular post-mitotic neuronal
A B

Fig. 6 Monocle analysis of the NP, N, and CR cluster. a Consistent with the
trajectory from NP via immature neurons (N_early) to either mature N or C
NPs (VIM), immature neurons (NHLH1), N.sub_2 (FEZF2), and CR cells (RELN
sub-population (Additional file 1: Figure S5d-e) could
suggest patterning towards cortico-spinal motor neurons
(CSMNs). However, the presence of NTS, which encodes a
13-amino acid neuropeptide called neurotensin highly
expressed in the hypothalamus and amygdala, is not in line
with the overall transcriptional identity as discussed above.
Analysis of a recently published scRNA-seq dataset from
different regions and developmental stages of the human
cortex [46] revealed that only a few cells derived from the
fetal primary visual cortex (age 13 pcw) express NTS
(Additional file 1: Figure S7). The limited number of cells
in our dataset limits any firm conclusions.
To further characterize the transition from progenitors

to the two different neuronal cell types (CR cells and all N
populations), we applied Monocle for trajectory analysis
to a subset of the cells corresponding to these three
identities. This analysis revealed a tree with two
branches (Fig. 6a). As expected, cells progress from
the tree root which is composed of progenitors via
the NHLH1high/PPP1R17high population towards either N
(branch 1) or CR cells (branch 2). Along the trajectory,
the NP marker VIM decreases gradually whereas NHLH1
increases up to the branch point, then decreases again
(Fig. 6b). The CR branch ends with cells expressing high
levels of RELN, and the N branch is characterized by
gradual increase of FEZF2 expression and ending in the
N.sub_1 population (Fig. 6b). Notably, at the very tip of
this branch, we also find a very small number of cells
expressing LDB2 and DIAPH3 which are markers of
CSMNs in the mouse [58]. It is plausible that, given more
time, this population may eventually give rise to CSMNs
with a more defined transcriptional signature.
subgroup assignment by CellSIUS, monocle orders cells on a
R cells. b Gene expression along pseudotime. Shown is a marker for
)
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Comparison of CellSIUS, RaceID3, and Giniclust2
performance for rare cell type identification in hPSC-
derived cortical neurons
To get an understanding of how CellSIUS, GiniClust2,
and RaceID3 differ in the identification of rare cell types
from a complex dataset, we compared their output when
run on the cortical neuron datasets. Because a classic
benchmarking is not possible here due to the lack of a
ground truth, we instead focus on comparing the ability
of each algorithm to reveal experimentally validated
signatures or cell types known from literature. As before,
we used the same initial of 4 main clusters identified by
MCL (Fig. 5a) for all algorithms. GiniClust2 resulted in a
total of 20 clusters. The main differences between
GiniClust2 and CellSIUS (Additional file 1: Figure S6b)
results can be summarized as follows: (i) GiniClust2
generated clusters that merge major known cell types
(for example cluster 14 merges G, G.sub_1 (=CP),
G.sub_2, N, N.sub_1 (late neurons) and N.sub_2 (early
neurons)), and (ii) GiniClust2 did not detect CP (G.Sub_1),
cycling NPs (NP.sub) nor the well-described immature
neurons (N.sub_2).
RaceID3 with default settings resulted in a total of > 50

clusters, consistent with the high false-positive rate
observed with synthetic and cell line data. With a more
stringent outlier probability cutoff (10−20), RaceID3 identi-
fied 10 clusters with a similar overall assignment to
CellSIUS (Additional file 1: Figure S6c). However, if
RaceID3 did partly detect CP (G.Sub_1), it also split the
CP cluster identified by CellSIUS across several other
clusters with the majority of cells assigned to either cluster
3 (19 CP together with 4 other cells) or cluster 5 (mixed
with a large number of G, N, and NP cells). The CP
markers PTGDS and TTR are co-expressed in 49/53 CP
cells identified by CellSIUS but only in 19/54 CP cells
identified by RaceID3 suggesting that RaceID3 incorrectly
assigned most of the CP cells to a merged G/NP/N
cluster. In addition, and similarly to GiniClust2,
RaceID3 did identify neither cycling NPs (NP.sub) nor
the above-described progenitors and immature neurons
population (N.sub_2).
In summary, these results indicate superior performance

with regard to specificity and sensitivity of CellSIUS com-
pared to other approaches when applied to the complex
and heterogeneous data generated here and demonstrate
the algorithm’s ability to identify rare populations within
major cell types that differ by their metabolic state, cell
cycle phase, or migratory state.

Discussion
We generated a benchmark dataset of ~ 12,000 single-
cell transcriptomes from 8 cell lines to compare the per-
formance of some of the most recent and widely used
scRNA-seq feature selection and clustering approaches.
Our findings suggest that in our dataset, for unsuper-
vised feature selection, the DANB methods implemented
in the M3Drop package outperformed HVG. While
all clustering methods tested performed equally well
on data with balanced and abundant cell populations,
k-means and model-based methods performed poorly
on subsampled datasets with unequal cell type pro-
portions, typically splitting clusters containing many cells
while merging those containing few cells. This is likely a
consequence of feature selection and PCA-based di-
mensionality reduction prior to clustering where these
methods select or assign weights to genes based on mean
expression and variance across the whole cell population,
which are both low if a gene is specifically expressed in a
small subset of cells only.
In contrast, hclust in combination with dynamicTree-

