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Abstract

Background: CTCF binding to DNA helps partition the mammalian genome into discrete structural and regulatory
domains. Complete removal of CTCF from mammalian cells causes catastrophic genome dysregulation, likely due to
widespread collapse of 3D chromatin looping and alterations to inter- and intra-TAD interactions within the
nucleus. In contrast, Ctcf hemizygous mice with lifelong reduction of CTCF expression are viable, albeit with
increased cancer incidence. Here, we exploit chronic Ctcf hemizygosity to reveal its homeostatic roles in
maintaining genome function and integrity.

Results: We find that Ctcf hemizygous cells show modest but robust changes in almost a thousand sites of genomic
CTCF occupancy; these are enriched for lower affinity binding events with weaker evolutionary conservation across the
mouse lineage. Furthermore, we observe dysregulation of the expression of several hundred genes, which are
concentrated in cancer-related pathways, and are caused by changes in transcriptional regulation. Chromatin structure
is preserved but some loop interactions are destabilized; these are often found around differentially expressed genes
and their enhancers. Importantly, the transcriptional alterations identified in vitro are recapitulated in mouse tumors
and also in human cancers.

Conclusions: This multi-dimensional genomic and epigenomic profiling of a Ctcf hemizygous mouse model system
shows that chronic depletion of CTCF dysregulates steady-state gene expression by subtly altering transcriptional
regulation, changes which can also be observed in primary tumors.
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Background
CCCTC-binding factor (CTCF) is a highly conserved nu-
clear phosphoprotein [1, 2], ubiquitously expressed in
somatic cells [3], and responsible for diverse regulatory func-
tions, including fine-tuning gene expression, X chromosome
inactivation, imprinting, and three-dimensional (3D) chro-
matin organization [4–9]. The global 3D organization of the
chromatin partitions the mammalian genome into discrete
structural and regulatory domains [8, 10]. Chromosome
architecture has multiple levels of spatial organization:
megabase-scale compartments correspond to euchromatin
(A) and heterochromatin (B) [11], sub-megabase regions can

be defined as topologically associated domains (TADs) [10],
and, at the tens of kilobases level, there exist smaller loop
structures that connect cis-regulatory elements [12, 13].
Across all scales, CTCF is frequently present at these struc-
tural boundaries [14, 15].
Numerous studies have explored the function of

complete disruption of CTCF binding, both in vivo and
in vitro. At the whole embryo level, homozygous dele-
tion of Ctcf is embryonically lethal [7], and genetically
inducible Ctcf knockout in specific cell types, including
oocytes [16], lymphocytes [17], neurons [18], and cardio-
myocytes [19], results in organ-specific failure, charac-
terized by aberrant enhancer–promoter interactions and
transcriptional dysregulation [20]. Complementary bio-
chemical approaches have tested the functional impact
of acute depletion of CTCF in vitro by both RNAi [21,
22] and transient auxin-mediated depletion [23]. Acute
depletion in mouse embryonic stem cells results in
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almost complete removal of CTCF from the nucleus,
causing genome-wide disruption of loops and TADs
whereas higher-order genomic compartmentalization is
unaffected [23].
Despite strong conservation of the higher order chro-

matin structure, such as TADs, across tissues and indi-
viduals [14], there exists substantial inter- and
intra-individual variation in the expression of CTCF [3],
driven by both genetic heterogeneity and cell type speci-
ficity. Up to tenfold differences in both CTCF mRNA
and protein expression have been observed across a var-
iety of tissues [24, 25]. Since these differences in expres-
sion do not seem to affect the general organization of
chromatin, it is not clear whether they have a functional
impact. To address this, we sought a highly controlled
system in which we could modulate Ctcf expression
without resorting to a homozygous knockout.
Specifically, we utilized mice with hemizygous deletion

of Ctcf [26, 27], a powerful strategy for dissecting direct
regulatory targets and functional mechanisms [28]. Intri-
guingly, while Ctcf hemizygous mice develop normally,
they have an increased predisposition to tumorigenesis
[29], suggesting that even physiologically tolerated
changes in CTCF concentration have a detrimental effect
on the fitness of the organism. CTCF is also implicated
as a haploinsufficient tumor suppressor gene in human
cancers [2, 29, 30].
In contrast to germline variants, somatic missense and

nonsense mutations of CTCF are common in human
cancers [31, 32]. CTCF has been identified as a putative
driver gene in several cancer types [33] and such loss of
function is in keeping with the action of a tumor sup-
pressor gene [2, 30]. Furthermore, reduced expression of
CTCF mRNA in kidney cancer is strongly correlated
with lower 5-year survival rates [34]. However, the pre-
cise role of CTCF in the initiation or progression of car-
cinogenesis is poorly understood.
To study the direct impact of altering Ctcf expression,

independent of any factors that may confound human
studies such as environmental exposures, we chose an in
vitro model and exploited mouse embryonic fibroblasts
(MEFs). Wild-type and Ctcf hemizygous MEFs were in-
terrogated using a variety of functional assays to
characterize differences in the molecular portraits be-
tween conditions. This well-defined model system
allowed us to harvest the volume of cells needed to per-
form ChIP-seq, RNA-seq, proteomic, and Hi-C experi-
ments from a single embryo at a low passage number.
Our data reveal that Ctcf hemizygous cells show (1)
modest but robust changes in genomic CTCF occu-
pancy, (2) transcriptional dysregulation, enriched in
cancer-related pathways, and (3) subtly perturbed chro-
matin looping interactions, enriched for differentially
expressed genes.

Results
Chronic reduction of CTCF alters its chromatin binding
To characterize the molecular effects of altering the con-
centration of CTCF protein available in the nucleus, we
utilized Ctcf hemizygous mice that carry a lacZ reporter
in place of the coding region of Ctcf [27] in all cells
(Fig. 1a). We derived six independent lines of embryonic
fibroblasts from mice carrying a deletion of one Ctcf
allele (Ctcf +/−) and six corresponding lines from Ctcf
wild-type littermate controls (Fig. 1a). qPCR
demonstrated that Ctcf hemizygous MEFs had a 37%
reduction (two-tailed t-test, p = 1.58 × 10− 6; Fig. 1b,
Additional file 1) in Ctcf mRNA compared to wild-type.
In turn, quantitative western blotting showed a 27% re-
duction (two tailed t-test, p = 8.731 × 10− 5; Fig. 1b,
Additional file 1) in CTCF protein level versus wild-type
cells. Thus, although there is partial compensation at
both the mRNA and protein levels, there is a consist-
ently lower concentration of CTCF in hemizygous
mouse cells. We used these 12 independent embryonic
fibroblast lines to generate multiple biological replicates
for diverse functional experiments.
We first assessed the impact of hemizygosity on CTCF

occupancy using chromatin immunoprecipitation followed
by sequencing (ChIP-seq). We identified 42,336 loci directly
occupied by CTCF, 787 of which were significantly differen-
tially bound (false discovery rate (FDR) < 5%; Additional file 2)
between the two genotypes (Fig. 2a). Of these, 79%
were less strongly bound in the Ctcf +/− MEFs. The
changes in occupancy between the genotypes were
generally small but highly reproducible among inde-
pendent samples (Fig. 2b). Thus, reduced availability
of CTCF in embryonic fibroblasts leads to its deple-
tion at a very specific subset of genomic sites.

