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Abstract

Background: Mitochondrial heteroplasmy, the presence of more than one mitochondrial DNA (mtDNA) variant in a
cell or individual, is not as uncommon as previously thought. It is mostly due to the high mutation rate of the
mtDNA and limited repair mechanisms present in the mitochondrion. Motivated by mitochondrial diseases, much
focus has been placed into studying this phenomenon in human samples and in medical contexts. To place these
results in an evolutionary context and to explore general principles of heteroplasmy, we describe an integrated
cross-species evaluation of heteroplasmy in mammals that exploits previously reported NGS data. Focusing on
ChIP-seq experiments, we developed a novel approach to detect heteroplasmy from the concomitant mitochondrial
DNA fraction sequenced in these experiments.

Results: We first demonstrate that the sequencing coverage of mtDNA in ChIP-seq experiments is sufficient for
heteroplasmy detection. We then describe a novel detection method for accurate detection of heteroplasmies, which
also accounts for the error rate of NGS technology. Applying this method to 79 individuals from 16 species resulted in
107 heteroplasmic positions present in a total of 45 individuals. Further analysis revealed that the majority of detected
heteroplasmies occur in intergenic regions.

Conclusion: In addition to documenting the prevalence of mtDNA in ChIP-seq data, the results of our mitochondrial
heteroplasmy detection method suggest that mitochondrial heteroplasmies identified across vertebrates share similar
characteristics as found for human heteroplasmies. Although largely consistent with previous studies in individual
vertebrates, our integrated cross-species analysis provides valuable insights into the evolutionary dynamics of
mitochondrial heteroplasmy.

Keywords: Heteroplasmy, Chromatin immunoprecipitation sequencing (ChIP-seq), mitochondrial DNA (mtDNA),
Mitochondrion, Vertebrates

Background
Mitochondrial DNA (mtDNA) forms a circular mol-
ecule, which is located in the mitochondrial matrix [1].
In mammals, mtDNA is ~16.5 kb long and contains 37
genes [2]. For the most part, mtDNA either codes for
proteins or for ribosomal RNAs and transfer RNAs, ex-
cept for a 1 kb stretch known as the control region,
which contains one origin of replication and both origins
of transcription [3, 4]. Several identical mtDNA copies
(between 2 and 10 in humans) are present in each

individual mitochondrion, which means a single cell can
contain hundreds to thousands of copies of mtDNA
[2, 4]. The mtDNA was the first part of the human
genome to be sequenced and to this day is one of the
most studied segments of DNA in humans and in
many other species [2, 4]. In addition to its high copy
number, the mutation rate of mtDNA is significantly
higher than that of nuclear DNA [3]. These properties
make it common for an individual to have more than
one mtDNA variant: this phenomenon is known as
heteroplasmy [5] and has been observed and studied
in many species and contexts.
In humans, hundreds of diseases are linked to point

mutations in the mitochondrial genome [6], suggesting
that a fraction of human mitochondrial mutations may
be pathogenic. Many of these mutations exist in a
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heteroplasmic state and the extent of the disease
symptoms vary according to the proportion of the
deleterious allele [7]. Such diseases include many
metabolic diseases, age-related neurodegenerative dis-
eases such as Alzheimer’s and Parkinson’s, as well as
several types of cancer [6, 8–11]. Research in fields
such as population genetics and forensics has also fo-
cused on heteroplasmy as a way to investigate aspects
of inheritance [12]. Although heteroplasmic positions
have also been observed in other mammalian species
[13–16], studies of the phenomenon in other taxa
have mostly been conducted for genetic barcoding or
to investigate molecular evolution and generally focused
on small controlled datasets [17–21]. Cross-species com-
parisons have been reported in a limited number of closely
related species, such as different types of bees [22–24].
Heteroplasmy was first reported in 1983 [25] and has

been detected with a variety of methods including
Sanger capillary sequencing [26] and pyrosequencing
[27]. However, these sequencing methods are expensive
and slow, which limited the number of studied samples.
More recently, next-generation sequencing (NGS) has
been used to study mitochondrial heteroplasmy with
high-throughput data and several computational ap-
proaches for heteroplasmy detection have been devel-
oped [28–33]. The main challenge in using NGS data to
detect heteroplasmies is sequencing errors, which tend
to be location-specific and thus can be confused with
heteroplasmies. To avoid such biases, criteria for NGS-
based heteroplasmy detection were developed using
PhiX genome simulations and establishing different qual-
ity thresholds to identify heteroplasmic positions [28].
Since the heteroplasmy detection power increases with
coverage, recent studies employing high coverage sequen-
cing (>1000×) have adapted these criteria [29] (e.g. more
lenient thresholds) as well as developed advanced prob-
abilistic models to detect micro-heteroplasmies (i.e. posi-
tions with a minor allele ratio below 2–5 %) [30, 34]. In
this study, we focus on detecting a higher level of hetero-
plasmy (>15 %) using a modified version of the established
criteria [28].
Previous heteroplasmy studies used targeted mtDNA

sequencing. In most cases mtDNA was extracted from
whole blood or buccal tissue, although recently a few
studies have investigated a range of tissues [35, 36].
More recently, mitochondrial heteroplasmy has been
assayed using data from many whole-genome sequen-
cing studies including from the 1000 Genomes Project
[37] and in other NGS datasets, such as exome- and
RNA-sequencing (RNA-seq) [38, 39]. It is currently un-
known whether genomic enrichment assays such as Chro-
matin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) have suitable characteristics for
mitochondrial heteroplasmy detection including relatively

uniform coverage and appropriate sequencing depth,
although some assays such as ATAC-sequencing
(ATAC-seq) are known to include a high fraction of
mtDNA reads.
As the cost of sequencing continues to drop, the quantity

of datasets being generated and stored is rapidly increasing.
Among the benefits of public availability of sequencing ex-
periments is their use to efficiently answer research ques-
tions not explored at the time of data generation. Here, we
exploit a combination of previously generated and novel
datasets resulting from ChIP-seq experiments to perform
heteroplasmy detection across a range of vertebrate spe-
cies. Although mtDNA is of the order of 0.1 % of all DNA
in a cell [40], the high copy number of the circular mito-
chondrial genome generally leads to it being sequenced
many times in ChIP-seq experiments, resulting in a signifi-
cant proportion of ChIP-seq reads covering the mtDNA
[41–43].
We first confirm the prevalence of mtDNA in pub-

lished ChIP-seq data and show that mtDNA coverage is
suitable for heteroplasmy detection. We then apply a
novel heteroplasmy detection method to a collection of
both novel (see “Methods”) and previously published
ChIP-seq datasets comprising a total of 79 individuals
from 16 species. Our findings provide several insights
into the dynamics of mtDNA heteroplasmy over a large
portion of the mammalian phylogeny.