Cut, MCL, and DBSCAN resulted in accurate cluster
assignments across all subsampled datasets. Strikingly,
none of the methods we tested was able to identify rare
cell types (< 1% in this dataset). It is worth noting that
although DBSCAN does classify rare cell types as border
points, it did however not reliably identify these popula-
tions for two reasons: (i) additional cells that did not
belong to the rare populations are also classified as
border points; (ii) DBSCAN does not perform well if
there are points connecting clusters, which is often the
case in scRNA-seq datasets. In summary, our com-
parison of clustering methods is consistent with a recent
review describing the challenges in unsupervised cluster-
ing of single-cell RNA-seq data [16], highlighting the
methodology gap for detecting rare cell types.
To overcome these limitations, we developed CellSIUS,

a novel algorithm that takes initial coarse clusters as input
and identifies rare cell subtypes based on correlated gene
sets specific to subpopulations. Based on our comparison
of clustering methods above, we used MCL as our default
clustering method: MCL showed a high accuracy in the
comparison to other methods, requires fewer parameter
choices than hclust for defining the number of clusters,
and, unlike DBSCAN, assigns all points to clusters.
The overall idea behind CellSIUS is similar to RaceID3

[38] and GiniClust2 [19], two recent methods for the
identification of rare cell types in scRNA-seq datasets.
All of these algorithms combine a global clustering with
a second assignment method which is tailored to finding
rare cell types. There are however important differences
between the approaches which are at the basis of
CellSIUS’ superior performance for both rare cell type
as well as outlier genes’ identification in terms of specifi-
city and selectivity.
RaceID3’s initial step is a k-medoids clustering, followed

by outlier cell identification in each cluster in four steps:
(i) calibration of a background model of gene expression
by fitting a negative binomial distribution to the mean and
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variance of each gene in each cluster; (ii) identification of
outlier cells by calculating for each gene and each cell the
probability of observing this expression value under the
assumption of the background model; (iii) merging of
potential outlier cells into new clusters based on the
similarity of their gene expression; and (iv) definition of
new cluster centers for both the original and the outlier
clusters. In a final step, cells are assigned to the cluster
they are closest to. In contrast to CellSIUS, RaceID3 does
not require the outlier genes to be cluster specific; con-
sequently, it may select genes that co-vary with technical
confounders such as the total number of detected genes
per cell. In addition, whereas CellSIUS only considers
subcluster-specific genes to assign cells to final clusters,
the final cluster assignment in RaceID3 is done based on
the similarity of each cell’s whole transcriptomic signature
to each cluster center. In cases where the distance
between the outlier cluster and neighboring clusters is
small, this leads to a high number of false positives, with
many cells initially not identified as outliers being merged
into the nearest outlier cluster.
GiniClust2 runs two independent clustering steps on

the same data. The first clustering aims at capturing
global structure of the data by running a k-means
clustering on the expression of genes with a high Fano
factor. This is motivated by the fact that a high Fano
factor is associated with genes that are differentially
expressed between abundant cell types. The second
clustering is performed by running a density-based clus-
tering on genes with a high Gini index which is typically
associated with genes being differentially expressed
between rare and abundant cells. In a final step, the
results of both clustering are merged based on a
weighted consensus association. The main differences to
CellSIUS are as follows: (i) the selection of the genes for
the rare cell type assignment is performed using a global
metric (i.e., the Gini coefficient across the whole data-
set), whereas CellSIUS takes into account the in-
formation on the global clustering (e.g., considers only
cluster-specific genes), and (ii) the final assignment is a
weighted average of the results from both clustering
steps, whereas we use a two-step approach consisting of
an initial coarse clustering step followed by CellSIUS for
the identification of rare cell types and outlier genes.
Enforcing gene signatures to be cluster-specific comes

with the promise to overcome some technical biases,
e.g., different number of detected genes between cells,
differences in the total number of counts per cell or
normalization artifacts. For example, normalization may
lead to artificially high counts for abundant transcripts
in cells that have overall few detected genes. These genes
are, however, present across different clusters and would
therefore not be considered a valid signature. While
restricting to cluster-specific signatures has the potential
to help disentangle technical and biological variability
and increase the precision of rare cell type identification,
it comes with the limitation of potentially missing rare
cell types spread over multiple clusters. This issue could
be addressed by iteratively merging the most similar
clusters and re-running CellSIUS for each initial cluster
definition. A further consideration is CellSIUS’ output
sensitivity to initial cluster assignments. In practice,
this should only be an issue if there is no clear global
structure in the data and cluster assignments are not
consistent between different clustering methods and/
or parameter settings. In such cases, one could use a
consensus assignment from a combination of different
clustering assignments.
To exemplify the added value of CellSIUS over existing

approaches in a real-world setting, we applied the work-
flow and our two-step clustering approach to a complex
biological dataset consisting of hPSC-derived neurons. We
identified major neural cell types of early human cortico-
genesis such as cycling and quiescent NPs, EOMES+ IPs,
CR cells, immature and mature neurons with a transcrip-
tional identity indicative of layer V/VI neurons, and oRG.
Overall, the transcriptional fingerprint of each major
group was in line with a recent scRNA-seq data set from
the developing human cortex. CellSIUS analysis also
revealed a transcriptional signature in the mature neu-
ronal population that deviates from the expected cortical
trajectory, typified by the high expression levels of NTS
detected in N.sub_1, highlighting the importance of
unbiased characterization of hPSC differentiation plat-
forms at single-cell level. Single-cell trajectory analysis of
NP, CR, and N cells using Monocle revealed a pseudo-
temporal order of progenitors gradually differentiating
into neurons, with a lineage split between Cajal-Retzius
cells and FEZF2+ neurons.
Importantly, CellSIUS identified known as well as