Differentially bound CTCF binding sites have distinct
genomic features
Genomic locations sensitive to subtle and chronic CTCF
reduction shared a number of features. First, most (68%)
of the differentially bound sites overlapped annotated
genes or their promoters (defined as 5 kb upstream of
the transcription start site), a fraction that is significantly
enriched compared to genome-wide CTCF occupancy
(chi-square test, p = 4.9 × 10− 10; Fig. 3a). Second, CTCF
can bind motif instances of either ~ 20 or ~ 33 bases
[22]; we found that differentially bound CTCF sites were
significantly depleted of longer words (hypergeometric
test, p = 1.53 × 10− 11; Fig. 3b). Previous studies have
shown that binding sites with shorter motifs have lower
average binding affinity [22]. Consistent with this, CTCF
sites perturbed by hemizygosity had motifs of lower
affinity when compared to all CTCF bound regions
(Mann-Whitney test, p < 2.2 × 10− 16; Fig. 3c). And third,
by comparing with the ~ 11,000 CTCF sites conserved
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across five species of mice [35], we discovered that dif-
ferentially bound CTCF sites were depleted of these con-
served binding events (hypergeometric test, 2.55 × 10− 6;
Fig. 3d). In other words, CTCF binding sites stable
across the murine lineage are resistant to chronically re-
duced levels of CTCF.
In conclusion, our data reveal a set of regions preferen-

tially found near genes which show reproducible, quanti-
tative changes in CTCF occupancy, have common motif
characteristics, and are enriched for lineage-specific CTCF
binding.

Ctcf hemizygosity alters transcription of cancer pathways
To determine what impact changes in CTCF binding
had on the global transcriptome, we sequenced total

RNA from six biological replicates of both genotypes.
Confirming the qPCR results, hemizygosity resulted in a
significant reduction in Ctcf expression (p = 2.4 × 10− 7;
“Methods”). Consistent with the differences in CTCF oc-
cupancy, transcriptional changes were subtle: differential
gene expression analysis identified 296 dysregulated
genes (FDR < 5%; Additional file 3), 69% of which had
reduced expression in Ctcf +/− MEFs (Fig. 4a).
The changes observed in the transcriptome propagated

to the protein level, as shown by comparison to the pro-
teomes of the wild-type and hemizygous cells obtained
using tandem mass tag (TMT) mass spectrometry (Add-
itional file 4). For the differentially expressed genes, the
transcriptional and proteomic changes in Ctcf hemizy-
gous cells were highly correlated (Spearman’s rho = 0.65,
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Fig. 1 Ctcf hemizygosity as a model to subtly perturb nuclear homeostasis. a The engineered Ctcf locus contains loxP sites flanking the protein-
coding exons of the gene (wild-type (WT), Ctcf +/+), which can be removed using Cre recombinase (Ctcf +/−). Mouse embryonic fibroblast (MEF)
lines were derived from six WT and six Ctcf +/− littermates. Quantitative analyses of CTCF binding, transcription, proteome, chromatin state, and
chromatin structure were performed in multiple biological replicates (“Methods”). b Validation of CTCF depletion in Ctcf +/− MEF cultures.
Quantification of Ctcf deletion by qRT-PCR and quantitative western blotting experiments show that there is only partial compensation in the
level of CTCF from DNA to RNA to protein
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p < 2.2 × 10− 16; Fig. 4b). Indeed, 85% had fold-change es-
timates concordant between RNA transcription and pro-
tein expression.
Gene set enrichment analysis revealed that CTCF-

dependent transcripts were strongly enriched for pro-
cesses related to cell differentiation, proliferation, death,
migration, adhesion, angiogenesis, and protein phos-
phorylation. The MAPK, ERK1/2, and Ras signaling
pathways also showed an excess of dysregulated tran-
scripts (Fig. 4c; Additional file 3). Consistent with these
results, analysis of KEGG pathways revealed that Ctcf
hemizygosity resulted in perturbation of cancer-related
pathways (Fig. 4c, Additional file 3).
Finally, we asked whether these gene expression

changes could be caused directly by altered CTCF bind-
ing. We observed that few differentially bound CTCF
sites overlapped, or were in close proximity to, the genes
with altered expression. However, there was a strong
tendency for differentially expressed genes to be associ-
ated with higher numbers of CTCF binding sites
(Fig. 4d), even if these were stable. For example, 83% of
all dysregulated genes (± 5 kb) overlapped at least one
CTCF binding site, in contrast to only 68% of stable
genes (hypergeometric test, p = 1.32 × 10− 8). Further,
whereas only 23% of stable genes overlapped with three
or more CTCF bound sites each, 41% of all differentially

expressed genes did (Fig. 4d). Thus, the set of genes dys-
regulated in Ctcf hemizygous cells are strongly enriched
for CTCF binding sites, suggesting subtle additive effects
regulate nearby gene transcription.

Gene expression changes correspond with altered
looping interactions
Steady-state transcription can be altered either by changes
in transcript stability or by differences in transcriptional
regulation. We examined whether the promoters of
CTCF-dependent genes showed corresponding changes in
transcriptional initiation, reflected as changes in H3K4me3
and H3K27ac occupancy. Both of these histone modifica-
tions are associated with an open chromatin state, permis-
sive of active transcription [36–39] and their occupancy
levels at the transcription start site are positively correlated
with gene expression [36]. The vast majority (> 80%) of the
CTCF-dependent genes had concordant promoter and
transcriptional changes (Fig. 5a). Thus, most gene expres-
sion differences apparently arise from CTCF-mediated al-
terations to transcriptional initiation.
Gene expression can be controlled by looping interac-

tions between regulatory elements, mediated by CTCF
[40–45]. To determine the effects of hemizygosity on
chromatin architecture we performed nuclear Hi-C ex-
periments in three biological replicates of wild-type and

