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Abstract

RNA contains over 150 types of chemical modifications.
Although many of these chemical modifications were
discovered several decades ago, their functions were
not immediately apparent. Discoveries of RNA
demethylases, along with advances in mass
spectrometry and high-throughput sequencing
techniques, have caused research into RNA
modifications to progress at an accelerated rate.
Post-transcriptional RNA modifications make up an
epitranscriptome that extensively regulates gene
expression and biological processes. Here, we
present an overview of recent advances in the
field that are shaping our understanding of chemical
modifications, their impact on development and
disease, and the dynamic mechanisms through which
they regulate gene expression.

Introduction

Over 150 unique chemical modifications of RNA have
been found in different organisms. The first of these mod-
ifications was discovered in 1951, when ion-exchange
analysis of RNA revealed an abundant unknown modifica-
tion later identified as pseudouridine (¥) [1-4]. Discover-
ies of other abundant modifications using radioactive
labeling followed: 2'-O-methylation (2'OMe) and N'-
methyladenosine (m'A) were discovered in tRNA and
ribosomal RNA (rRNA); and 2'OMe, N6—methyladenosine
(m®A) and 5-methylcytidine (m°C) were found in mRNA
and viral RNA [5-8]. As the modifications were systemat-
ically characterized and catalogued, hints to their func-
tions emerged. m°A, the most abundant internal
modification of eukaryotic mRNA, was shown in early
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studies to facilitate the processing of pre-mRNA and the
transport of mRNA [9, 10].

We proposed previously that post-transcriptional RNA
modifications could be reversible and may significantly
impact the regulation of gene expression [11]. This hy-
pothesis was confirmed with the discovery of fat-mass
and obesity-associated protein (FTO), the first enzyme
known to demethylate m°A on RNA, soon followed by
that of alkB homologue 5 (ALKBH5), a second m°A
demethylase [12, 13]. In 2012, m6A—specific antibodies
were used to profile m°A sites through immunoprecipi-
tation followed by high-throughput sequencing.
Thousands of m°A sites were identified in human and
mouse cell lines, with enrichment around the stop
codon and 3" UTR [14, 15]. These advances sparked
extensive research on RNA post-transcriptional modifi-
cations in this new era of epitranscriptomics. In this
review, we summarize the most recent advances in the
field, focusing on functional investigations.

m°®A writers and readers lead the way

m°A is installed by a methyltransferase complex that in-
cludes the S-adenosyl methionine (SAM) binding protein
methyltransferase-like 3 (METTL3), first identified over
two decades ago [16, 17] (Fig. 1). Recent experiments
have established that METTL3 and METTL14 are essen-
tial components of a writer complex, in which METTL3
is catalytically active while METTL14 has critical
structural functions [18, 19]. Functional roles of m°A
were discovered through experiments in which METTL3
was inactivated; these studies showed that loss of m°A
compromises circadian rhythm, embryonic stem cell fate
transition, and naive pluripotency [20-22]. A new m°A
methyltransferase, METTL16, has been shown to regu-
late the splicing of the human SAM synthetase MAT2A,
promoting its expression through enhanced splicing of a
retained intron in SAM-depleted conditions, and thus
acting as a regulation loop [23]. METTL16 was also
shown to be the m°A methyltransferase of the U6 small
nuclear RNA.
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Fig. 1 The m°A machinery. The writers, readers, erasers, and cellular components of eukaryotes that interact with m°A and the RNA that contains
it. A adenosine, ALKBH5 AlkB homologue 5, elf3 eukaryotic initiation factor 3, FTO fat-mass and obesity-associated protein, HNRNPC heterogeneous
nuclear ribonucleoprotein C; m°A /\/é—methyladenosine, METTL3 methyltransferase-like 3, RNAPI RNA polymerase I, YTHDC1 YTH domain containing
1, YTHDF1 YTH domain family 1