novel rare cell types within the major groups, such as
putative CP (G.sub_1), a population that was either not
detected, or detected only partly by existing approaches
for rare cell type identification. Single-cell RNA-seq data
usually contains a small fraction of doublets, i.e., tran-
scriptomes derived from two or more cells, which could
form artifactual clusters. Our results do not indicate the
presence of doublet-driven clusters—each subcluster has
its own unique markers. In addition, most of the sub-
population signatures represent biological function that
is supported by the literature. Finally, we experimentally
validated the presence of CP neuroepithelia in our 3D
cortical spheroid cultures by confocal microscopy and
validated the CP-specific signature gene list identified by
CellSIUS using primary pre-natal human data. For the
CP lineage in particular and other identified rare cell
populations in general, the signature gene lists output
from CellSIUS provide the means to isolate these
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populations for in vitro propagation and characterization
of their role in neurological disorders.

Conclusions
In this study, we present CellSIUS, a novel method to
identify and characterize rare cell types from complex
scRNA-seq datasets. Benchmarking of CellSIUS on syn-
thetic data and a large dataset with known cell compo-
sition generated from 8 human cell lines demonstrated
the high sensitivity and specificity of CellSIUS over
existing approaches. Characterization of a novel human
pluripotent cell differentiation protocol recapitulating
deep-layer corticogenesis in vitro using scRNA-seq and
CellSIUS revealed previously unrecognized complexities
in human stem cell-derived cellular populations. Impor-
tantly, CellSIUS enabled identification of known and novel
rare cell populations and their signature gene list pro-
viding the means to study those populations in vitro in
light of their role in health and disease.

Methods
Human cell lines
For the benchmarking dataset, 8 different human cell lines
from the ATCC biorepository have been used (Table 1).
Cell lines were shown to be mycoplasma free using the
Mycoalert kit from Lonza.

Single-cell RNA-sequencing of cell lines
Cellular suspensions were loaded on a 10x Genomics Chro-
mium Single Cell instrument to generate GEMs. Single-cell
RNA-seq libraries were prepared using GemCode Single
Table 1 Cell lines and culture conditions used in this study

Cell line Gender Cell type Tissue of origin

A549 M Alveolar basal epithelial
(adherent)

Lung adenocarcinom

H1437 M Epithelial/glandular (adherent) Lung adenocarcinom
derived from metasta
site: pleural effusion

HCT116 M Epithelium-like
(adherent)

Colon carcinoma

HEK293 F Epithelial (adherent) Transformed cell line
derived from embryo
kidney

IMR90 F Fibroblast (adherent) Fetal lung

Jurkat M T cell (suspension) Childhood T acute
lymphoblastic leukem

K562 F Undifferentiated, lymphoblast
with granulocyte/erythrocyte/
monocyte characteristics
(suspension)

Chronic myelogenou
leukemia, BCR-ABL1
positive

Ramos M B cell (suspension) Burkitt’s lymphoma
Cell 3′ Gel Bead and Library Kit according to CG00052_
SingleCell3’ReagentKitv2UserGuide_RevB. GEM-RT was
performed in a Bio-Rad PTC-200 Thermal Cycler with
semi-skirted 96-well plate (Eppendorf, P/N 0030 128.605):
53 °C for 45min and 85 °C for 5min, held at 4 °C. After RT,
GEMs were broken and the single strand cDNA was
cleaned up with DynaBeads® MyOne™ Silane Beads (Life
Technologies P/N, 37002D). cDNA was amplified using a
Bio-Rad PTC-200 Thermal cycler with 0.2-ml 8-strip non-
Flex PCR tubes, with flat Caps (STARLAB, P/N I1402–
3700): 98 °C for 3min; cycled 12x: 98 °C for 15 s, 67 °C for
20 s, and 72 °C for 1min; 72 °C for 1min; and held at 4 °C.
Amplified cDNA product was cleaned up with the SPRIse-
lect Reagent Kit (0.6X SPRI). Indexed sequencing libraries
were constructed using the reagents in the Chromium
Single Cell 3′ library kit V2 (10x Genomics P/N-120237),
following these steps: (1) fragmentation, end-repair
and A-tailing; (2) post fragmentation, end-repair, and
A-tailing double sided size selection with SPRIselect
Reagent Kit (0.6X SPRI and 0.8X SPRI); (3) adaptor
ligation; (4) post-ligation cleanups with SPRIselect
(0.8X SPRI); (5) sample index PCR using the Chromium
Multiplex kit (10x Genomics P/N-120262); (6) post
sample index double sided size selection—with SPRIselect
Reagent Kit (0.6X SPRI and 0.8X SPRI). The barcode se-
quencing libraries were quantified using a Qubit 2.0 with
a Qubit™ dsDNA HS Assay Kit (Invitrogen P/N Q32854),
and the quality of the libraries was performed on a 2100
Bioanalyzer from Agilent using an Agilent High Sen-
sitivity DNA kit (Agilent P/N 5067–4626). Sequencing
libraries were loaded at 10 pM on an Illumina HiSeq2500
Obtained from Culture conditions

a ATCC
CCL-185

ATCC F12K (ATCC, P/N 30-2004) +10% FCS
(AMIMED, P/N 2-01F36-I).

a,
tic

ATCC
CRL-5872

RPMI (Invitrogen, P/N A1049101) +10% FBS
(ATCC, P/N SCRR-30-2020)