Fig. 2 Ctcf hemizygosity results in altered chromatin binding. a Differential binding analysis identified 787 CTCF binding sites differentially
occupied between Ctcf hemizygous and wild-type MEFs, most of which show reduced genomic occupancy in the Ctcf +/− MEFs. Significant
changes are shown in red (FDR < 5%). b Example genome tracks showing highly consistent loss of CTCF binding at three genomic loci
overlapping the genes indicated at the top. Data are shown for the five biological replicates that passed quality control, normalized to
account for sequencing depth differences. WT wild-type
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Ctcf +/− MEFs. First, we inspected the global-scale inter-
action profiles in both genotypes using 100 kb windows
covering the whole genome. Consistent with recent
studies showing that acute total depletion of CTCF re-
sults only in modest effects on large-scale chromatin

interactions [23], we found that 95% of all windows were
unaffected by reduced CTCF, showing a correlation coef-
ficient of 0.9 or higher between the genotypes.
To explore whether fine-scale chromatin organization

is affected by reduced levels of CTCF, we merged all

Fig. 3 Differentially bound CTCF loci are found near genes, occur in shorter motifs, and have lower binding affinity and evolutionary
conservation. a Differential CTCF binding sites were significantly enriched within promoters and gene bodies compared to stable CTCF binding
sites (chi-square test, p = 4.9 × 10− 10). b Stable CTCF peaks had a higher proportion of the longer (~ 33 bp) motif word compared to the
differential sites. Multiple alignments of a randomly chosen subset of a hundred CTCF binding sites that are either stable or differential are
shown. Each position in the alignment is colored corresponding to the nucleotide present, following the color scheme used in the CTCF motif
logo shown at the top. c Binding sites susceptible to reduced CTCF concentration have significantly lower motif affinity (Mann-Whitney test,
p < 2.2 × 10− 16). d Regions bound by CTCF across the mouse lineage are less sensitive to Ctcf hemizygosity. Example tracks are shown of a stable
CTCF binding site that is conserved in five species of mice, compared to a differential site that is found in only a subset of the species, M. = Mus.
(M. musculus chr6:120,736,800 for the stable site and chr2:31,887,060 for the differential site). *** p value < 0.001
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replicates to increase the resolution of our data and
identified pairs of loci that interact more often than ex-
pected by chance. We then compared the intensity of
such interactions in the wild-type and hemizygous cells
and generated a ranked list. Looping interactions that in-
volved a dysregulated gene or a differentially bound
CTCF site tended to rank higher and were significantly
enriched at the top of the list (Wilcoxon signed rank
test, p = 0.017 for genes and p = 2.72 × 10− 6 for CTCF
sites). Thus, many of the transcriptional changes we ob-
served may indeed be the result of changes in distal
regulatory elements mediated by looping interactions.
We reasoned that these loops were likely to connect dif-

ferentially expressed genes to distal enhancers that showed

concordant changes in activity. We defined putative en-
hancers as sites occupied by H3K27ac but lacking
H3K4me3 [37, 38] and identified 73,670 loci with this epi-
genetic profile. We then collected the subset of enhancers
associated with a dysregulated gene via a looping inter-
action (“Methods”) and compared the fold-change between
the wild-type and Ctcf hemizygous cells. Of these enhan-
cer–gene pairs, 75% showed concordant changes between
gene expression and enhancer activity (Fig. 5a). Bulk ana-
lysis of enhancer changes would not have identified these
connections since direct comparison of Ctcf hemizygous
and wild-type cells found almost no enhancer differences,
with only 127 (0.2%) being significantly differentially bound
(FDR < 5%; Additional file 2). Thus, the transcriptional
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changes observed in the hemizygous cells are likely to result
from altered transcriptional regulation mechanisms that in-
volve both promoters and distal enhancers.

For instance, Dusp4 is an ERK phosphatase that acts as
negative regulator of the MAPK pathway [46] and its gene
expression is reduced in Ctcf hemizygous cells compared
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Fig. 5 Transcriptional perturbations arise from regulatory changes in the nuclear genome. a Changes in expression of dysregulated genes are
accompanied by changes in the activity of their proximal promoters, as well as enhancers linked via chromatin loops. On the right the expression
differences between wild-type and Ctcf +/− cells are shown, ordered by increasing fold change; genes expressed at lower levels in the
hemizygous cells are in blue, whereas those expressed higher are in red. To the left, a heatmap of the difference in mean abundance of H3K4me3
occupancy is shown. Each column is a 5 kb window, extending 17.5 kb up- and downstream of each gene’s transcription start site, which is in
the center. On the far left, an equivalent heatmap for the difference in occupancy of H3K27ac, centered at the midpoint of the peak. Gene–
enhancer pairs were inferred from significant interactions identified from Hi-C data and thus elements can be separated by large distances. For
each gene, the enhancer with most regulatory potential is shown (“Methods”). The same color scale is used throughout. b Transcriptional
changes are accompanied by concordant changes in the activity of their regulatory elements. In Ctcf hemizygous cells there was reduced gene
expression of Dusp4, lower occupancy of promoter marks (H3K4me3 and H3K27ac), and reduced binding at the associated enhancer element
(shaded boxes). Two representative replicates of equivalent sequencing depth are shown for each dataset
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with controls (p = 0.026; Fig. 5b). The promoter activ-
ity of Dusp4, measured by chromatin co-occupancy
by H3K4me3 and H3K27ac, was also reduced in Ctcf
hemizygous cells, as was its candidate enhancer iden-
tified by looping interactions in our Hi-C experiments
(Fig. 5b). Because of its action as a negative regulator,
reduced expression of Dusp4 causes aberrant MAPK
activation [47]; this pathway plays a critical role in
the initiation and progression of cancer [48].

Altered gene expression patterns are recapitulated in
mouse and human tumors
In order to assess the relevance of our findings to the
process of tumorigenesis in vivo, we asked whether
CTCF-dependent cancer pathways were also activated in
the transcriptomes of primary mouse and human tu-
mors. Notably, CTCF is detected as a mutational driver
in uterine and breast carcinomas, in which most (68%)
variants are truncating mutations [31, 32]; therefore, our
Ctcf hemizygous model is a good parallel to this human
molecular phenotype.
First, we generated a novel cohort of 25 primary liver tu-

mors that spontaneously occurred during aging of C3H
mice [49]. We then analyzed their total RNA transcrip-
tome (“Methods”) with a set of normal liver controls. We
compared the set of differentially expressed genes in these
mouse liver tumors (“Methods”; Additional file 5) with the
genes perturbed by Ctcf hemizygosity in MEFs and found
that nearly half (47.6%) of the latter were also differentially
expressed in the tumors. The majority (60%) showed
concordant fold changes (Fig. 6), indicating that a large
proportion of the up- and down-regulated genes in the
Ctcf +/− cells were also up- and down-regulated, respect-
ively, in the mouse liver tumors. Notably, these concor-
dantly altered genes retained strong enrichment for