Importantly, m®A regulates gene expression through
various m®A-recognition proteins. YTH domain contain-
ing 1 (YTHDC1), an m°A ‘reader; acts in the nucleus to
influence mRNA splicing [24], whereas heterogeneous
nuclear ribonucleoprotein C (HNRNPC) and HNRNPG
bind to RNAs whose structures have been altered by
m°A to promote mRNA processing and alternative spli-
cing [25, 26]. In the cytosol, the m°A readers YTH do-
main family 1 (YTHDF1) and YTHDEF3 affect the
translation of their targets through ribosome loading in
HeLa cells [27-29], and YTHDF?2 facilitates mRNA deg-
radation by recruiting the CCR4-NOT deadenylase com-
plex [30, 31]. The m°®A reader YTHDC2 also functions
in the cytosol, affecting the translation efficiency and
mRNA abundance of its targets [32]. As research eluci-
dates the functions of m°A readers, it is becoming
evident that their roles may be complex. m°A in the 5
UTR could facilitate cap-independent translation initi-
ation through a process involving elF3 [33, 34]. The

exact ‘reading’ mechanism of this process is still unclear.
Under heat shock, YTHDF2 shields 5° UTR m°A from
FTO, allowing selective mRNA translation. It will be
important to determine the functional roles of readers
under different biological conditions.

Effects of m°®A at the molecular level

m°A appears to influence almost every stage of mRNA
metabolism. Three recent studies demonstrated interac-
tions with the translation, transcription, and micropro-
cessor machineries (Fig. 1). In an Escherichia coli
translation system, the presence of m°A on mRNA inter-
feres with tRNA accommodation and translation
elongation [35]. Although m°A does not interfere with
the structure of the codon—anticodon interaction, minor
steric constraints destabilize base-pairing. The magni-
tude of the resulting delay is affected by the position of
the m®A, implying that m®A may be an important
regulator of tRNA decoding. m°A was also shown to be
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correlated with decreased translation efficiency in a
study using MCF7 cells [36]. In this experiment, an in-
ducible reporter system was used to demonstrate that
transcripts with slower rates of transcription received
greater deposition of m°A, and that m®A deposition
occurs co-transcriptionally. This work also showed that
METTL3 interacts with RNA polymerase II under con-
ditions of slower transcription, and that methylated tran-
scripts had decreased efficiency of translation. As m°A
has been shown to promote translation in other studies
[27, 33, 34], the role of m°A in affecting translation
could be transcript- and position-dependent. Although
the m°A itself could reduce translation efficiency, as
shown in the in vitro experiment [35], the YTH domain
proteins could promote translation in response to stim-
uli or signaling. A recent study showed that METTL3
binds to RNA co-transcriptionally, and that this inter-
action is necessary for the microprocessor components
Dgcr8 and Drosha to associate physically with chromatin
to mediate gene silencing [37]. METTL3 and Dgcr8 relo-
calize to heat-shock genes under hyperthermia and work
in concert to promote the degradation of their targets,
allowing timely clearance of heat-shock responsive tran-
scripts after heat-shock has ended. These studies reveal
important roles for m°A in enhancing the dynamic con-
trol of gene expression, a function that is especially im-
portant under changing cell conditions.

Influences of m°A on development and
differentiation

We recently proposed that m°A shapes the transcrip-
tome in a manner that facilitates cell differentiation [38].
Such a role could be critical during development, as is
suggested by several recent studies. m°A is necessary for
sex determination in Drosophila [39, 40]. Depletion of
the Drosophila METTL3 homologue Ime4 leads to the
absence of m°A on the sex determination factor Sex le-
thal (Sxl). Without m°A, the YTHDCI1 homologue
YT521-B is unable to properly splice Sx/, leading to
failure of X inactivation and thus improper sex deter-
mination. Moreover, depletion of Ime4 affects neuronal
function, causing shortened lifespan and irregularities in
flight, locomotion, and grooming. m°A has also been
shown to regulate the clearance of maternal mRNA dur-
ing the maternal-to-zygotic transition in zebrafish [41].
Zebrafish embryos that lack the m°®A reader Ythdf2 be-
come developmentally delayed because of impaired
decay of m®A-modified maternal RNAs. Because these
maternal RNAs are not properly decayed, activation of
the zygotic genome is also impaired.