ATCC
CCL-247

ATCC McCoy's 5A (ATCC, P/N 30-2007) + 10%
FCS (AMIMED, P/N 2-01F36-I)

,
nic

ATCC, P/N
CRL-1573

ATCC EMEM (ATCC, P/N 30-2003) +10%
FCS (AMIMED, P/N 2-01F36-I)

ATCC
CRL-186

ATCC EMEM (ATCC, P/N 30-2003) 10% FCS
(AMIMED, P/N 2-01F36-I)

ia
ATCC, P/N
TIB-152

RPMI (Invitrogen, P/N 61870-044) + 10%
FCS (AMIMED, P/N 2-01F36-I)

s ATCC, P/N
CRL-1573

RPMI (Invitrogen, P/N 61870-044) + 10%
FCS (AMIMED, P/N 2-01F36-I).

ATCC, P/N
CRL-1596

Batch 3: RPMI (Invitrogen, P/N A1049101) +10%
FBS (ATCC, P/N SCRR-30-2020)
Batch 4: RPMI (Invitrogen, P/N 61870-044) + 10%
FCS (AMIMED, P/N 2-01F36-I)
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with 2 × 50 paired-end kits using the following read
length: 26 cycles Read1, 8 cycles i7 Index, and 98 cycles
Read2. The CellRanger suite (2.0.2) was used to generate
the aggregated gene expression matrix from the BCL files
generated by the sequencer based on the hg38 Cell Ranger
human genome annotation files.

Bulk RNA-sequencing of cell lines
For each individual cell line, RNA was isolated from 5 × 105

cells using the RNeasy Micro kit (Qiagen, Cat# 74104). The
amount of RNA was quantified with the Agilent RNA 6000
Nano Kit (Agilent Technologies, Cat# 5067–1511). RNA
sequencing libraries were prepared using the Illumina
TruSeq RNA Sample Prep kit v2 and sequenced using the
Illumina HiSeq2500 platform. Samples were sequenced to a
length of 2 × 76 base-pairs. Read pairs were mapped to the
Homo sapiens genome (GRCh38) and the human gene
transcripts from Ensembl version 87 [59] by using an in-
house gene quantification pipeline [60]. Genome and tran-
script alignments were used to calculate gene counts based
on Ensembl gene IDs.

Differentiation of cortical excitatory neurons from human
pluripotent stem cells in suspension
H9-hESCs (WA09) were obtained from WiCell and
maintained in TeSR-E8 medium (Stemcell Tech., 05990)
on tissue-culture plates coated with vitronectin (Gibco,
A14700). hESCs were passaged using ReLeSR (Stemcell
Tech., 05873) to dissociate into cell clumps and were
replated in E8 plus thiazovivin (Selleckchem, S1459) at
0.2 μM. H9-hESC line was free of mycoplasma and was
tested using the Mycoalert detection kit (Lonza).
hESCs were changed to mTesR1 (Stemcell Tech., 85,

850) media when they were 70–80% confluent and
maintained in mTesR1 for a minimum of 2 days before
confluent monolayer of hESCs were neurally converted
by changing the media to phase I (Additional file 1:
Table S5). Seven days post induction, cells were disso-
ciated to single-cell suspension with Accutase (Gibco
A1110501), seeded at 1.5E6 cells/mL in spinner flasks
with phase II media (Additional file 1: Table S5) supple-
mented with 2 μM Thiazovivin and 10 ng/mL FGF2
(Peprotech, 100-18B) (final) and incubated at 37 °C on a
micro-stir plate at 40 rpm for 4 days. Media was then
changed to phase III (Additional file 1: Table S5), and
neurospheres were further cultured for 17 days at 60
rpm, changing media 50% twice a week. On day 28,
media were changed to phase IV (Additional file 1:
Table S5) and cultures were maintained 21 more days
with 50% media change twice a week. From day 49 on-
wards, cultures were switched to Ph IV media for main-
tenance. Neurospheres were dissociated with Papain kit
(Worthington) at day 86 for single-cell RNAseq or neu-
ronal platedowns on laminin (Sigma, L2020), fibronectin
(Corning, 354,008), and Matrigel (Corning, 354,230)
coated plates.
Characterization of cortical neurons generated by the 3D
spheroid protocol
Generation of layer V/VI neuronal populations was con-
firmed by immuno-fluorescence analysis of D86 cultures
upon dissociation and plating, showing robust expression
of deep-layer cortical neuronal markers TBR1 and CTIP2
(Additional file 1: Figure S4c). Cortical neurons generated
by the 3D spheroid protocol co-cultured with rat glia for
4 weeks were positive for pre- and post-synaptic markers
Synaptophysin I and PSD-95 (Additional file 1: Figure S4d).
Calcium imaging by FDSS 7000EX platform demonstrated
spontaneous intracellular calcium oscillations, indi-
cating that spontaneous firing was synchronized between
the majority of the cortical neurons in the 96-wells
(Additional file 1: Figure S4e).
Immunofluorescence and cryosectioning
Cells were fixed with 4% PFA, permeabilized with 0.2%
Triton X-100 at room temperature, and then blocked in
3% goat serum, followed by incubation with primary
(TBR1 - Abcam, ab31940; CTIP2 – Abcam, ab18465; β-3
tubulin – Biolegend, 801,202; PSD-95 – Synaptic Systems,
124,011; Synaptophysin 1 – Synaptic Systems, 101,002;
Transthyretin – Novus Biologicals, NBP2–52575, Pros-
taglandin D Synthase (PTGDS) – Abcam, ab182141) and
secondary antibodies (Alexa Flours, Invitrogen). The
nuclei were counter-stained with 49,6-diamidino-2-pheny-
lindole (DAPI, Sigma). Cryosectioning of neurospheres
was performed as previously described [61]. Cells were
imaged using an Observer D1 (Zeiss) microscope or
Olympus SD-OSR spinning-disk confocal microscope
(60x oil immersion). The images were processed using
Zen 2 (Zeiss), MetaMorph, or Image J (brightness and
contrast adjustments, thresholding for composite images)
and assembled using Adobe Photoshop CS6.
Antibody validation: TBR1: validated on Mouse