Results
Large mammalian dataset
We gathered ChIP-seq data from five previously pub-
lished studies [44–48] and performed new transcription
factor (TF) and histone modification ChIP-seq experi-
ments (see “Methods”) on a selection of samples that
were used in the aforementioned papers. We selected
published ChIP-seq datasets (signal and input files) from
large cross-species comparison studies to mitigate batch
effects. The combined data cover a wide range of species
spanning the mammalian clade including primates, ro-
dents, and domesticated animals such as dogs, cats, and
cattle, as well as chicken as an out-group vertebrate spe-
cies. Most of these samples come from liver tissue, but
some consist of lymphoblastoid cell lines. After analysis
(see below and “Methods”), we identified a core set of
16 species for comparison – Homo sapiens (human),
Macaca mulatta (macaque), Chlorocebus aethiops sabaeus
(vervet), Callithrix jacchus (marmoset), Otolemur garnettii
(bushbaby), Mus musculus domesticus (mouse), Rattus
norvegicus (rat), Heterocephalus glaber (naked mole-
rat), Oryctolagus cuniculus (rabbit), Bos taurus
(cattle), Delphinus delphis (dolphin), Sus scrofa (pig),
Canis familiaris (dog), Mustela putorius furo (ferret),
Sarcophilus harrisii (Tasmanian devil), and Gallus
gallus (chicken).
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ChIP-sequencing data for heteroplasmy detection
A ChIP-seq study generally consists of two experiments
that each result in short read sequencing data files [49].
The first is commonly known as the signal file and con-
tains reads resulting from the ChIP experiment, which
when mapped to the target genome produces read clus-
ters (peaks) identifying genomic locations where the pro-
teins targeted by the ChIP antibody were bound. The
second data file is a control experiment consisting of a
similar process, but without the immunoprecipitation
step, and is used to control for biased genome-wide read
coverage arising from preferential sonication of open
chromatin [50]. Thus, the control data generally contain
reads that map to the entire genome, with few expected
enriched regions. Due to the high copy number of the
mtDNA, reads within the mitochondrial genome are se-
quenced many times in both signal and control ChIP-
seq experiments. We observed significant read coverage
in both data files, even though binding peaks within
mtDNA were not detected (see “Methods”).
We used ChIP-seq data originally generated to map

various histone modifications and TFs such as CEBPA
and FOXA1, as well as the input/control data for each
experiment (Fig. 1). We merged all experiments corre-
sponding to the same individual, which provides better
total coverage and acted as technical replicates (i.e. se-
quencing of the same biological tissue) for the mtDNA
detection experiment. When combined in this way,
coverage for each individual was relatively high and

homogenous for almost all species, with average mito-
chondrial coverage above 50× and coverage ratio above
70 % (Fig. 2). As previously reported [28], such coverage
levels are adequate to detect high-level heteroplasmies
with high specificity. Detailed coverage data for each in-
dividual are available in the supplementary materials
(Additional file 1: Figure S1). For six species in the ori-
ginal published studies forming our collected dataset,
but not included in the 16 core species (Monodelphis
domestica, Cavia porcellus, Tupia belangeri, Balaenop-
tera borealis, Mesoplodon bidens, and Lagenorhynchus
albirostris), we observed very low rates of uniquely map-
ping reads on mtDNA. C. porcellus (guinea pig) and T.
belangeri (tree shrew) have highly fragmented genome
assemblies that may hinder accurate mtDNA read map-
ping, and M. domestica (opossum) is known to have a
significantly increased number of NUMTS (nuclear
mitochondrial DNA sequences), which may also have af-
fected the number of uniquely mtDNA mapping reads
[51]. Samples from Balaenoptera borealis (sei whale),
Mesoplodon bidens (Sowerby’s beaked whale), and
Lagenorhynchus albirostris (white-beaked dolphin) were
all mapped to the closely related Tursiops truncatus
(common bottlenose dolphin) species’ genome, a process
that also yielded few uniquely mapping reads to the
mtDNA except for Delphinus delphis (short-beaked
common dolphin), see Fig. 2. Since coverage in these
species was insufficient for heteroplasmy detection, we
excluded them from further analysis. Finally, we also

A

B

C

Fig. 1 Heteroplasmy detection workflow. The raw read files obtained from the ChIP-seq experiments were first aligned to the respective reference
genomes. The aligned reads were then pre-processed, filtering out duplicate reads and extracting reads mapping with a high quality score to the
mtDNA. The heteroplasmy detection algorithm was then used across the samples. Finally, we analyzed the genomic properties of heteroplasmic
positions across vertebrates
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discarded a Mus musculus (mouse) individual for which
the coverage ratio fell below 10 %.