cancer-related functional terms and pathways (Additional
file 5).
We next asked whether the molecular pathways perturbed

by Ctcf hemizygosity in mouse embryonic fibroblasts were
similarly perturbed in human tumors. We identified 104
uterine and 19 breast human tumor samples from The Can-
cer Genome Atlas with deleterious (missense, frameshift, or
stop gained) mutations in at least one allele of CTCF. To
compare the gene expression profiles across species, we re-
stricted our analyses to those genes that are one-to-one
orthologs (“Methods”). For both the uterine and breast can-
cer datasets, we observed a large overlap (~ 75%) between
the set of differentially expressed genes in Ctcf hemizygous
MEFs and those altered in human tumors. From these,
around 65% showed concordant changes across all datasets
(Fig. 6), supporting a common signature of transcriptional al-
terations upon the loss of one functional copy of CTCF.
In sum, our data indicate that a small reduction in the

concentration of CTCF can significantly perturb the ex-
pression of hundreds of transcripts required for normal
cellular homeostasis, as evidenced by their dysregulation
in a diversity of mouse and human tumors.

Discussion
Complete removal of CTCF has catastrophic effects
caused by massive dysregulation of the 3D genome [19,
22, 50, 51]. We have used Ctcf hemizygosity as a power-
ful model system to compare how transcription and gen-
ome organization in otherwise identical cells adapt to
differing concentrations of CTCF. This model closely ap-
proximates the normal physiological variation of CTCF
levels across tissues, without the confounding effects
that arise from cell-specific trans environments.
Our data strongly suggest that mammalian cells can com-

pensate for fluctuations in intracellular CTCF concentration
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at each level, from DNA to protein. In MEFs, removal of
50% of the Ctcf gene content causes a 37% reduction in
mRNA expression, leading to a 27% reduction in CTCF pro-
tein, which results in only a 2% difference in genomic occu-
pancy. The homeostatic and functional buffering observed in
our model system offers a clear explanation for how tissues
that have highly variable levels of CTCF expression [24, 25,
52] nevertheless preserve CTCF genomic occupancy levels.
Our data further indicate that submegabase-scale

chromatin structures are also robust to variation in
the amount of CTCF available in the nucleus. Recent
studies have shown that CTCF is dispensable for the
establishment of the A and B compartments, but ne-
cessary for the proper insulation of TADs and the in-
tegrity of looping interactions [23]. We did not
observe any changes in the structure or insulation of
TADs in the Ctcf hemizygous cells (data not shown),
consistent with the high conservation of TADs ob-
served across tissues.
The controlled reduction of CTCF expression in hemi-

zygous cells revealed, however, reproducible changes to
the nuclear environment, thus providing insights into
the inherent functions of this essential protein. We iden-
tified almost a thousand loci directly bound by CTCF
that showed reproducible quantitative changes in their
genomic occupancy. These were accompanied by alter-
ations in several hundred genes, which in turn affected
the corresponding protein abundances. Because the pro-
moters of these genes were differentially deployed be-
tween the two genotypes, these transcriptional changes
arose from alterations in nuclear homeostasis, not differ-
ences in transcript stability in the cytoplasm. Near these
dysregulated genes, we observed an excess of unstable
fine-scale chromatin interactions, as well as enhancers
connected via loops that showed altered activity. There-
fore, in contrast to high-order chromatin structures,
which are indifferent to fluctuations in CTCF concentra-
tion, fine-scale genome organization is more sensitive,
and these alterations impact the regulatory landscape
leading to a perturbed functional state.
The transcriptional alterations we observe may be the

result of increased variability in the expression of these
genes. Indeed, the loss of promoter–enhancer interactions
due to knockdown of CTCF or the deletion of its binding
sites can result in increased cell-to-cell variability in gene
expression [53]. Whether ultimately due to increased
cell-to-cell variability or to gene-specific changes occur-
ring uniformly across cells, reduction in CTCF results in
highly reproducible changes in the cells’ epigenome and
transcriptome. These gene expression changes were found
disproportionately among cancer-related pathways and,
consistently, a large proportion of these genes are dysregu-
lated in the transcriptomes of mouse and human tumors
from diverse origins.

Conclusions
Our data support the hypothesis that, although mamma-
lian cells are tolerant to a reduced concentration of
CTCF, there is specific dysregulation of oncogenic path-
ways that confers an increased predisposition to
carcinogenesis.

Methods
Mouse models
All animal experimentation was carried out in accord-
ance with the Animals (Scientific Procedures) Act 1986
(United Kingdom) and with the approval of the Cancer
Research UK Cambridge Institute Animal Welfare and
Ethical Review Body. All animals were maintained using
standard husbandry: mice were group housed in Techni-
plast GM500 Mouse IVC Green Line cages in a room
with 12 h light/12 h dark cycle and ad libitum access to
water and food (LabDiet 5058). Cages contained aspen
bedding and the following cage enrichments: nesting
material, aspen chew stick, and cardboard tunnel.
C57BL/6J and C3H/HeOuJ mice were obtained from

Charles River Laboratories. B6.C-Tg(Pgk1-cre)1Lni/CrsJ
mice, referred to hereafter as Pgk-Cre, were obtained
from the Jackson Laboratory. Ctcfflox/flox mice [27] were
a gift from Niels Galjart (Erasmus MC, Rotterdam).

Mouse embryonic fibroblast cultures
Male Ctcfflox/flox mice were crossed with Pgk-Cre-positive
females, producing Ctcf hemizygous (Ctcf +/−) offspring.
The hemizygous Ctcf deletion was maintained on a
C57BL/6J background by crossing Ctcf +/− males with
C57BL/6J females, resulting in hemizygous (Ctcf +/−) and
wild-type (Ctcf +/+) littermates; these embryos were used
to derive mouse embryonic fibroblast (MEF) cultures.
Embryos were collected 13 days after vaginal plugs