Hippocampus Tissue Lysate, Rat Hippocampus Tissue
Lysate, Human cerebral cortex. CTIP2: validated by
IHC on adult mouse hippocampus and adult mouse
spinal cord and by ICC on neonatal mouse hippocampal
cultured neurons. b3-tubulin: Quality control tested by
formalin-fixed paraffin-embedded immunohistochemical
staining. PSD-95: Knock-out verified, validated by IF on
rat hippocampal neurons. Synaptophysin I: Does not
cross-react with other synaptophysins, validated by IF on
hippocampal neurons. TTR: Validated by IF analysis of
A549 and MCF-7 cells and IHC of human liver tissue.
PTGDS: Validated by IF on HEPG2 cells and IHC on
human prostate tissue. All information is from supplier
product data sheets.
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Calcium imaging
The intracellular Ca2+ oscillations in human cortical
neuron and rat glia co-cultures were assessed using the
FLIPR Calcium 6 Kit (Molecular Devices LLC, San Jose,
California). Briefly, 96-well Greiner μ-clear plates
(655097) were seeded with 2500 rat glia (Lonza, R-
CXAS-520) per well in Ph IV media and cultured for
7 days. Human cortical neurospheres were dissociated
with papain as described above at DIV 56, and 50,000
single cells per well were plated on rat glia in phase IV
media. Co-cultures were maintained for 4 weeks with
twice-weekly 50% medium exchange. Cells were loaded
with calcium 6 dye for an hour which was reconstituted
in imaging buffer (NaCl 2.5 mM, KCl 125 mM, KH2PO4

1.25 mM, CaCl2 2 mM, MgCl2 2 mM, HEPES (acid) 25
mM, D-glucose 30 mM, pH 7.4, filter-sterilized). Kinetics
of Ca2+ oscillations were determined as fluorescence
intensity at 540 nm following excitation at 480 using the
FDSS 7000EX Functional Drug Screening System
(Hamamatsu) maintained at a constant 37 °C throughout
the assay. A total of 3000 reads per assay were recorded.
The exposure time per read was 100 ms with sensitivity
set to 1.

Single-cell RNA-sequencing of neuronal cells
Cells were resuspended to 1 million cells/mL and run
through the 10X Chromium, Version 2, single-cell RNA-
seq pipeline per vendor’s instructions. Reverse transcrip-
tion master mix was prepared from 50 μL RT reagent
mix (10X, 220,089), 3.8 μL RT primer (10X, 310,354),
2.4 μL additive A (10X, 220,074), and 10 μL RT enzyme
mix (10X, 220,079). 4.3 μL cell solution was mixed with
29.5 μL H2O and 66.2 μL reverse transcription master
mix. Ninety-microliter sample was loaded onto the 10X
Single Cell 3′ Chip along with 40 μL barcoded gel beads
and 270 μL partitioning oil, and the microfluidics system
was run to match gel beads with individual cells. The
droplet solution was then slowly transferred to an 8-tube
strip, which was immediately incubated for 45min at
53 °C to perform reverse transcription, then 5min at
85 °C. The sample was treated with 125 μL recovery agent
(10X, 220,016), which was then removed along with the
partitioning oil. Two hundred microliters of cleanup
solution containing 4 μL DynaBeads MyOne Silane Beads
(Thermo Fisher, 37002D), 9 μL water, 182 μL Buffer
Sample Clean Up 1 (10X, 220,020), and Additive A (10X,
220,074) was added to the sample, and the solution was
mixed 5 times by pipetting and allowed to incubate at
room temperature for 10min. Beads were separated via
magnetic separator and supernatant was removed. While
still on the magnetic separator, the beads were then
washed twice with 80% ethanol. The separator was then
removed and the beads were resuspended in 35.5 μL
elution solution consisting of 98 μL Buffer EB (Qiagen, 19,
086), 1 μL 10% Tween 20 (Bio-Rad, 1,610,781), and 1 μL
Additive A (10X, 220,074). The solution was then incu-
bated for 1 min at room temperature and placed back
onto the magnetic separator. Thirty-five microliters of
eluted sample was transferred to a new tube strip. cDNA
amplification reaction mix was prepared from 8 μL water,
50 μL Amplification Master Mix (10X, 220,125), 5 μL
cDNA Additive (10X, 220,067), and 2 μL cDNA Primer
Mix (10X, 220,106). Sixty-five microliters of amplification
master mix was added to the sample, mixed 15 times via
pipetting, and briefly centrifuged. The sample then
underwent 12 amplification cycles (15 s at 98 °C, 20 s at
67 °C, 1min at 72 °C).
SPRIselect beads (Beckman Coulter, B23318) were