Heteroplasmy detection algorithm
We adapted a previously published heteroplasmy detec-
tion methodology [28] for the specific characteristics of
ChIP-seq data (see below and “Methods”). Briefly, this
method is based on a set of criteria to be checked for
each mtDNA base pair. In addition to quality thresholds,
the algorithm requires a minimum number of reads to
be present on each strand. Verification of heteroplasmies
on both strands avoids location-specific errors that may
arise from sequencing errors, since it is uncommon for
these to occur at the same location on each strand [28].
Distinguishing characteristics of our method include
aligning with BWA [52] (instead of assembling the
reads) and a parameter set optimized for ChIP-seq data.
This parameter set is generally more stringent than in
previous reports [28, 29] and includes a higher base
quality threshold (base quality >23) and an added mini-
mum coverage threshold (20 reads). We also increased
the minimum heteroplasmy level to 15 % (minor allele
frequency). Although these changes to the algorithm re-
sult in lower expected sensitivity, we do so to optimize
specificity from the generally less homogenous sequen-
cing coverage in ChIP-seq samples, compared to that
observed in targeted mtDNA resequencing.
Nucleotide repeats present in low complexity regions

strongly hinder sequencing quality over those locations.

While previous studies have excluded these positions
from their analysis, these regions are also more likely to
harbor heteroplasmies due to error-prone polymerase
activity and limited DNA repair in the mitochondrion.
The human mitochondrial annotation database MITO-
MAP [53] lists several positions as heteroplasmic within
these regions, of which we find nine (see “Methods”)
with our detection method. Since the detection parame-
ters are very stringent, we decided to keep the repetitive
regions in our analysis.
In addition to liver samples, we also applied our detec-

tion algorithm to ChIP-seq data from several primate
species’ lymphoblastoid cell lines (LCLs) [46]. We ob-
served that 33 % of them expressed more than 25 het-
eroplasmic positions, which we assume might be due to
genomic instability in the immortalized cell lines that
could have arisen from a high passage number of the
cells [54]. Our results from two Felis catus (cat) samples
also exhibited a surprisingly high number of heteroplas-
mies in both individuals (Additional file 2: Table S1).
Furthermore, almost all of the positions detected in one
cat individual were present in the other, which may be
due to low genetic diversity in the source population or
the two individuals being siblings. Other possibilities are
that some contamination occurred in the process or that
cat may have a specific pattern of NUMTS that impedes
analysis. For these reasons, we do not include the pri-
mate LCLs or the cat data in the core set of species or
the remaining comparative analysis in the paper.

A

B

Fig. 2 mtDNA read coverage per individual. a The mean read coverage per mtDNA base pair for each analyzed individual, colored per species
(the error bars represent the standard deviation). b The fraction of mtDNA base pairs covered by at least 20 reads (our heteroplasmy detection
cutoff) also colored by species
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After the filtering above, our final dataset included
comparative heteroplasmy results from liver samples of
79 individuals across 16 species. For these, we found 107
positions in 45 individuals across 14 species (Fig. 3;
Additional file 2: Table S2). A total of 57 % of the indi-
viduals express heteroplasmy. Our estimate is higher
than initial NGS-based reports of human heteroplasmy
[28], but consistent with recent reports on high-
coverage datasets [34, 35], which also showed that liver
tissue has one of the highest relative number of hetero-
plasmies compared to other human tissues [35]. In fact,
we find heteroplasmic positions in every species except
Heterocephalus glaber (naked mole-rat) and Delphinus
delphis (short-beaked common dolphin).

Heteroplasmic positions present in multiple individuals
Several positions occur in more than one individual of
the same species (Fig. 4; Additional file 2: Table S2), a
phenomenon that has previously been observed in
humans and attributed in part to differential mutation
rates across the mtDNA sequence [28]. Since heteroplas-
mies in humans are mostly located at positions with
high relative mutation rate [28, 34] and mutation rate
patterns are shared across individuals, such positions are
more likely to exist in a heteroplasmic state in more
than one individual. Similar differential mutation rate
patterns are likely in other species and thus the shared
positions we observe may also have high mutation rates.
Likewise, we asked whether this phenomenon could be
linked to sequence conservation, but the heteroplasmic
positions occurring in more than one individual do not
show evidence of conservation bias (Fig. 4). That some
individuals may be closely related via their breeding his-
tory is another possible explanation.

Read coverage of the heteroplasmic positions
The average number of reads supporting each of our
observed heteroplasmic position is 60 (SD 25), which
is significantly higher than our 20 read threshold
(Additional file 1: Figure S2). Indeed, there are no ob-
served positions with read coverage of exactly 20
reads and only three positions with coverage of 21
reads. Based on the observed coverage distribution,
our detection parameters including the coverage threshold
appear to be conservative.
For each individual, we compared the average coverage

across the mtDNA to the number of observed hetero-
plasmic positions. We found a minor correlation across
the entire distribution (Pearson’s r = 0.17) (Fig. 5a), but
for individuals with high average coverage (>40 reads
per mtDNA position), there is essentially no correlation
between coverage and number of observed heteroplas-
mies (Pearson’s r = 0.05). This result further suggests
that our chosen coverage threshold is sufficient for ro-
bust detection of high-level heteroplasmies. As expected,
the heteroplasmy level distribution is highest at 15 %
minor allele frequency corresponding to the threshold
level (Fig. 5c). Previous studies also report that the ma-
jority of heteroplasmic positions occur at the lowest
minor allele level [28, 34].

Heteroplasmy mutation spectrum analysis
The transition-transversion rate is strongly biased in the
mitochondrion [55]. We observe a transition-transversion
ratio of Ts/Tv = 3.86 in our results across all species,
which is similar to the ratio found in the MITOMAP data-
base (Ts/Tv = 2.95, Fisher’s exact test, p = 0.31). In fact, the
full mutational spectrum we observe in our multi-species
dataset (Fig. 5b) is similar to that observed in the

Fig. 3 Heteroplasmies in 16 species. Detected heteroplasmy in H. sapiens (human), M. mulatta (macaque), C. sabaeus (vervet), C. jacchus
(marmoset), O. garnettii (bushbaby), M. musculus (mouse), R. norvegicus (rat), H. glaber (naked mole-rat), O. cuniculus (rabbit), B. taurus (cattle), D.
delphis (dolphin), S. scrofa (pig), C. familiaris (dog), M. putorius furo (ferret), S. harrisii (Tasmanian devil), and G. gallus (chicken) displayed in red on
the mtDNA multiple alignment with the associated evolutionary tree. The human gene annotation displayed at the top of the figure shows RNA
and protein-coding genes as well as non-coding regions
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MITOMAP database (X2 test, p = 0.07). Additionally, the
fact that the most common Illumina sequencing errors
(AC and GT transversions [56]) are rare in our observed
multi-species mutation spectrum strongly suggests that
we have few false positives due to sequencing errors in
our set of heteroplasmic positions.