were identified (E13.5). The head and visceral organs
were removed and used for genotyping with real-time
PCR (Transnetyx). The remaining embryonic tissue was
minced and trypsinized at 37 °C for 30 min, quenched
with “MEF media” (Dulbecco’s modified Eagle medium
(DMEM, Gibco) supplemented with 4.5 g/L D-glucose,
L-glutamine, and pyruvate, 10% heat inactivated fetal bo-
vine serum (FBS, Gibco), 1% amphotericin B antimycotic
(Life Technologies), and 1% penicillin-streptomycin solu-
tion), and each embryo suspension was seeded into a 15
cm dish and incubated at 37 °C in 5% CO2. When con-
fluent, cultures were split 1:3, in the absence of antibi-
otics from passage 2 onwards. ChIP-seq, RNA-seq,
proteomics, and Hi-C experiments were all performed
from a single passage 4 (P4) culture. MEF cultures for
each biological replicate were expanded and harvested in
pairs, one wild-type and one Ctcf hemizygous line at a
time, to control for culture-related batch effects.
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Quantitative PCR
Total RNA was extracted from P4 MEF cultures from six
biological replicates from each genotype, using QIAzol
Lysis Reagent (Qiagen), according to the manufacturer’s
instructions. cDNA was synthesized from RNA using a
High-Capacity RNA-to-cDNA Kit (Thermo Fisher Scien-
tific), and qPCR was performed in three technical repli-
cates using TaqMan probes (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Ctcf mRNA
levels were calculated using mean Ct values, normalized
to Gapdh signal, for each pair of MEF cultures. Results are
detailed in Additional file 1.

Quantitative western blotting
Protein was extracted from P4 MEFs from six biological
replicates from each genotype: cells were washed with
ice cold PBS, lysed in radioimmunoprecipitation assay
(RIPA) buffer, pulse sonicated on ice (3 × 10 s), and agi-
tated for 30 min at 4 °C; the cell debris was pelleted by
centrifugation and the supernatant was quantified using
a Direct Detect Infrared Spectrometer (Merck Milli-
pore). Total protein (20 μg) was run on a 4–12%
Bis-Tris gel and transferred to a membrane using an
iBlot 2 Gel Transfer Device (Thermo Fisher Scientific).
The membrane was blocked using Odyssey Blocking
Buffer in TBS (LI-COR Biosciences), incubated over-
night with CTCF anti-rabbit antibody (Cell Signaling
Technology, D31H2 XP; 1:1000) and β-actin anti-mouse
antibody (Sigma, clone AC-74; 1:5000). The membrane was
washed 4 × 5 min in TBS + 0.1% Tween and incubated for
45 min at room temperature with fluorescent-conjugated
infra-red (LI-COR Odyssey) antibodies: goat anti-mouse
antibody (1:20,000) labeled with 680 LT infrared dye (P/N
925–68070) and goat anti-rabbit antibody (1:5000) with
800 CW infrared dye (P/N 925–32211). The membrane
was washed a further four times before visualization and
quantification using the Odyssey CLx Imaging System.
Relative CTCF abundance was calculated for each pair of
MEF cultures using normalized fluorescence values, using
β-actin as the loading control. Results are detailed in
Additional file 1.

ChIP-seq
MEFs for six biological replicates from each genotype
were fixed in DMEM containing 1% fresh formaldehyde
and incubated at room temperature for 10 min,
quenched with 250 mM glycine for 10 min, and washed
twice with ice cold PBS. The fixed cells were lifted off
the plate, pelleted by centrifugation, and flash-frozen at
−80 °C. Cross-linked cells were lysed according to pub-
lished protocols [54]. Sonication was performed using a
Bioruptor Plus (Diagenode) sonicator to fragment chro-
matin to an average length of 300 bp. The following
antibodies (10 μg) were used for immunoprecipitation:

CTCF (rabbit polyclonal, Merck Millipore 07–729, lot
2517762); H3K4me3 (mouse monoclonal IgG clone
CMA304, Merck Millipore 05–1339, lot 2603814);
H3K27ac (rabbit polyclonal IgG, Abcam 4729, lot
GR244014–1). Immunoprecipitated DNA or 50 ng of in-
put DNA was used for library preparation using the
ThruPLEX DNA-Seq library preparation protocol (Rubi-
con Genomics, UK). Library fragment size was deter-
mined using a 2100 Bioanalyzer (Agilent). Libraries were
quantified by qPCR (Kapa Biosystems). Pooled libraries
were sequenced on a HiSeq4000 (Illumina) according
to manufacturer’s instructions to produce single-end
50 bp reads.

ChIP-seq data alignment and quality control
Raw sequencing reads from ChIP and input libraries
were aligned to the mouse reference genome (GRCm38)
using bwa 0.7.12 [55] on backtrack mode, with default
options. The resulting SAM files were manipulated with
SAMtools 1.3 [56]. Duplicated reads were marked with
MarkDuplicates 1.139 from Picard tools (http://broadin-
stitute.github.io/picard).
Quality control (QC) of samples was performed using

Phantompeakqualtools (https://www.encodeproject.org/
software/phantompeakqualtools/) [57] and only those
with a positive quality tag were used in downstream ana-
lyses; thus, we removed replicate 1 from the CTCF data-
set and replicate 6 from the H3K27ac dataset. All
regions within the ENCODE blacklist (http://mitra.stan-
ford.edu/kundaje/akundaje/release/blacklists/mm9-mous
e/mm9-blacklist.bed.gz) [58] were excluded; the liftOver
function from the rtracklayer 1.34.1 [59] Bioconductor
package was used to convert the coordinates to the
mm10 (GRCm38) assembly. Further, any regions with
high signal in our own inputs were also excluded; these
were identified with the greyListBS function from the
package GreyListChIP 1.6.0 [60], using the merged input
datasets.

Differential binding analysis of ChIP-seq data
CTCF differential binding between the two genotypes
was performed with csaw 1.8.0 [61], with a window size
of 15 bp, spacing of 50 bp, and a fragment length esti-
mated from cross-correlation analysis. Duplicate reads
were retained but any reads with mapping quality below
30 were ignored. We checked for evidence of global
composition biases in the data, but the estimated size
factors to correct for this were all very close to one.
Thus, count data were normalized for efficiency biases
instead. In the differential test we controlled for the
batch effect from sample collection time. Windows were
merged into regions if they were within 100 bp of each
other, restricting the maximum width to 5 kb; this re-
sulted in 42,336 regions. The combined p value for each
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region was computed with the Simes’ method, upweight-
ing the highest abundance windows (peak summit).
Regions with a corrected p value of 0.05 or lower (FDR
< 5%) were considered significantly differentially bound.
This yielded a set of 787 differentially bound regions,
79.4% of which were less bound in the hemizygous cells.
The remaining 162 loci showed a relative enrichment in
occupancy compared to the wild-type. Since ChIP-seq
quantification is relative in any given sample, the loss of
binding in several hundred CTCF binding sites leads to
a proportional increase in sequencing reads at other
bound loci. We find that these 162 regions are in general
of higher affinity (Mann-Whitney test, p value = 9.13 ×
10− 24) and evolutionary conservation (hypergeometric
test, p value = 5.29 × 10− 10; see below), and longer in
width, compared to the stable or less bound binding
sites. This is consistent with the compensation expected
as a result of the loss of some binding events.
To check the validity of the regions defined as peaks