Previous studies have demonstrated roles for m°A in
the differentiation of mouse and human embryonic stem
cells [21, 22, 42]. More recently, effects of mCA on differ-
entiation have been shown in mice. Two separate studies
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showed that the meiosis-specific protein MEIOC, which
is necessary for proper meiotic prophase I during
spermatogenesis, interacts with the m°A reader YTHDC2
[43, 44]. Mice that lack Meioc are infertile, lacking germ
cells that have reached the pachytene phase of meiotic
prophase I. Notably, mice lacking Ythdc2 or Mettl3 display
similar phenotypes, demonstrating infertility and defects
in germ cells, which reach a terminal zygotene-like stage
and undergo apoptosis [32, 45]. m°A also affects somatic
cell differentiation in mice. Knockout of Mettl3 in mouse
T cells caused failure of naive T cells to proliferate and
differentiate; in a lymphopaenic adoptive transfer model,
most naive Mettl3-deficient T cells remained naive, and
no signs of colitis were present [46]. The lack of Mett/3
caused upregulation of SOCS family proteins, which
inhibited the IL-7-mediated STAT5 activation necessary
for T cell expansion. Two studies of FTO have also dem-
onstrated roles for m°A in somatic cell differentiation.
FTO expression was shown to increase during myoblast
differentiation, and its depletion inhibited differentiation
in both mouse primary myoblasts and mouse skeletal
muscle [47]. The demethylase activity of FTO is required:
a point mutation of FTO that removes demethylase
activity impairs myoblast differentiation. FTO is also dy-
namically expressed during postnatal neurodevelopment,
and its loss impedes the proliferation and differentiation
of adult neural stem cells [48].

Involvement of m°A in human cancer

As discussed in the previous section, m°®A is a critical
factor in cell differentiation. Considering that cancer is
driven by the misregulation of cell growth and differenti-
ation, it follows that cancer cells may hijack aberrant
methylation to enhance their survival and progression.
Several studies have demonstrated roles for demethyla-
tion or lack of methylation in promoting cancer progres-
sion. In MLL-rearranged acute myeloid leukemia (AML),
FTO is highly expressed, promotes oncogene-mediated
cell transformation and leukemogenesis, and inhibits all-
trans-retinoic acid (ATRA)-induced AML cell differenti-
ation [49]. At the molecular level in AML, FTO causes
both a decrease in m°A methylation and a decrease in
the transcript expression of these hypo-methylated
genes. ASB2 and RARA are functionally important
targets of FTO in MLL-rearranged AML; their forced
expression rescues ATRA-induced differentiation. The
oncogenic role of FTO is not limited to AML; another
study showed that inhibition of FTO in glioblastoma
stem cells (GSCs) suppresses cell growth, self-renewal,
and tumorigenesis [50]. This study demonstrated that
other components of m°A machinery also impact glio-
blastoma. Knockdown of METTL3 or METTL14 affects
the mRNA expression of genes that are crucial to GSC
function, and enhances GSC growth, proliferation, and
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tumorigenesis. In agreement with these findings that
lack of methylation tends to promote cancer progres-
sion, Zhang et al. [51] showed that ALKBH5 is highly
expressed in GSCs, and that its knockdown suppresses
their proliferation. The protein abundance of the
ALKBHS5 target FOXMI is greatly increased in GSCs as
a result of the demethylation activity of ALKBHS5;
removal of m°A at the 3' end of FOXMI pre-mRNA
promotes FOXM1 interaction with HuR, which enhances
FOXM1 protein expression. A long non-coding RNA
(IncRNA) antisense to FOXM1 facilitates the interaction
between ALKBH5 and FOXM1I, and depletion of either
ALKBHS5 or its antisense IncRNA inhibits GSC tumori-
genesis. ALKBHS5 also promotes a breast cancer pheno-
type; under hypoxic conditions, ALKBH5 expression
increases, thus decreasing levels of m°A and upregulat-
ing expression of the pluripotency factor NANOG [52].
Together, the studies mentioned above suggest that a
decrease in RNA m°A methylation tends to facilitate
cancer progression, and that RNA methylation could
affect cell growth and proliferation. Other studies, how-
ever, indicate that the role of m°A in different cancers
may be more complex. In hepatocellular carcinoma
(HCC), METTL14 downregulation is associated with
tumor metastasis, but METTL3 enhances the invasive
ability of HCC cells [53]. Several other studies also point
to an oncogenic role for the methyltransferase complex.
METTL3 plays an oncogenic role in cancer cells, pro-
moting the translation of cancer genes through interac-
tions with the translation initiation machinery [54].
Interestingly, METTL3 promotes translation independ-
ent of its methyltransferase activity or of any interaction
with the m°A reader YTHDF1. WTAP, a component of
the m°A methyltransferase complex, also promotes
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leukemogenesis, and its levels are increased in primary
AML samples [55]. RBM15, another methyltransferase
complex component, is altered in acute megakaryoblas-
tic leukemia, undergoing translocation to fuse with
MKLI [56].