then applied at 0.6X, and solution was mixed 15 times
via pipetting. The sample was incubated at room
temperature for 5 min, placed onto a magnetic separator,
and washed twice with 80% ethanol. Sample was air-
dried for 2 min and eluted in 40.5 μL Buffer EB. cDNA
yield was measured on a 2100 Bioanalyzer (Agilent,
G2943CA) via DNA High Sensitivity Chip (Agilent,
5067–4626).
Fragmentation mix was prepared at 4 °C from 10 μL

fragmentation enzyme blend (10X, 220,107) and 5 μL
fragmentation buffer (10X, 220,108). Thirty-five microli-
ters of sample cDNA was then added to the chilled frag-
mentation mix. Sample was incubated for 5 min at 32 °C,
then 30 min at 65 °C to conduct enzymatic fragmenta-
tion, end repair, and A-tailing. Sample was then purified
using 0.6X SPRIselect reagent (see above). Adaptor
ligation mix was prepared from 17.5 μL water, 20 μL
ligation buffer (10X, 220,109), 10 μL DNA ligase (10X,
220,110), and 2.5 μL Adaptor Mix (10X, 220,026). The
ligation mix was added to 50 μL of sample and mixed 15
times via pipetting. Sample was then incubated for
15 min at 20 °C to conduct the ligation. The sample
was purified using 0.8X SPRIselect reagent (see
above). Sample index PCR mix was prepared from
8 μL water, 50 μL Amplification Master Mix (10X,
220,125), and 2 μL SI-PCR Primer (10X, 220,111).
60 μL sample index PCR mix, 30 μL purified sample, and
10 μL of sample index (10X, 220,103) were combined and
mixed 15 times via pipetting. Indexing was conducted via
9 cycles of 20 s at 98 °C, 30 s at 54 °C, then 20 s at 72 °C.
Sample was purified via double-sided SPRI selection at
0.6X and 0.8X, respectively. Sample was then quantified
via DNA High Sensitivity Chip.
Additional quantification was conducted via KAPA Li-

brary Quantification Kit (Illumina, KK4828–07960166001).
Sample was diluted at 10-fold increments from 1:100 to 1:
1,000,000, and mixed 1:9 with KAPA qPCR mix. qPCR was
conducted on aViia7 qPCR machine (Life Technologies).
Sample was then sequenced on a HiSeq 4000 (Illumina)

using 2 × 50-cycle SBS kits (Illumina, FC-410-1001).



Wegmann et al. Genome Biology          (2019) 20:142 Page 16 of 21
Sample library was diluted to 2 nM in EB buffer with 1%
PhiX spike-in. Five microliters nondenatured library was
then mixed with 5 μL 0.1 N NaOH, then vortexed and
briefly centrifuged. Denaturing was conducted at
room temperature for exactly 8 min, then stopped via
the addition of 5 μL 200 mM Tris-HCl pH 8.0 (Fluka,
93,283). Sample was mixed, briefly centrifuged, and
placed on ice. ExAmp reaction mix (Illumina, PE-410-
1001) was prepared, added to the sample, and clus-
tering was done on a HiSeq 4000 flow cell via cBot2
(Illumina). The library was then sequenced with
paired-end reagents, with 26xRead 1 cycles, 8xi7 index
cycles, and 98xRead 2 cycles.
The 10X Cell Ranger 1.3.1 pipeline was utilized to con-

vert raw BCL files to cell-gene matrices. FASTQ files were
aligned to the GRCh37.75 human reference genome,
UMI-filtered, and barcodes were matched via the CellRan-
ger count script.
Computational analysis
Software requirements and scRNA-seq workflow
All computational analysis was carried out using R v.
3.4.1 with Bioconductor v. 3.5. We assembled a modular
workflow for the analysis of scRNA-seq data that
contains five modules: (i) quality control, (ii) data
normalization, (iii) feature selection, (iv) clustering, and
(v) identification of marker genes (Fig. 2a). Based on re-
cent publications, the quality control and normalization
modules were based on the popular scater [29] and scran
[62] packages. Scran was set as the default normalization
based on a recent benchmarking study by Vallejos et al.
[63] showing that scran was superior for recovering true
size factors compared to other methods. For the marker
gene identification module we used the Wilcoxon test [64]
by default and provided wrappers to MAST [21] and
Limma-trend [65], based on Soneson et al.’s [66] compre-
hensive assessment of a large number of DE analysis
methods for their performance for controlling type I and
type II error rates while being scalable to large datasets.
Generation of synthetic data
A synthetic dataset was generated based on estimated
parameters for the gene-wise mean μi and variance σ2

i

from experimentally determined counts of 1000 K562
cells from our benchmarking dataset.
Because gene expression within each cell is typi-

cally not independent but cells that have high/low
count number for one gene also tend to have high/
low counts for another, we sampled for each cell j a
scaling factor θj such that log2ðθ jÞ � N ð0; 0:25Þ , as
described in [62]. Simulated counts for gene i and
cell j were generated by sampling from a negative
binomial with mean
μij ¼ θ j � μi
and dispersion1

λij ¼
μ2ij

σ2
i −μij

A second-order polynomial was fit to the sample
variance as a function of the mean in logarithmic space
as described in [8]. This polynomial served as an esti-
mate of the global mean-variance relationship. Replacing
the term σ2i in the equation above with this estimate, the
dispersion can be expressed as a function of μij:

λij ¼
μ2ij

f μij
� �

−μij

where

f μij
� �

¼ 2^ a � log2 μij
� �

^2þ b � log2 μij
� �

þ c
� �

is derived from the second-order polynomial appro-
ximating the gene-wise variance as a function of mean
expression. For genes exhibiting Poissonian behavior
(i.e., equal mean and variance), we set λ to a fixed value
of 1010.
Main cell populations were obtained by permutation

of the expression values of 100 randomly chosen genes
with mean counts larger than 2.
Cell subgroups characterized by high expression of a

small set of marker genes were generated by replacing the
base mean values μi in a small set of genes with low
expression (μi < 0.1) by a value of 2

x where x � Nð2:5; 1Þ.
Thus, the upregulated genes exhibit a log2 fold change of
2.5 on average.