Genomic location of the detected heteroplasmies
As shown in Figs. 3 and 5d, out of the 107 heteroplasmic
positions found, 44 are in intergenic regions with most
of these in the hyper-variable D-loop and only five in
other mitochondrial intergenic regions. Of the remaining
positions, 39 are located in non-protein-coding genes
(28 in ribosomal RNA (rRNA) genes and 11 in tRNA
genes) and 24 positions are located in protein-coding
genes. Of the protein-coding gene changes, 13 are syn-
onymous variations meaning they do not affect the
amino acid used in the translated protein, while there
are 11 non-synonymous variants in six species. However,
most of the observed amino acid changes (7 out of 11)
are between residues with similar biochemical proper-
ties. In four cases, the observed changes from isoleucine
to threonine and from valine to alanine are modifica-
tions between hydrophobic and hydrophilic amino acids.
The relative paucity we observed for heteroplasmies in

non-coding regions of the mitochondrial genome may

be partly due to negative selection acting on hetero-
plasmy positions within mitochondrial genes [33].

Heteroplasmic positions associated with disease
For humans, about 5 % of mtDNA positions are asso-
ciated with disease [53]. Using the MITOMAP anno-
tations, five positions (15 %) among the human
heteroplasmies we find are disease-associated. This is
more than the proportion of positions associated with
disease in MITOMAP, but comparable to the previ-
ously observed proportion in humans from a set of
five Eurasian populations (11.8 %, Fisher’s exact test,
p = 0.99) [28]. We then considered whether a similar
proportion of positions in other species could be
considered deleterious. Since there are no MITOMAP-
type databases for the other species listing disease associa-
tions, we assigned heteroplasmic positions in other species
to their orthologous human positions (see “Methods”).
For the 43 positions in other species that could be confi-
dently assigned an orthologous position on the human
mitochondria, two (4.7 %) were associated with disease
(13,882 in Rnor5 – Rattus norvegicus and 1068 in Btau4 –
Bos taurus) based on human MITOMAP annotations.
These correspond to a synonymous protein-coding gene
mutation in Rattus norvegicus and an rRNA mutation in
Bos Taurus. Although we do not assume that disease

A

B
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Fig. 4 Sequence context of multiple heteroplasmies present in three species (Chlorocebus sabaeus, Bos Taurus, and Canis familiaris). Heteroplasmic
positions are colored according to the alternative allele nucleotide (blue: thymine, red: guanine). The consensus sequence of the multiple
alignment is displayed below each species sequences
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associations observed in humans will be maintained at
orthologous positions in other species, the observed rate
is indistinguishable from the baseline disease associated
rate in the MITOMAP database (Fisher’s exact test,
p = 0.99). Therefore, these results suggest that the
distribution of functionally relevant mitochondrial muta-
tions is similar across the species we studied. This obser-
vation may reflect a comparable mitochondrial disease
burden across mammals.

Sanger sequencing and pyrosequencing validation of
heteroplasmies
To validate the mitochondrial heteroplasmies identi-
fied in ChIP-seq datasets with an independent
method, we selected 34 heteroplasmic positions ran-
domly from the total 107 we detected (see Additional
file 2: Table S3). This validation set includes positions
with a range of minor allele frequencies and comprises
12 species. For these, we performed Sanger sequencing
on mtDNA amplicons to confirm the presence of two
sequence variants at each heteroplasmic position (see

“Methods”). We validated heteroplasmies with high
confidence in 14 positions. A further seven positions
showed some evidence for heteroplasmy, while we did
not detect any heteroplasmy in the remaining 14 posi-
tions (41 %). Because of the relatively low sensitivity of
Sanger sequencing for detection of single-nucleotide
variants [57], we performed further validations using
pyrosequencing as an alternative method. We selected
five of the previously tested positions we could not
validate by Sanger sequencing and an additional 13
positions (Additional file 2: Tables S3 and S5). Pyrose-
quencing data supported heteroplasmies predicted
from ChIP-seq data for all of the positions previously
tested by Sanger sequencing and 11 out of the 13
(85 %) newly tested positions. For three of the newly
validated positions, the identities of minor and major
allele were reversed in pyrosequencing compared to
the ChIP-seq based detection, which may be due to
indels or other discrepancies between ChIP-seq librar-
ies and mtDNA samples used for pyrosequencing. In
sum, these results indicate that our stringent criteria

A B

C D

Fig. 5 Characteristics of heteroplasmies. a The minor allele fraction of the detected heteroplasmies (heteroplasmy level). Most positions are
detected close to the detection threshold of 15 %. b The number of heteroplasmies plotted against the mean coverage for each analyzed
individual. There is a minor correlation in the data (Pearson’s r = 0.17), however there is essentially no correlation for individuals with a mean
coverage of more than 40 (Pearson’s r = 0.05). c The mutational spectrum of the heteroplasmies detected is similar to the spectrum of mutations
reported in MITOMAP (X2p = 0.07). d The genomic location of heteroplasmies is strongly biased and significantly different to the repartition of
mtDNA elements
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for heteroplasmy detection in ChIP-seq experiments
largely identify true mitochondrial heteroplasmies that
can be independently validated by Sanger sequencing
or pyrosequencing of mtDNA samples.
Along with the validation of heteroplasmic sites identi-

fied in ChIP-seq data, we also performed pyrosequenc-
ing of the same positions in different individuals of the
corresponding species for which our NGS method did
not detect heteroplasmies. Supporting the stringency of
our computational approach, in a number of cases pyro-
sequencing data also detected low levels of heteroplasmy
in individuals where ChIP-seq based identification was
negative (see Additional file 2: Tables S3 and S5).