Considering the complex findings, it is likely that
different types of cancers can be derived from unique
imbalances or misregulation of mRNA methylation. In
AML, increased WTAP and RBM15 expression (or
writer proteins themselves) could block differentiation,
leading to leukemia, whereas increased eraser expression
could cause leukemia via separate pathways. The intri-
cate network of interactions is reminiscent of studies of
DNA methylation; just as misregulation of DNMT and
TET proteins are both associated with cancer [57-60],
misregulation of the m®A machinery can lead to cancer
through unique mechanisms. Interestingly, the oncome-
tabolite D-2-hydroxyglutarate (D2-HG), which could act
as a nonspecific inhibitor of the iron- and «KG-dependent
dioxygenases FTO and ALKBHS5, accumulates in about
20% of AMLs [61], and may thus contribute to the out-
come of these cancers by inhibiting RNA demethylation.
Further investigation is necessary to uncover mechanisms
by which aberrant methylation affects the proliferation of
various cancers.

Other modifications on mRNA
Recent advances in high-throughput sequencing and
mass spectrometry have revitalized research on post-
transcriptional modifications, elucidating functions of
both known and newly discovered modifications on
mRNA (Fig. 2).

Methylation of the N' position of adenosine (m'A)
was recently discovered on mRNA; this modification
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was found to occur on RNA at levels around 10-30% of
that of m°A, depending on the cell line or tissue [62, 63].
m'A occurs in more structured regions and is enriched
near translation initiation sites. The level of m'A responds
dynamically to nutrient starvation and heat shock, and the
5" UTR peaks correlate with translation upregulation. As
it is positively charged, the m'A modification may mark-
edly alter RNA structure as well as RNA interactions with
proteins or other RNAs. Zhou et al. [64] demonstrated
that m'A causes A-U Hoogsteen base pairs in RNA to be
strongly disfavored, and that RNA that contains m'A
tends to adopt an unpaired anti conformation. m'A was
also shown to affect translation; its presence at the first or
second codon position, but not at the third codon, blocks
translation in both Escherichia coli and wheat germ ex-
tract systems [65]. In addition, m'A is present in early
coding regions of transcripts without 5 UTR introns,
which are associated with low translation efficiency and
which facilitate noncanonical binding by the exon junction
complex [66]. These studies point to a main role of m'A
in translation and RNA-RNA interactions. The exact
functional roles of 5 UTR m'A sites require further stud-
ies, and there are also other m'A sites in mRNA that
could play distinct roles. Methods to map low abundance
m'A sites in mRNA will be crucial to understanding their
biological roles [67].

