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Abstract

Background: Many different methods exist to adjust for variability in cell-type mixture proportions when analyzing
DNA methylation studies. Here we present the result of an extensive simulation study, built on cell-separated DNA
methylation profiles from lllumina Infinium 450K methylation data, to compare the performance of eight methods
including the most commonly used approaches.

Results: We designed a rich multi-layered simulation containing a set of probes with true associations with either
binary or continuous phenotypes, confounding by cell type, variability in means and standard deviations for
population parameters, additional variability at the level of an individual cell-type-specific sample, and variability in
the mixture proportions across samples. Performance varied quite substantially across methods and simulations. In
particular, the number of false positives was sometimes unrealistically high, indicating limited ability to discriminate

stable under all our simulated scenarios.

the true signals from those appearing significant through confounding. Methods that filtered probes had
consequently poor power. QQ plots of p values across all tested probes showed that adjustments did not always
improve the distribution. The same methods were used to examine associations between smoking and methylation
data from a case—control study of colorectal cancer, and we also explored the effect of cell-type adjustments on
associations between rheumatoid arthritis cases and controls.

Conclusions: We recommend surrogate variable analysis for cell-type mixture adjustment since performance was
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Background

DNA methylation is an important epigenetic factor that
modulates gene expression through the inhibition of tran-
scriptional proteins binding to DNA [1]. Examining the
associations between methylation and phenotypes, either
at a few loci or epigenome-wide (i.e. the Epigenome-Wide
Association Study (EWAS) [2]) is an increasingly popular
study design, since such studies can improve understand-
ing of how the genome influences phenotypes and dis-
eases. However, unlike genetic association studies, where
the randomness of Mendelian transmission patterns from
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parents to children enables some inference of causality
for associated variants, results from EWAS studies can be
more difficult to interpret.

The choices of tissue for analysis and time of sam-
pling are crucial, since methylation levels vary sub-
stantially across tissues and time. Methylation plays a
large role in cellular differentiation, especially in regula-
tory regions [3, 4], and methylation patterns are largely
responsible for determining cell-type-specific function-
ing, despite the fact that all cells contain the same genetic
code [5].

Ideally, methylation would be measured in tissues and
cells of most relevance to the phenotype of interest, but
in practice such tissues may be impossible to obtain
in human studies. Many accessible tissues for DNA
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methylation studies, such as saliva, whole blood, placenta,
adipose, tumors, or many others, will contain mixtures of
different cell types, albeit to varying degrees. Hence, the
measured methylation levels represent weighted averages
of cell-type-specific methylation levels, with weights cor-
responding to the proportion of the different cell types
in a sample. However, cell-type proportions can vary
across individuals, and can be associated with diseases
or phenotypes [6]. For example, individuals with autoim-
mune disease are likely to have very different proportions
of autoimmune cells in their blood than non-diseased
individuals [7-11], synovial and cartilage cell propor-
tions differ between rheumatoid arthritis patients and
controls [12], and associations with age have been con-
sistently reported [13]. Hence, variable cell-type-mixture
proportions can confound relationships between locus-
specific methylation levels and phenotypes, since these
proportions are associated both with phenotype and with
methylation levels [14].

In situations potentially subject to confounding,
although less biased estimates of association can be
obtained by incorporating the confounding variable as
a covariate, this is not a perfect solution, since it may
not be possible to distinguish lineage differences [14]
or to estimate accurately the proportions of each cell
type in a tissue sample [15, 16]. Initial studies of associa-
tions between DNA methylation and phenotypes largely
ignored this potential confounding factor, which may
have led to biased estimates of association and failure to
replicate findings [17, 18].

However, in parallel with the increasing prevalence
of high-dimensional methylation studies, a number of
methods that can account for this potential confounding
of methylation—phenotype associations have been devel-
oped or adapted from other contexts. Among those devel-
oped specifically for methylation data (Ref-based [19],
Ref-free [20], CellCDec [21], and EWASher [22]), the first
two were proposed by the same author (Houseman), but
the first of these requires an external reference data set.
Other methods were proposed in more general contexts
where confounding does not necessarily result from cell-
type mixtures yet is still of concern; many of these rely
on some implementation of matrix decompositions (SVA
[23], ISVA [24], Deconfounding (Deconf) [25], and RUV
(26, 27]).