Discussion
Detected heteroplasmic positions
We find an average number of 2.4 heteroplasmic po-
sitions per individual with heteroplasmy. Although
this is higher than previously found in humans [28,
29], two recent studies show that liver tissue has an
increased amount of heteroplasmies compared to
other tissues, and most previous studies were per-
formed with whole blood and buccal tissue samples
[35, 36]. Our detection method also extends prior ap-
proaches by not discarding heteroplasmic positions
within low complexity regions (see “Results”), while
these were not considered in previous studies. More-
over, we find most heteroplasmic positions with
minor allele ratios close to our 15 % threshold
(Fig. 5c). This is consistent with previous studies,
which also found most heteroplasmies at their
respective thresholds [28, 34], and suggests that add-
itional heteroplasmies exist beyond the threshold that
we used. Finally, since we used relatively stringent
detection criteria, it is likely that the heteroplasmic
positions we identified are in fact a subset of all het-
eroplasmies present in the samples. We hypothesize
that the apparent absence of heteroplasmies in Hetero-
cephalus glaber (naked mole-rat) and Delphinus delphis
(short-beaked common dolphin) is due to profiling of
only a few individuals in these species (one individual
of D. delphis and three of H. glaber).
The genomic location of heteroplasmies across verte-

brates is also consistent with previous findings [28, 34, 36]
with the majority of positions occurring in the non-coding
control region which is the most polymorphic segment of
the mtDNA. In fact, most of the heteroplasmies are lo-
cated in non-coding regions or (structural) RNA genes in
which modifications of single nucleotide bases are ex-
pected to only have minor effects [58]. Furthermore, het-
eroplasmies located in protein-coding genes, genome
elements that are highly conserved [59], are almost exclu-
sively either synonymous mutations or result in biochem-
ically similar amino acids.

Validation of heteroplasmies identified in ChIP-seq
datasets
Through a combination of Sanger sequencing and pyro-
sequencing, we carried out validation experiments for a
total of 47 heteroplasmies predicted from ChIP-seq data.
While Sanger sequencing alone only validated 20 out of
34 interrogated positions (59 %), a fraction of the un-
detected positions could still be true heteroplasmies
given the low sensitivity of this method. Further valid-
ation using pyrosequencing as a more sensitive method
further validated heteroplasmies that were negative in
Sanger sequencing (5 out of 5 tested), as well as a large
fraction of newly tested heteroplasmy positions detected
at low minor allele frequencies in ChIP-seq data (11 out
of 13, 85 %). These results strongly suggest that most of
the heteroplasmies we identified in ChIP-seq data are
true heteroplasmies that can be validated in mtDNA
samples. However, given the stringency of our detection
method (with a minor allele threshold of 15 %), it re-
mains likely that we are underestimating the full extent
of heteroplasmy positions in each sample. In this regard,
mtDNA samples from individuals for which a particular
heteroplasmy could not be detected based on our ChIP-
seq method often showed low levels of heteroplasmy in
pyrosequencing.

Number of different mtDNA genomes
When an individual expresses one heteroplasmic pos-
ition, it is likely that only two variants of the mtDNA
genome exist within its cells. However, when individuals
express more than one heteroplasmic position, which is
the case for 21 individuals in this study (see Additional
file 2: Table S2), we cannot determine the underlying
number of mtDNA genome variants. Estimating this
number could be possible using the heteroplasmy minor
allele fractions, however this would require a precise
evaluation of the heteroplasmy level. This might be feas-
ible with high coverage data but is not realistic with the
data presented here. Further, none of the detected
heteroplasmic positions has more than two alleles. Al-
though our analysis revealed a handful of positions that
have one sequencing read containing an additional third
base, such potential third alleles never fulfill the criteria
to be determined as alternative minor alleles. In sum,
our results cannot discriminate the underlying number
of mtDNA genomes. Emerging technologies that prom-
ise to provide significantly longer reads would help in
identifying combinations of mutations on the same
mtDNA molecule.

MtDNA coverage in ChIP-seq data
It is well-known that the mtDNA is sequenced many
times due to its high copy number and that significant
amounts of mtDNA reads are found in most NGS
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generated datasets including in ChIP-sequencing data
for which mtDNA coverage has even been used as a
control for background noise [41]. However, since most
ChIP-seq studies focus on binding events in the nuclear
DNA and use other control methods, reads mapping to
mtDNA have been discarded as mitochondrial contam-
ination. Here we demonstrate that mtDNA coverage in
ChIP-seq samples is in fact so high that it may be used
similarly to targeted mtDNA shotgun sequencing. We
first studied the coverage of each ChIP-seq file inde-
pendently and observed that it was consistently deeper
in the control files compared to the TF binding files,
which also had higher mtDNA coverage than the histone
ChIP-seq files (Additional file 1: Figure S3). Low mtDNA
coverage in ChIP-seq for histone marks is expected,
since histones are not used to pack mtDNA in the mito-
chondrion [5]. Although the investigated TFs do not
show signs of binding on the mtDNA (see “Methods”), it
has been reported that several TFs that are active in the
nucleus can also bind the mtDNA [43] and such weak
binding events could explain the high coverage found in
our experiments. However, due to the even read cover-
age observed, it seems most likely, at least for the factors
investigated here, that the presence of mtDNA in ChIP-
sequencing data is a technical and not biological
phenomenon. Overall, after merging the different files
the coverage level and ratio were relatively high and
comparable to the data from Li et al. [28], on which we
based our detection algorithm. On the other hand,
coverage ratio was variable between species, ranging
from the entire mtDNA to as little as 10 %. This caveat
restricts the conclusions we can draw about the genomic
location of heteroplasmies within individual species,
since some portions of the mtDNA genome are not cov-
ered in every individual. However, although we were lim-
ited in our ability to conduct some analyses, such as
detailed cross-species comparisons of heteroplasmic po-
sitions, we focused on extracting information from our
dataset as a whole to obtain conclusive results.