with the csaw method, MACS2 callpeak [62] was run
with options -g mm -s 50 -q 0.01 --call-summits, using
all ChIP libraries merged together along with the corre-
sponding merged inputs. MACS2 reported 47,075 sig-
nificant peaks, and these contained 97.9% of all csaw
regions, verifying that the regions tested for differential
binding were significant peaks.
To test for differential binding on the histone data,

peaks were called with MACS2 as detailed above. For
the H3K4me3 dataset we kept the option --call-summits
and for the H3K27ac dataset we used instead --broad.
Then, DiffBind 2.2.7 [63] was used to test for differences
between the genotypes. Fragment sizes were determined
from cross-correlation analyses. To count reads in peaks,
we used a summit size of 200 bp for the H3K4me3 data-
set and the whole peak for the H3K27ac data. We set
bRemoveDuplicates to FALSE and mapQCth to 30. For
differential testing, we controlled for the batch effect
from sample collection time and set the options bSub-
Control and bFullLibrarySize to FALSE when calling
dba.analyze; we used the edgeR method. For the
H3K27ac data the analysis was performed for two mutu-
ally exclusive sets of peaks: those that overlapped an
H3K4me3 peak (representing promoters) and those that
did not overlap an H3K4me3 peak (putative enhancers).
Detailed results of the differential binding analyses are

provided in Additional file 2. The MACS2 peak calls are
provided as processed data in ArrayExpress (see below
for dataset identifiers).

Motif analysis on CTCF binding sites
To identify the motifs in the genomic loci occupied by
CTCF, the 500 bp DNA sequences centered at the mid-
point of the regions defined in the csaw analysis (see
above) were extracted. These were then fed to the

MEME-ChIP suite [64] for de novo motif identification
and comparison to the JASPAR Vertebrates and UniP-
ROBE Mouse databases. The most significant motif
identified was the canonical CTCF motif (M1) and over
90% of all regions had at least one match. The third
most significant motif identified was M2 as defined in
[22]. For Fig. 3b 100 stable and 100 differential CTCF
binding sites were randomly selected. We then collected
the coordinates of the M1 motif from the MEME output
and extracted the genomic sequences plus 20 nucleo-
tides on both sides. For binding sites with multiple mo-
tifs we selected the one that best matched the motif
consensus. The obtained sequences were aligned with
MUSCLE [65] using default parameters.

CTCF motif affinity
To quantify the affinity of each CTCF motif instance
identified from our ChIP-seq data we used DeepBind
[66], a deep learning algorithm that has been trained on
large amounts of ChIP-seq data and can be used to score
the affinity of any given sequence for the CTCF motif.
The same 500 bp DNA sequences used for motif discov-
ery (see above) were used to score their motif affinity
with DeepBind v0.11, using motif D00328.018 (CTCF).
Similar results were obtained if we scored only the motif
sequence identified by MEME-ChIP.

Mouse conservation analysis
To investigate whether differentially bound CTCF bind-
ing sites have different evolutionary dynamics to stable
sites, C57BL/6 CTCF peaks were mapped to their ortho-
logous regions on the genomes of four other mouse
species: Mus musculus castaneus, Mus spretus, Mus
caroli, and Mus pahari. This was performed using a
multiple whole-genome alignment of 17 eutherian mam-
mals [67] plus mcast, mspr, mcar, and mpah [35]. A
CTCF peak was defined as conserved across all five
mouse species if its orthologous locus in each species
was also proven to bind CTCF based on ChIP-seq data
derived from that species [35]. Significant depletion of
conserved peaks in the set of differentially bound CTCF
sites was tested using a hypergeometric test.

RNA-seq
Total RNA was extracted from P4 MEF cultures from
six biological replicates from each genotype, using QIA-
zol Lysis Reagent (Qiagen), according to the manufac-
turer’s instructions. DNase treatment and removal were
performed using the TURBO DNA-freeTM Kit (Ambion,
Life Technologies), according to the manufacturer’s in-
structions. RNA (1 μg) was used to generate sequencing
libraries using the TruSeq Stranded Total RNA Library
Prep Kit with Ribo-Zero Gold (Illumina), according to
the manufacturer’s instructions. Library fragment size
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was determined using a 2100 Bioanalyzer (Agilent). Li-
braries were quantified by qPCR (Kapa Biosystems).
Pooled libraries were sequenced on a HiSeq4000 accord-
ing to the manufacturer’s instructions to produce
paired-end 150 bp reads.

RNA-seq data processing and analysis
RNA-seq paired-end fragments were aligned to the
mouse reference genome (GRCm38) with STAR 2.5.2a
[68] with options --outFilterMismatchNmax 6 --out-
FilterMatchNminOverLread 0.4 --outFilterScoreMinO-
verLread 0.4 --outFilterType BySJout --outFilterMulti
mapNmax 20 --alignSJoverhangMin 8 --alignSJDBo-
verhangMin 1 --alignIntronMin 20 --alignIntronMax
1000000 --alignMatesGapMax 1000000 --outSAM-
strandField intronMotif. On average, 77% of the
sequencing fragments mapped uniquely. The numbers
of fragments overlapping annotated transcripts were
obtained with the program featureCounts 1.5.2 [69]
from the Subread package, using Ensembl’s genome
annotation [70] version 84 (http://mar2016.archive.en-
sembl.org/Mus_musculus/Info/Index). The sequence
of the lacZ cassette was added to the genome to cor-
roborate the genotype of each sample.
For differential expression analysis, hidden batch ef-

fects were identified with the Bioconductor package sva
3.22.0 [71], providing known batch effects (sample col-
lection time). We then used DESeq2 1.14.1 [72] to test
for differential expression, controlling for both the
known and hidden batch effects. Genes were considered
significantly differentially expressed if their adjusted
p value was lower than 0.05 (FDR < 5%).
Significantly enriched Gene Ontology terms were iden-

tified using the functions goana and kegga from the Bio-
conductor package limma 3.33.14 [73], with gene length
as a covariate. The gene lengths supplied were obtained
from the featureCounts output (see above). The reported
p values were corrected for multiple testing by the Ben-
jamini and Hochberg method and were considered sig-
nificant if they were lower than 0.05. Detailed results of
both the differential expression and gene set enrichment
analyses are provided in Additional file 3. The raw and
normalized RNA-seq counts are provided as processed
data in ArrayExpress (see below for dataset identifiers).