Adenosines at the second base of mRNAs can also
undergo both 2’-O-methylation and m®A methylation to
become m°A,, a modification with an unidentified
methyltransferase [68, 69]. mCA,, was recently profiled
at single-nucleotide resolution by crosslinking RNA to
m°A antibodies and then identifying mutations or trun-
cations in reverse transcription by high-throughput
sequencing [70]. It undergoes preferential demethylation
by FTO. The study by Mauer et al. [70] revealed negli-
gible effects of FTO on internal mRNA m°®A in vitro and
inside cells. However, this is not consistent with the
findings of many previous biochemical and cell-based
studies [12, 34, 49, 71, 72]; clear sequential m°A demeth-
ylation by FTO has been demonstrated biochemically
[71]. FTO works on both m°A and m°A,,, with greater
demethylase activity toward m°A modifications that are
located internally on mRNA when ultra-performance
liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS) is used to quantify modification
changes in a range of different cell lines. Because FTO
can work on multiple substrates, including m6Am, and
m6Am methylation occurs on only a fraction of all
mRNA [73], it will be critical to determine the func-
tional relevance of m6Am demethylation as has been
done with internal m6A demethylation [34, 49, 72]. The
methyltransferase will need to be identified and the
phenotypes of knockout mice and cell lines will need to
be examined carefully.
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Cytosine methylations are also prevalent in RNA. m°C
was first identified on RNA more than 40 years ago, and
is present in all three domains of life [74]. It has been
sequenced on mRNA using bisulfite sequencing, and
was found to be highly prevalent in both coding and
non-coding RNA [75, 76]. Bisulfite sequencing of m°C
on mRNA may, however, produce false positives due to
incomplete deamination of unmodified cytidines. Al-
though several biological functions of m°C have been
discovered on tRNA (as discussed in the following
section), the biological functions of m°C in mRNA have
remained largely elusive. Recently, however, a function
of m°C on mRNA was recently discovered by Yang et al.
[77]: m°C promotes nuclear export because it is specific-
ally recognized by the mRNA export adaptor ALYREF.
Notably, the study by Yang et al. [77] found enrichment
of m°C sites located 100 nucleotides after translation
initiation sites, which were not observed by previous
studies. Further studies on the enzymes that interact
with m°C may lead to the discovery of additional roles
for m°C in mRNA.

3-Methylcytosine was recently identified as a modifica-
tion in mRNA, present at a rate of around 0.004% of cy-
tosines in human cell cultures [78]. It is installed by
METTLS, and its function and localization have yet to
be identified.

Pseudouridine, which is generated by isomerization of
uridine, is the most abundant RNA modification in total
RNA [3]. It was recently identified on mRNA and mapped
by several groups using similar techniques (PseudoU-seq,
Y-seq, PSI-seq, and CeU-seq), which use the water-soluble
diimide CMCT (1-cyclohexyl-3-(2-morpholinoethyl)-carbo-
diimide metho-p-toluenesulfonate) to generate strong re-
verse transcriptase stops at y sites [79-82]. PseudoU-seq
and W-seq identified > 200 and > 300 sites, respectively, on
human and yeast mRNAs, and W/U in mRNA has been
quantified at around 0.2-0.7% in mammalian cell lines.
Direct evidence of biological functions of ¥ on mRNA has
yet to be identified, but several findings point to potential
biological roles. V' affects the secondary structure of RNA
and alters stop codon read through [83, 84]. Depletion of
the pseudouridine synthase PUS7 decreases the abundance
of mRNAs containing ¥, suggesting that ' may also affect
transcript stability [80]. Moreover, pseudouridinylation on
transcripts is affected by stresses such as heat shock and
nutrient deprivation, suggesting that ¥ may be a response
to various stresses [79, 80, 82].