ChIP-seq datasets are useful data sources for the study of
heteroplasmy
We have shown that it is possible to make use of ChIP-
sequencing data that were originally collected for other
purposes to explore mitochondrial heteroplasmies across
a wide variety of mammalian and vertebrate species, by
taking advantage of the high number of sequenced
mtDNA reads in these experiments. We hope our gen-
eral approach will encourage the further study of
mtDNA and other biological questions using valuable
existing datasets. For instance, making use of data aris-
ing from other profiling-sequencing methods such as
RNA-seq or ATAC-seq might be very useful, as demon-
strated by a recent study of the mitochondrial

transcriptome [38]. However, making use of RNA-seq
data to explore mitochondrial heteroplasmy would re-
quire caution, as some RNA-DNA differences (RDDs)
have been reported in the mitochondrial genome [60].
Finally, although we adapted a detection method appro-
priate for our datasets of relatively low-coverage and
variable homogeneity, higher coverage and/or more ad-
vanced methods for heteroplasmy detection [30, 34]
could potentially be valuable for a wider variety of exist-
ing data types. For example, higher coverage datasets
will likely enable new methods to explore lower levels of
heteroplasmy in ChIP-seq data. Furthermore, having
demonstrated that ChIP-seq coverage of the mtDNA
can be substantial and allows for the study of hetero-
plasmy, it is likely that ChIP-seq data can be used to per-
form other mtDNA studies in fields such as population
genetics, forensics, and in some areas of medical re-
search. There is a current trend of creating large
genotype-phenotype datasets for ChIP-seq and RNA-seq
data and using these datasets to explore phenotype asso-
ciations to heteroplasmies could prove extremely valu-
able to further our knowledge of the phenomenon.

Conclusions
Heteroplasmies show consistent characteristics
Our study shows that mitochondrial heteroplasmy dis-
plays similar characteristics across vertebrate species, in-
cluding genomic location and mutation spectrum across
the vertebrate species tree. As might be expected, our
results strongly suggest that previous heteroplasmy find-
ings established in humans are valid for all mammals
and possibly all vertebrates. In addition to this, our
results also support recent findings that heteroplasmy is
more prevalent in liver compared to other tissues
[35, 36, 61]. Our results also suggest that any new
understanding about heteroplasmies will likely apply
across the mammalian clade. It is clear, both in our
findings and in previous work, that mutation rates vary
significantly between positions, meaning some positions
are more likely to exist as heteroplasmies than others.
Although there is limited information, on a molecular
level, describing the functional impacts these hetero-
plasmies may have, our results suggest that those func-
tional impacts are likely to be similar across many
different mammalian species and that many species
may be effective model organisms for understanding
the biology of heteroplasmy.

Methods
ChIP-seq data
We used a combination of newly generated and previ-
ously published ChIP-seq data as described here.
We performed ChIP-seq experiments for CEBPA,

H3K4me1, H3K4me3, H3K27ac, and total histone H3 on
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a collection of liver samples from multiple species:
CEBPA in nine species (C. jacchus, C. familiaris, C.
porcellus, F. catus, H. glaber, M. domestica, M. furo, O.
cuniculus, and T. belangeri), H3K4me1 in 20 species
(B. borealis, B. taurus, C. jacchus, C. familiaris, C. por-
cellus, C. sabaeus, D. delphis, F. catus, H. glaber, L. albir-
ostris, M. mulatta, M. bidens, M. domestica, M. furo, O.
cuniculus, O. garnettii, R. norvegicus, S. harrisii, S. scrofa,
and T. belangeri), H3K4me3 in three species (C. jacchus,
O. garnettii, and O. garnettii), H3K27ac in six species
(H. glaber, M. domestica, O. garnettii, S. harrisii, S.
scrofa, and T. belangeri), and total histone H3 in eight
species (D. delphis, H. glaber, M. mulatta, M. domestica,
O. garnettii, S. harrisii, S. scrofa, and T. belangeri).
Additional details are listed in Additional file 2: Table S4.
Wherever possible, livers from young adult males were

used. Tissues from eight species were excess from rou-
tine euthanasia procedures including from individuals
sacrificed during maintenance of research colonies. Five
species were purchased commercially from slaughter-
houses, for example. Specialty conservation programs in-
cluding zoos, the Duke Lemur Center, or Cetacean
Strandings surveillance often collect tissues for research
purposes, and we obtained seven species’ tissues from
these efforts. With the exception of the Lagenorhynchus
albirostris sample, cetacean tissues were from live
stranded individuals that died on the beach and were in
a freshly dead condition at the time of post-mortem.
Our ArrayExpress [62] submission, E-MTAB-3933, has

complete sample meta-data, raw sequencing files, and
detailed experimental protocols. Briefly, chromatin im-
munoprecipitation was carried out from 0.1–0.5 g of
liver tissue, using antibodies against H3K4me3 (millipore
05-1339), H3K27ac (abcam ab4729), H3K4me1 (abcam
ab8895), total histone H3 (abcam ab1791), or CEBPA
(Santa Cruz Biotechnology sc-9314). Histone mark ChIP
experiments were performed with automated 96-well
protocols in an Agilent Bravo liquid handling robot [63].
A manual version of the protocol was used for CEBPA
experiments to allow for higher chromatin input.
The previously published data obtained from [44–48]

was obtained from the ArrayExpress database (see
“Supporting Data” for accession numbers). We performed
the preprocessing and aligning of the reads (see below) so
only raw read files (in FASTQ format) were downloaded.
Details of the datasets are as follows: HNF4A and CEBPA
ChIP-seq data for the liver tissue of five species (H. sapi-
ens, M. musculus, C. familiaris, M. domestica, and G.
gallus) [44]; CTCF, SA1, NRSF/REST, and H2AK5ac
ChIP-seq data for the liver tissue of six species (H. sapiens,
M. mulatta, M. musculus, R. norvegicus, C. familiaris, and
M. domestica) [45]; CTCF and YY1 ChIP-seq data for
LCLs of seven species (H. sapiens, P. troglodytes, G.
gorilla, P. pygmaeus, M. mulatta, P. hamadryas, and S.