TMT proteomics
MEF cultures for five biological replicates of each geno-
type were washed with ice cold PBS. Cells were lysed in
200 μl of 0.1 M TEAB, 0.1% sodium dodecyl sulphate
(SDS) at 90 °C for 10 min, followed by tip sonication.
Total protein was quantified using a Bradford assay
(Bio-Rad, Quick Start) according to the manufacturer’s
instructions. We reduced 90 μg of protein per sample by
the addition of 2 μl 50 mM tris-2-carboxyethyl

phosphine (ΤCEP) for 60 min at 60 °C followed by cyst-
eine blocking for 10 min at room temperature using 1 μl
200 mM methyl methanethiosulfonate (MMTS). Trypsin
digestion (protein/trypsin ratio 30:1) was performed
overnight at 37 °C. Peptides were labeled using the TMT
10-plex reagents (Thermo Scientific). The TMT mixture
was then basic reverse phase (bRP) fractionated on a
Dionex Ultimate 3000 system at high pH using the
X-Bridge C18 column (3.5 μm 2.1 × 150 mm, Waters).
Fractions were analyzed on a Dionex Ultimate 3000

UHPLC system coupled with the nano-ESI Fusion
Lumos (Thermo Scientific). Samples were loaded on the
Acclaim PepMap 100, 100 μm× 2 cm C18, 5 μm, 100-Å
trapping column with the ulPickUp injection method
using the loading pump at 5 μl/min flow rate for 10 min.
For the peptide separation the EASY-Spray analytical
column 75 μm× 25 cm, C18, 2μm, 100 was used for
multi-step gradient elution. Mobile phase A was com-
posed of 2% acetonitrile, 0.1% formic acid and mobile
phase B was composed of 80% acetonitrile, 0.1% formic
acid. The Lumos was operated in a data-dependent
mode for both MS2 and SPS-MS3 methods. The full
scan was performed in the Orbitrap in the range of 380–
1500 m/z at 120 K resolution and the MS2 scan was per-
formed in the ion trap with collision energy 35%.
Peptides were isolated in the quadrupole with isolation
window 0.7 Th. The ten most intense fragments were se-
lected for Synchronous Precursor Selection (SPS)
HCD-MS3 analysis with MS2 isolation window 2.0 Th.
The HCD collision energy was set at 55% and the detec-
tion was performed with orbitrap resolution 60 k and in
scan range 100–400.

Proteomic data processing and analysis
Raw data were processed with the Sequest HT search
engine on Proteome Discoverer 2.1 software. All spectra
were searched against a UniProtKB/Swiss-Prot fasta file
containing 16,915 reviewed mouse entries. The parame-
ters for the SequestHT node were as follows: Precursor
Mass Tolerance 20 ppm, Fragment Mass Tolerance
0.5 Da, Dynamic Modifications were Oxidation of M (+
15.995 Da), Deamidation of N, Q (+ 0.984 Da) and Static
Modifications were TMT6plex at any N-Terminus K, (+
229.163 Da) and Methylthio at C (+ 45.988). The con-
sensus workflow included S/N calculation for TMT in-
tensities as previously described [74], and the level of
confidence for peptide identifications was estimated
using the Percolator node.
Peptide intensity data were quantile normalized and

summarized into protein-level counts by summing the
intensity values for all peptides for a given protein.
Samples were inspected via hierarchical clustering and
PCA to identify outliers of low quality; these were re-
moved from downstream analyses (wild-type replicates 2
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and 3 and Ctcf hemizygous replicates 1 and 3). Limma
3.33.14 [73] was used to assess differential protein ex-
pression between the genotypes, controlling for batch ef-
fects (sample collection time). Detailed results are
provided in Additional file 4.

Hi-C
MEF cultures for three biological replicates of each
genotype were fixed in DMEM containing 2% fresh for-
maldehyde and incubated at room temperature for
10 min, quenched with 1 M glycine for 5 min, and
washed twice with ice cold PBS. The fixed cells were
lifted off the plate, pelleted by centrifugation, and
flash-frozen at −80 °C. Cross-linked cells were lysed ac-
cording to published protocols [8, 75, 76], followed by
chromatin HindIII digestion, biotinylation, ligation, pro-
teinase K treatment, DNA purification, sonication, end
repair, biotin pull-down, adapter ligation, and PCR amplifi-
cation. Library fragment size measurement and quantifica-
tion were performed using a 2100 Bioanalyzer (Agilent).
Pooled libraries were sequenced on a HiSeq4000 according
to the manufacturer’s instructions to produce paired-end
150 bp reads.

Hi-C data processing and analysis
Each sample was sequenced to a mean depth of ~ 179 mil-
lion paired-end reads, totaling over a billion read pairs for
the complete dataset. Data were mapped and QCed with
HiCUP 0.5.8 [77] and bowtie2 2.2.8 [78], using the
GRCm38 mouse reference genome. Over 60% of all read
pairs were properly mapped and paired; from these, over
85% were valid pairs and the uniqueness percentage after
de-duplication was ~ 70%. The BAM files produced by
HiCUP, which contain only valid, non-redundant read
pairs, were used for downstream analyses.
The HiCUP output BAM files were converted to a for-

mat compatible with HOMER by using the hicup2homer
utility. Using HOMER [79], tag directories were created
from the merged data of the three wild-type or Ctcf
hemizygous samples. The correlation between the inter-
action profiles of the two genotypes was calculated with
the getHiCcorrDiff.pl script, using a resolution of 100 kb
and a super-resolution of 150 kb.
To identify chromatin loop interactions, the analy-

zeHiC program from HOMER [79] was used on the
merged data from all six replicates; this ensures that the
definition of significant interactions is agnostic to the
genotype, allowing us to subsequently perform differen-
tial analysis between the wild-type and hemizygous pro-
files without compromising FDR control [80]. We
supplied analyzeHiC with the options –res 20,000 –in-
teractions –nomatrix –maxDist 10000000 –minDist
5000 –center. Differential analysis on the identified
loops was performed using diffHic [81], on the set of

interactions reported by HOMER with an FDR lower
than 0.05, and restricted to the autosomes. The HiCUP
output BAM files were processed with the preparePairs
function, keeping data for each replicate separate; any
fragments mapping against the blacklisted regions used
for the ChIP-seq analyses (see above) were discarded.
Then, the function connectCounts was used to count
the number of fragments mapping specifically to the loci
involved in the loop interactions. Only interactions that
had more than 20 average counts per million (90,704
loops) were used for differential testing. Data were nor-
malized for depth of sequencing by providing the library
sizes of the complete dataset. Differential testing was
performed controlling for batch effects (sample collec-
tion time), and the resulting p values were corrected for
multiple testing by the Benjamini and Hoechberg pro-
cedure. Finally, we used this ranked list to test whether
looping interactions overlapping with differentially
expressed genes (plus 5 kb on either side) or differen-
tially bound CTCF sites were enriched at the top of the
list, with the function geneSetTest (Wilcoxon signed
rank test) from the limma package.