Simulating varying degrees of subtlety in transcriptional
differences
An initial small dataset was subsampled from the bench-
marking (8 human cell lines) dataset, comprising 100
HEK293, 125 Ramos, and between 10 Jurkat cells. We
used scran to predict cell cycle stage and only included
cells in G1 phase.
From this initial dataset, 25 Ramos cells were held out.

From the remaining dataset (100 HEK293, 100 Ramos,
10 Jurkat), datasets with varying incidence of a rare cell
type and subtlety (i.e., degree of difference to closest
neighbor) of its transcriptional signature were generated
in silico, following an approach recently described by
Crow et al. [39]: First, a number of Jurkat cells (i.e., inci-
dence of 2, 5, or 10) were sampled from the initial data-
set. Then, to simulate varying degrees of transcriptional
difference between the rare cell type (Jurkat) and its
closest abundant cell type (Ramos), an increasing
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fraction of gene expression values, ranging from 0 to
0.995 in steps of 0.05 (0.045 for the very last step) in the
Jurkat cells were replaced by the respective values in the
held out Ramos cells. This fraction of replaced expression
values is referred to as subtlety.
This procedure was repeated 5 times for each in-

cidence of the rare cell type and each value of the
subtlety parameter.
The performance of CellSIUS, GiniClust2, and RaceID3

was evaluated in terms of recall, precision and true nega-
tive rate (TNR) for each configuration. To this end, a con-
fusion matrix between the true cell type and the predicted
cell type was generated. “Main clusters” were defined as
the two clusters containing the majority of the HEK293
and Ramos cells, respectively. The TPR was then defined
as the fraction of Jurkat cells that were not assigned to the
main clusters, precision was defined as the fraction of
Jurkat cells among all cells not assigned to the two
main clusters, and the TNR was defined as the frac-
tion of HEK293 and Ramos cells that were assigned
to the main clusters.

Data pre-processing
Initial pre-processing was applied to each batch of cell
lines separately prior to annotating cell types.
First, cells were filtered based on the total number of

detected genes, total UMI counts, and the percentage of
total UMI counts attributed to mitochondrial genes.
Cutoffs were set individually per batch based on the
overall distributions (Additional file 1: Table S5).
Second, genes have to present with at least 3 UMIs in

at least one cell. After this initial QC, remaining outlier
cells were identified and removed using the plotPCA
function from the scater [29] R package with detect_out-
liers set to TRUE.
Data were normalized using scran [62], including a first

clustering step as implemented in the quickCluster func-
tion and with all parameters set to their default values.

Cell type annotation
First, the top 10% overdispersed genes were selected
using the NBDrop method described in [28]. Cell types
were then annotated based on Pearson’s correlation of
the expression profile (log2(normalized counts+ 1)) of
the selected features with bulk RNA-seq data obtained
for each individual cell line (Fig. 1a, b). For the batches
1–3 that contained only two cell lines each, the Pearson’s
correlation coefficients were scaled to z-scores prior to
the assignment, and for batch 4, the raw correlation
values were used instead. A cell was then assigned to the
cell line with the highest value unless this maximum was
below 0.2 or if the second highest value was within 5%
of the maximum in which case no assignment was given.
We found that the latter applied only to a small
percentage of cells (1–2%), which most likely correspond
to cell doublets. Furthermore, for the cell line mixes,
IMR90/HCT116 and A549/Ramos additional potential
doublets were identified and excluded from the cell line
assignment employing a visual inspection of the tSNE
plot by looking for (small) clusters of cells having high
correlation to both cell lines as well as a high UMI count
(Additional file 1: Table S3).
After cell type annotation, the raw count matrices

from all four batches were concatenated. Cells that had
not passed the initial QC or could not be annotated
were discarded. The gene filtering step described above
was then repeated for the aggregated dataset, leaving a
final cleaned dataset containing a total of 12,718 genes
and 11,678 cells.

Dimensionality reduction and calculation of distance
matrix
The original expression (log2(normalized counts + 1)
coordinates were projected into low-dimensional space
by PCA, using an implicitly restarted Lanczos method as
implemented in the irlba [36] R package. The number of
dimensions to retain was determined by visual inspec-
tion of a scree plot. It was 10 for all cell line data and 12
for the neuron dataset, and the first k principal com-
ponents accounted for 40–50% of the total variance in
each case. Cell-cell distances (Euclidean or Pearson,
Additional file 1: Table S2) were then calculated on these
projections.

Benchmarking of clustering approaches
The accuracy of each prediction was assessed by the ad-
justed rand index (ARI). Given two partitions X = X1,… ,
Xm and Y = Y1,… , Yk of a set S with n elements, the ARI
is defined as:

ARI ¼
P

ij

nij
2

� �
−

P
i
ai
2

� �P
j

b j

2

� �� �
=

n
2
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2
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2
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where nij denotes the elements that are common
between Xi and Yj, and ai, bj are the total number of
elements in Xi and Yj, respectively.