oedipus), and YY1 liver tissue ChIP-seq data for two spe-
cies (H. sapiens and M. musculus) [46]; CEBPA, FOXA1,
ONECUT1, and HNF4A ChIP-seq data for the liver tissue
of five species (H. sapiens, M. mulatta, M. musculus, R.
norvegicus, and C. familiaris) [47]; H3K4me3 and
H3K27ac ChIP-seq data for the liver tissue of 21 species
(H. sapiens, M. mulatta, C. sabeus, C. jacchus, M. muscu-
lus, R. norvegicus, C. porcellus, H. glaber, O. cuniculus, T.
belangeri, B. taurus, D. delphis, L. albirostris, B. borealis,
M. bidens, S. scrofa, C. familiaris, F. catus, M. furo, M.
domesticus, and S. harrisii) [48]; and CEBPA, H3K4me1,
H3K27ac, and total Histone H3 ChIP-seq data for the liver
tissue of 21 species (M. mulatta, C. sabeus, C. jacchus, M.
musculus, R. norvegicus, C. porcellus, H. glaber, O. cunicu-
lus, T. belangeri, B. taurus, D. delphis, L. albirostris, B.
borealis, M. bidens, S. scrofa, C. familiaris, F. catus, M.
furo, M. domesticus, S. harrisii, and O. garnettii) (see
“Methods”). Experimental details regarding all of these
experiments are described in detail in their respective
publications, as well as in the protocols in ArrayExpress.

Pre-processing and read alignment
Raw sequencing reads (FASTQ files) were aligned to the
whole genome of their respective species obtained from
Ensembl (v. 81) [64]. The human samples were aligned
to the human reference genome used in the 1000
Genomes Project (GRCh37) [65]. Some species were
aligned to closely related species’ genomes. Specific as-
semblies and files used for alignment are listed in
Additional file 2: Table S4. Finally, the samples of species,
for which a full genome was not available (O. garnettii, H.
glaber, and M. furo), were aligned to the reference
mitochondrial mtDNA sequence obtained from the
NCBI Nucleotide database [66] (Additional file 2:
Table S4). All of the raw read files were aligned using
BWA (Burrow-Wheeler Aligner) [52] with default pa-
rameters. The aligned read files in BAM format were
then merged per individual using SAMtools merge
[67]. Next, we removed duplicate reads with SAM-
tools rmdup (keeping only the read with the highest
mapping quality score per set of coordinates). Finally,
reads aligning to the mtDNA with a mapping quality
score of at least 20 were extracted using SAMtools
view (parameter q = 20).

Heteroplasmy detection and data analysis
The heteroplasmy detection algorithm as well as the
analysis performed in this study were implemented in
Python 2.7 [68] using the following scientific packages,
SciPy [69], Pandas [70], Matplotlib [71], and Pysam (a
SAMtools wrapper) and all the code is available in the
supplemental data (Additional file 3). Our algorithm
processes BAM files, scanning through the entire mito-
chondrial genome. For each base, it retrieves the set of
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reads covering that base. This read set is first filtered ac-
cording to two criteria: (1) reads that have a Phred qual-
ity score lower than 23 at the position are discarded; and
(2) reads for which any of the 5 neighboring base pairs
(both directions) has a lower quality than 15 are dis-
carded. Three further criteria are used to call a hetero-
plasmy on the filtered read set: (1) at least 20 reads
should be present in the set; (2) the minor allele (if it ex-
ists) should be present on least 15 % of the reads; and
(3) the minor allele should be present on at least two
reads of each strand.

Heteroplasmy validation
MtDNA was extracted from 20 mg of flash-frozen
liver tissue from each individual of interest, using a
protocol adapted from Ahmad et al. [72]. Tissue sam-
ples were homogenized in 1 mL homogenization buf-
fer (100 mM Tris-HCl pH 7.4, 250 mM sucrose,
10 mM EDTA) in a Precellys 24 homogenizer, with
conditions 5000–3 × 30–30 and tubes CK14 (Bertin
Technologies). Nuclei and cellular debris were re-
moved by centrifugation (1500 g for 10 min at 4 °C),
and the supernatant was centrifuged at 10,000 g for
10 min at 4 °C to obtain a crude mitochondrial pellet.
Mitochondria were suspended in 480 uL of high salt
buffer (Tris HCl 10 mM pH 7.6, 10 mM KCl, 10 mM
MgCl2, 0.4 M NaCl, and 2 mM EDTA) plus 75 uL
10 % SDS, and incubated at 55 °C for 10 min for
protein denaturation and solubilization. Proteins were
precipitated by the addition of 200 uL 6 M NaCl and
centrifugation at 11,300 g for 20 min. Finally, the
supernatant containing mtDNA was precipitated with
two volumes of 100 % ethanol, centrifuged for
10 min at 10,000 g at 4 °C, and washed twice with
70 % ethanol. The dried mtDNA pellet was resus-
pended in 100 uL EB buffer (Qiagen), quantified, and
diluted to a final concentration of 100 ng/uL.
PCR primers were designed to amplify two independ-

ent mtDNA fragments (400-1000 bp) spanning each het-
eroplasmic position. A total of 100 ng of mtDNA were
used as a template in a 50 uL reaction with Kapa HiFi
PCR master mix (Kapa Biosystems) and the following
conditions: 95 °C for 3 min; 20 cycles of 98 °C for 20s,
60 °C for 30 s, 72 °C for 1 min, 72 °C for 5 min, 4 °C
and hold. Sanger sequencing was performed on each
amplicon with primers proximal to the heteroplasmy,
using at least two different primers per amplicon
(Additional file 2: Table S3). Heteroplasmies were consid-
ered as robustly validated if both alleles could be clearly
detected in the chromatograms of more than 50 % of suc-
cessful Sanger sequencing reactions (14 positions). For an
additional six positions, the minor allele could be detected
at lower levels and frequencies, typically in one to three of
the reactions (Additional file 2: Table S3).