Modifications on transfer RNAs and other RNAs
tRNAs contain more modifications than any other RNA
species, with each tRNA containing, on average, 14
modifications [74]. Recent studies have identified tRNA
demethylases and methyltransferases, as well as the
functions of their modifications.
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Liu et al. [85] recently identified a tRNA demethylase
for the first time; ALKBH1 demethylates m*A58 in tRNA"
Met and several other tRNA species. m'A58 increases
tRNA™® stability, and its demethylation by ALKBH1 de-
creases the rate of protein synthesis. A related demethy-
lase, ALKBH3, removes m°A from tRNA and increases
translation efficiency in vitro, though its cellular targets
and functions have yet to be identified [86].

m°C on tRNA can also influence translation, particu-
larly affecting stress responses. Deletion of the tRNA
m°C methyltransferase NSUN2 reduces tRNA m°C
levels and promotes cleavage of unmethylated tRNAs
into fragments, which decrease protein translation rates
and induce stress response pathways [87]. Lack of Nsun2
in mice leads to an increase in undifferentiated tumor
stem cells due to decreased global translation, which in-
creases the self-renewal potential of the tumor-initiating
cells [88]. Interestingly, lack of Nsun2 also prevents cells
from activating survival pathways when treated with
cytotoxic agents, suggesting that the combination of
m°C inhibitors and chemotherapeutic agents may effect-
ively treat certain cancers.

m°C also plays an important role in the translation of the
mitochondrial tRNA for methionine (mt-tRNAM®Y). m°C is
deposited onto cytosine 34 of mt-tRNAM®" by the methyl-
transferase NSUN3 [89-91]. Lack of NSUNS3 leads to defi-
ciencies such as reduced mitochondrial protein synthesis,
reduced oxygen consumption, and defects in energy metab-
olism. Mutation of NSUNS3 is also associated with several
diseases, including maternally inherited hypertension and
combined mitochondrial respiratory chain complex defi-
ciency. Mechanistically, m°C is oxidized by ALKBH1/
ABH]1 into 5-formylcytidine, which is necessary for reading
the AUA codon during protein synthesis.

Methylation and editing of tRNA may require intricate
mechanisms and conditions. NSun6, which installs
m°C72 onto tRNA, recognizes both the sequence and
shape of tRNA [92]. Without a folded, full-length tRNA,
NSun6 does not methylate m®C72. C-to-U deamination
of C32 in Trypanosoma brucei tRNA™ also depends on
multiple factors [93]. Methylation of C32 to m*C by two
enzymes, the m>C methyltransferase TRM140 and the
deaminase ADAT2/3, is a required step in the deamin-
ation process. m°C must then be deaminated to 3-
methyluridine (m®U) by the same mechanism, and m*U
is then demethylated to become U.

The recent discoveries of the first tRNA demethylases,
of their effects on translation and differentiation, and of
complex mechanisms of tRNA methylation and editing
will undoubtedly inspire investigations to elucidate the
functions of tRNA modifications and the biological pro-
cesses to which they respond.

Ribosomal RNA is also marked by abundant modifica-
tions; the > 200 modified sites in human rRNAs make up
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around 2% of rRNA nucleotides. Most modifications on
rRNA are ¥ or 2'OMe, although rRNA also contains
around ten base modifications [74]. Functions of rRNA
modifications are largely unknown, but studies of 2’
OMe on rRNA are beginning to provide hints to their
functions. The C/D box snoRNAs SNORD14D and
SNORD35A, which are necessary to install 2'OMe onto
rRNA, are necessary for proper leukemogenesis and are
upregulated by leukemia oncogenes [94]. C/D box
snoRNA expression in leukemic cells is correlated with
protein synthesis and cell size, suggesting a potential role
for 2'OMe on rRNA in translation.