Definition of gene–enhancer pairs
To determine if the enhancers that are likely to regulate
differentially expressed genes are changing concordantly
with gene expression, we retrieved all putative enhancer
peaks (defined as H3K27ac peaks that did not overlap
with H3K4me3 peaks) that were linked to a differentially
expressed gene via a significant interaction in the Hi-C
data (see above). For each of the 296 dysregulated genes,
261 had at least one and up to 65 linked enhancers (me-
dian = 8). Only a subset of these gene–enhancer pairs
are likely to be bona fide regulatory interactions. To in-
crease our signal-to-noise ratio, we reasoned that we
could use the paired nature of our datasets to infer cor-
relation between the RNA expression levels and
H3K27ac abundance, since both measurements were
performed in the same MEF cultures. Thus, for each
gene–enhancer pair we calculated the Pearson correl-
ation coefficient between the RNA-seq and ChIP-seq
normalized counts for the five replicates that had suc-
cessful libraries for both methodologies. We then
retained the gene–enhancer pair with the highest correl-
ation value for each dysregulated gene. Figure 5a was
plotted with these pairings; for genes with no linked en-
hancer, the corresponding row in the heatmap has been
left blank.
To generate the heatmaps shown in Fig. 5a we defined

1kb windows centered either at the transcription start
site (as defined in Ensembl v84) or the midpoint of the
H3K27ac peak, extending 17 kb up and downstream.
The number of sequencing reads mapping to such win-
dows in the histone ChIP-seq data were obtained with
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BEDTools v2.24.0, command intersect –c [82]. The
counts for each sample were normalized to account for
the total depth of sequencing and then aggregated into 5
kb bins. For each 5 kb bin the average abundance across
all replicates was used, and the log2 fold change between
the genotypes was plotted.

Mouse liver and tumor samples
Male C3H/HeOuJ mice, which are susceptible to spon-
taneous liver neoplasms [49], were aged until they
showed clinical signs of tumor development (up to
76 weeks old). Liver tissue samples from four young,
tumor-free mice were collected for control experiments.
Liver tumors (n = 25) and liver tissue samples were snap
frozen in liquid nitrogen and total RNA was extracted
using the AllPrep 96 DNA/RNA Kit (Qiagen) according
to the manufacturer’s instructions. Library preparation
and sequencing were performed as described before.
Sample information is provided in Additional file 5.

Mouse tumor data analysis
The RNA-seq data from mouse liver and tumor samples
was processed as detailed above but using the C3H/HeJ
genome as a reference (ftp://ftp.ensembl.org/pub/re-
lease-89/fasta/mus_musculus_c3hhej/dna/Mus_musculus
_c3hhej.C3H_HeJ_v1.dna_sm.toplevel.fa.gz) [83]. To test
for differential expression between the normal liver and
tumor samples we used DESeq2 [72] and genes were con-
sidered significantly differentially expressed if their ad-
justed p value was lower than 0.05 (FDR < 5%).
To compare to the list of differentially expressed genes

in the Ctcf hemizygous MEFs, we matched genes by
their official gene name. Genes that were significantly
differentially expressed in both datasets were deemed
concordant if they were up or downregulated both in
the Ctcf hemizygous MEFs and in the tumors, compared
to their respective controls. Gene set enrichment ana-
lysis was performed as detailed previously, using only
the set of concordant differentially expressed genes as
the test set. Detailed results of both the differential ex-
pression and gene set enrichment analyses are provided
in Additional file 5. The raw and normalized RNA-seq
counts are provided as processed data in ArrayExpress
(see below for dataset identifiers).

The Cancer Genome Atlas data analysis
To compare the set of dysregulated genes in the Ctcf
hemizygous MEFs to alterations in the transcriptomes of
human cancers, we mined The Cancer Genome Atlas
PanCanAtlas to obtain a list of uterine and breast tumor
samples with identified missense, frameshift, or
stop-gain mutations in CTCF. The identifiers of all the
samples used are detailed in Additional file 5. We
collected the RNA-seq raw counts for these samples,

along with all available control normal uterine and breast
tissue samples. The gene annotation used was from
https://www.gencodegenes.org/releases/22.html. We used
DESeq2 [72] to normalize and test for differential expres-
sion between the tumor and control samples, for each
tissue separately.
To compare these results to the genes altered in the

Ctcf hemizygous MEFs, we obtained the orthology rela-
tionships between the human and mouse genome using
Ensembl version 84 [70] and restricted our analysis to
one-to-one orthologs. Genes that were significantly dif-
ferentially expressed in both datasets were deemed con-
cordant if they were up- or down-regulated both in the
Ctcf hemizygous MEFs and in the tumors, compared to
controls. Detailed results of the differential expression
analyses are provided in Additional file 5.

Additional files

Additional file 1: Validation of Ctcf deletion. Quantification of Ctcf
deletion by qRT-PCR and quantitative western blot experiments on
wild-type and Ctcf +/− MEFs. Format: xls. File size: 61 KB. (XLS 40 kb)

Additional file 2: Differential binding results of ChIP-seq datasets. Results
from the differential binding analyses of the CTCF ChIP-seq dataset using
csaw, and of the H3K4me3 and H3K27ac datasets using DiffBind. Format: xls.
File size: 20.5 MB. (XLS 20040 kb)

Additional file 3: Differential expression results of RNA-seq data. Results
from the differential expression analysis of the RNA-seq dataset using
DESeq2. Also, results from the gene set enrichment analyses for both
Gene Ontology sets and KEGG pathways. Format: xls. File size: 13.5 MB.
(XLS 13174 kb)

Additional file 4: Proteome quantification. Normalized protein
abundances from the TMT proteomics dataset along with the results
from the differential abundance analysis. Format: xls. File size: 2.9 MB.
(XLS 2840 kb)

Additional file 5: Mouse and human tumor metadata and differential
expression results of RNA-seq data. Sample information regarding all
mouse and human tumor samples included in analyses. Results from the
differential expression analysis of mouse liver tumors and human uterine
and breast cancer dataset (performed using DESeq2). Gene set enrichment
analysis for mouse concordant genes. Intersection results of MEF and tumor
DE analyses. Format: xls. File size: 20.7 MB. (XLS 20148 kb)
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