PCR and sequencing primers for pyrosequencing as-
says were designed using PyroMark Assay Design 2.0.
Each assay was designed to target mitochondrial regions
of interest in each species. Primers were designed to en-
sure high specificity and optimal sequencing length as
indicated by their PyroMark quality score. Final PCR
reactions included 1.5 units of MyTaq™ HS DNA
Polymerase (Bioline), 5× MyTaq Reaction Buffer, 0.27
uM of each forward and reverse primer, 10 ng of sample
DNA and molecular grade water to a final volume of 50
uL reaction volume. PCR reactions were carried out on
an MJ PTC 225 tetrad, 96-well block, in triplicate for
each sample including a positive and negative control.
PCR cycling conditions were as follows for all assays ex-
cluding assay 18; 95 °C for 1 min initial denaturation;
35 cycles of 95 °C for 15 s denaturation, 63 °C for 15 s
primer annealing, and 72 °C for 10 s extension. Assay 18
cycled with an annealing temperature of 50 °C. After a
quality check via Agarose Gel Electrophoresis, pyrose-
quencing was set up and performed on the PSQMA96
machine as per the PyroMark Gold Q96 Reagents
Handbook (Qiagen). Following the sequencing runs ana-
lysis was performed using PyroMark ID 1.0 via Allele
Quantification. Pyrosequencing primer sequences used for
each assay can be found in Additional file 2: Table S5.

Coverage and genomic context analysis
The mean coverage per individual was calculated using
SAMtools depth, which provides the coverage for each
base pair. The coverage ratio was calculated as the fraction
of mtDNA bases that are covered by at least 20 reads. The
resulting data are visible in Fig. 2. To assign the genomic
context of each heteroplasmic position, the Ensembl
Variant Effect Predictor [73] was used. For three species
(C. jacchus, M. furo, and O. garnettii), annotations were
not available and annotations of closely related species
were used (M. mulatta, C. familiaris, and M. mulatta, re-
spectively). The resulting data are visible in Fig. 5d.

Heteroplasmy visualization
PRANK [74] with the genomic model was used to gener-
ate a multiple alignment of each species’ mtDNA. A
trimmed species tree extracted from the Ensembl (v. 81)
species tree was used as a guide tree. The human
mtDNA gene annotation was downloaded from Ensembl
(v. 81) BioMart. Jalview [75] was used to visualize het-
eroplasmic positions for every species displayed on the
previously generated alignment (Fig. 3). Jalview was also
used to display heteroplasmies in their sequence context
(Fig. 4).

Low complexity regions
There are five low complexity regions in the human
mtDNA (66 to 71, 303 to 309, 514 to 523, 12,418 to
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12,425, and 16,184 to 16,193) [18]. To count the number
of heteroplasmic positions occurring within these regions
across all species, we used the PRANK generated multiple
mtDNA alignment to map the non-human heteroplasmic
positions to the orthologous human coordinates.

Disease-associated positions
Human positions were directly compared to MITOMAP
annotations to identify potential disease associations. For
other species, orthologous human positions for each het-
eroplasmy were first identified using the UCSC Batch
Coordinate Conversion (liftover) tool [76] and then
compared to the MITOMAP annotations.

ChIP-seq protein binding assay
We performed peak detection with the Model-based
analysis of ChIP-seq (MACS) tool [77] for a range of ex-
periments covering nine species (H. sapiens, M. mulatta,
C. jacchus, M. musculus, R. norvegicus, O. cuniculus, C.
familiaris, F. catus, and G. gallus) and four different pro-
teins (CEBPA, CTCF, FOXA1, and YY1). No peaks
where reported on the mtDNA genome in all cases.

Human contamination test
To test if the detection method was to subject false
positives by cross-species contamination, we simulated
human contamination in silico by creating a mixture of
H. sapiens (human) and R. norvegicus (rat) data. By add-
ing random human sequencing reads to a rat sequence
file, which did not contain any heteroplasmies, we cre-
ated mixture files containing 1 % and 10 % of human
DNA. No heteroplasmies were detected by our method
in these artificially contaminated files.

Supporting data
All the data used in this study are accessible on
ArrayExpress, under the following accession numbers.
New data from this study:

CEBPA, H3K4me1, H3K27ac, and Histone3 total ChIP-
seq data: E-MTAB-3933

Previously published data:

HNF4A and CEBPA ChIP-seq data [44]: E-TABM-722
CTCF, SA1, NRSF/REST and H2AK5ac ChIP-seq data
[45]: E-MTAB-437
CTCF and YY1 ChIP-seq data [46]: E-MTAB-1511
CEBPA, FOXA1, ONECUT1, and HNF4A ChIP-seq
data [47]: E-MTAB-1509
H3K4me3 and H3K27ac ChIP-seq [48]: E-MTAB- 2633
Direct links to raw data and other supporting
information are available from http://www.ebi.ac.uk/
research/flicek/publications/FOG17.

Additional files

Additional file 1: Supplementary figures S1–S3. Figure S1. Detailed
coverage data for all individuals. Figure S2. Read coverage of
heteroplasmic positions. Figure S3. Coverage data of different ChIP-seq
data files. (PDF 20125 kb)

Additional file 2: Supplementary tables S1–S4. Table S1. Detected
heteroplasmies of excluded individuals. Table S2. Detected
heteroplasmies. Table S3. Sanger sequencing and pyrosequencing
validation results. Table S4. Additional details for each file. Table S5.
Raw pyrosequencing data. (XLS 352 kb)

Additional file 3: Heteroplasmy detection algorithm and analysis in
Python. (ZIP 115 kb)
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