The processing and functions of other non-coding
RNA species have recently been shown to undergo regu-
lation by mCA. Alarcén et al. [95] demonstrated that pri-
microRNAs contain m®A, which is installed by METTL3
and promotes recognition and processing into mature
microRNA by DGCR8. m°A is also present on the
IncRNA XIST, and is necessary for XIST to mediate tran-
scriptional silencing on the X chromosome during
female mammalian development [96]. Finally, m°®A is
present on human box C/D snoRNA species; it impedes
the formation of trans Hoogsteen-sugar A—G base pairs,
thus affecting snoRNA structure, and also blocks bind-
ing by human 15.5-kDa protein [97].

Concluding remarks and future directions

It is becoming increasingly clear that the epitranscriptome
and its modifying enzymes form a complex constellation
that holds widely diverse functions. Post-transcriptional
RNA modifications allow additional controls of gene ex-
pression, serving as powerful mechanisms that eventually
affect protein synthesis. In particular, m°A provides layers
of regulation, offering effects that are dependent on the
localization of its writers, readers, and erasers.

To facilitate certain cellular processes, the m®A ma-
chinery can target multiple substrate mRNAs and non-
coding RNAs. As we proposed [38], cellular programs
may require a burst of expression of a distinct set of
transcripts, followed by expression of a different set of
transcripts. m°A can mark and cause timely expression
and turnover of subsets of transcripts. The cellular and
compartmental localizations of the writers, readers, and
erasers critically affect their functions. Methylation, to-
gether with demethylation of subsets of transcripts in
the nucleus, may create a methylation landscape that di-
rects the fate of groups of transcripts as they are
processed, exported to the cytoplasm, translated, and de-
graded. Multiple different readers or their associated
proteins may be required to actualize the effects of the
methylations fully. Although transcript turnover or
decay is an accepted role of mRNA m®A methylation, it
should be noted that the Ythdf2 knockout mouse ex-
hibits a less severe phenotype [98] compared to mice
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lacking Mettl3 or Mettl14 (embryonic lethals), demon-
strating that the Ythdf2-dependent pathway mediates a
subset of the functions of methylated transcripts. There
are other crucial regulatory functions of m°A RNA
methylation that remain to be uncovered.

These observations lead us to perceive that methyla-
tion occurs at multiple layers. Methyltransferases set the
initial methylation landscape in coordination with the
transcription machinery. Demethylases could more
efficiently tune the methylation landscape of a subset of
methylated transcripts, acting as the second layer of
regulation. Indeed, demethylases often target only a sub-
set of genes under certain conditions; for example,
depletion of AlkbhS5 does not lead to embryonic lethality
but instead causes defects in spermatogenesis [13], and
only a portion of Fto knockout mice display embryonic
lethality. Finally, reader proteins act as effectors in a
third layer of regulation, carrying out specific functions
upon methylated transcripts.

The field of epitranscriptomics still remains vastly
unexplored. Future studies will need to focus on the
mechanisms that define which transcripts are methylated.
Moreover, as methylations are often unevenly distributed
along the RNA transcript, identifying the mechanisms
underlying the regional specificity of methylation, as well
as which individual sites along transcripts are methylated,
remain as major challenges. The methylation selectivity
on particular transcripts may need to be coupled with
transcription regulation. How this selectivity is determined
and the interplay between methylation and transcription
require further exploration. Questions regarding the ef-
fects of methyltransferases and demethylases on nuclear
processing, splicing, and export also remain. Nuclear
regulation of RNA methylation could play critical roles
impacting biological outcomes. In particular, it will be im-
portant to determine how and why a subset of RNAs
undergoes demethylation inside the nucleus, as well as the
functional consequences of this required demethylation
on gene expression. Interactions between the writers,
readers, and erasers with other cellular components are
also necessary to reveal functional roles, especially those
in complex biological processes in vivo.
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