CellSIUS
CellSIUS detects cell subpopulations and their gene
signatures (Fig. 3a). Starting from an initial partitioning
of N cells into m clusters C1,… , Cm, the method identi-
fies cell subpopulations and their signatures as follows:

1. Identification of genes with bimodal expression: For
each gene gi, within each cluster Cj, a one-
dimensional k-means clustering is used to partition
the cellular expression levels (log2 normalized UMI
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counts) into two groups (“low” and “high”). Candi-
date marker genes are selected according to three
criteria: (i) the average expression fold change
between “low” and “high” is at least 2 on a log2-
scale, (ii) less than a user defined percentage (50%
by default) of all cells in cluster Cj fall in the “high”
category, and (iii) there is a significant difference
(t test and Benjamini-Hochberg correction,
p value < 0.1) between the “low” and “high”
expression values.

2. Testing cluster specificity: For the list of candidate
genes, it is assessed whether the cell subgroup
expressing them is specific to cluster Cj. Required
for each gene gi are (i) a significant difference in the
expression of gi in cells with “high” expression
compared to cells not in Cj (t test and FDR
correction, p value < 0.1) and (ii) the average
expression fold change between all cells with “high”
expression and all other cells with non-zero
expression of gi to be at least 1 on a log2-scale.

3. Identification of correlated gene sets: For each
cluster Cj, the correlation matrix of the expression
of all candidate genes g1, . . , n across all cells in
cluster Cj is transformed into a graph where genes
correspond to nodes and edges are weighted by
correlations between them. Edges with weights
below a fixed threshold are assigned a weight of 0.
By default, this threshold is set to the 95th
percentile of all correlations if this value lies
between 0.35 and 0.5, and to the lower and upper
bound if it is below or above, respectively. The
lower bound is set such that it is higher than the
maximum of all gene-wise correlations on simulated
data from an entirely homogeneous population,
which serves as an estimate of the background
correlation. Setting an upper bound ensures that
gene sets are not falsely split in cases where all
candidate genes are highly correlated. Subsequently,
MCL [33, 34] is used to identify correlated gene
sets, denoted sjk, where j is the index of the main
cluster and k the index of the gene set within
this cluster.

4. Assigning cells to subgroups: For each cluster Cj

and each gene set sjk, a one-dimensional k-means
is run on the mean expression of sjk. Cells falling
in the “high” mode of this clustering are assigned
to a new cluster Cjk.

5. Final cluster assignment: Cells are assigned to a
final cluster which is the combination of all
subgroups they belong to. This means if a cell
belongs to two subgroups A and B, it will be
assigned to a new subgroup AB. The gene
signatures for this new subgroup correspond to the
union of gene signatures A and B. Only subgroups
characterized by a minimum of min_n_genes
(default: 3 genes) are considered.

Identification of rare cell types with RaceID and Giniclust
RaceID3 [38] was obtained from GitHub (dgrun/
RaceID3_StemID2, version as of March 26th 2018).
Analysis was run with all parameters at their default
values, except that we fixed the initial clusters (RaceID@k-
part) instead of determining them by k-medoids. On bio-
logical data (cell line subset 2 and neuronal population),
we in addition changed the probability threshold to 10−20

and set the minimum number of outlier genes (outlg) to
3. This adjustment was made because the default cutoffs
in RaceID are not very stringent and resulted in extensive
overclustering of the data.
GiniClust2 [19] was obtained from GitHub (dtsoucas/

GiniClust2, version as of 4 May 2018). All analysis was
run with dataset-specific parameters: MinPts = 3, eps =
0.45, k = 2 for the simulated data, and MinPts = 3, eps =
0.45, k = 8 for the cell line dataset. All other parameters
were set to their defaults.

Trajectory analysis using monocle
Analysis was run using monocle version 2.4.0. As input,
the counts of the top 10% genes selected by NBDrop were
used. Prior to monocle analysis, all genes annotated with
the GO term cell cycle (GO:0007049) as well as mito-
chondrial genes and genes encoding ribosomal proteins
were removed from the dataset. All parameters were set
to default values.

Endnotes
1We use this nomenclature in order to be consistent

with the definition in R. Note that there is an alternative
nomenclature, which defines α = 1/λ as dispersion and is
used in edgeR [67] and DESeq2 [68].
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G.sub_1 population to all other cells in the G cluster. G.sub_2_vs_all_G:
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the G cluster. CR.sub_vs_all_CR: compares the CR.sub population to all
other cells in the CR cluster. NP.sub_vs_all_NP: compares the NP.sub
population to all other cells in the NP cluster. N.sub_1_vs_all_N:
compares the N.sub_1 population to all other cells in the N cluster.
N.sub_2_vs_all_N: compares the N.sub_2 population to all other cells in
the N cluster. Each sheet contains the following columns: Gene_id:
Ensembl gene ID. Mean_exprs: Mean expression [log2(normalized
counts + 1)] across the whole dataset. Mean_in_subgroup: Mean
expression in the respective subgroup. Pval, adj_pval: p value
(Wilcoxon test), adj_pval is adjusted p value (Benjamini-Hochberg).
Log2fc: Fold change, calculated as the difference in mean[log2(normalized
counts + 1)]. DE_flag: is TRUE if abs(log2fc) > 0.5 and adj_pval < 0.05. Chr,
symbol, eg, gene_biotype, description: Additional gene info (chromosome,
gene symbol, entrez gene identifier, gene biotype, short description of gene
function). (XLSX 8049 kb)
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