Although there are numerous similarities between the
approaches, there remain some fundamental differences
in terms of limitations and performance. An unbiased
comparison of methods has been difficult since true cell-
type mixture proportions are unknown, replications using
alternative technologies such as targeted pyrosequencing
do not lead to genome-wide data where cell-type propor-
tions can be estimated, and new methods have tended
to be compared with only a few other approaches. Since
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the problem of confounding plagues all researchers in this
field, a careful comparison of existing methods correct-
ing for cell-type heterogeneity is essential, and this is the
objective of our paper.

In an ongoing study of incident treatment-naive patients
with one of four systemic autoimmune rheumatic diseases
(SARDs), whole-blood samples were taken at presenta-
tion, and immune cell populations (purity >95 %) were
sorted from the peripheral mononuclear cells (PBMCs)
of these patients. Analysis of DNA methylation was then
performed with the Illumina Infinium HumanMethy-
lation450 BeadChip (450K) on the cell-separated data.
These data provide a unique and valuable opportunity
to compare the performance of methods for cell-type
mixture adjustments. We present here the results of an
extensive simulation study where we remixed the cell-
separated methylation profiles to incorporate variable
mixture proportions and confounding of associations, and
we then compare performance of eight different methods
of adjustment. We also compare the ease of use of each
method, and provide an R script allowing for easy imple-
mentation of several of the best-performing methods. As
far as we are aware, this is the first study to compare
such an extensive set of methods in a simulation based on
cell-separated data.

Results

Patients and original methylation profiles

Whole-blood samples were obtained from patients with
incident treatment-naive rheumatoid arthritis (n = 11),
systemic lupus erythematosus (n = 9), systemic sclero-
sis (n = 14), and idiopathic inflammatory myositis (n =
3). Several control samples were available as well (n =
9). CD4, CD19, and CD14 subpopulations were sorted
from PBMCs by magnetic cell isolation and cell separation
(MACS) sorting (see “Methods”). The purity of the iso-
lated populations was confirmed by flow cytometry. Only
in samples with a purity >95 % were methylation profiles
assessed using the Illumina Infinium HumanMethylation
450 BeadChip on the separate cell populations. Our sim-
ulation and results are based primarily on 46 patients for
whom cell-sorted methylation profiles were available for
both CD4*" T lymphocytes and CD14" monocytes.

The heat map in Fig. 1 shows some representative pat-
terns of methylation in the SARD samples across CD14%
monocytes, CD4™ T cells, and CD19" B cells (this latter
cell type was not available for all patients), at 200 CpG
sites that were selected because of the inter-cell-type dif-
ferences. The figure demonstrates that there are sizeable
differences in methylation levels between cell types, and
it follows that small variations in the proportions of these
component cell types in a mixed tissue sample can lead to
great difficulties in interpreting any phenotype-associated
results.
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Fig. 1 Clustered heat map showing patterns of methylation in 46 SARD samples (columns) and 200 CpG sites (rows). The sites were selected to
highlight the methylation differences between cell types. Consequently, the samples cluster by cell type: monocytes, B cells, and then T cells
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Multi-layer simulation design
We implemented a rich simulation design, based on the
SARD methylation data. This simulation contains ran-
dom sources of variability at multiple levels, including
both variability of population mean parameters as well
as variability at individual-level parameters. Starting with
the observed cell-separated methylation profiles for T
cells and monocytes from the SARD data, we simulated
a number of probes to have associations directly with
the phenotype, and we induced confounding by combin-
ing the two cell types in proportions that vary across
individuals. Although this simulation design is complex
and depends on a large number of parameters, it allows
substantial flexibility in specifying consistency or variabil-
ity between cell types, individuals, or probes, and easily
allows us to create realistic and pathological situations in
the same framework.

Leti = 1,...,n where n = 46 denote the individu-
als in the SARD data. In brief, the simulation proceeds as
follows (see “Methods” for more details):

1. Selecta set of S CpG sites where “true” associations
with a phenotype will be generated by our
simulation; we refer to these CpGs as differentially
methylated sites (DMSs).

2. Generate a phenotype, either binary (disease or no
disease) or continuous.

3. For any probe not in the DMS set, the
cell-type-specific methylation values are the observed
values from the real data.

4. For a probe in the DMS set, a randomly generated
quantity is added to the observed cell-type-specific
level of methylation, in a way that depends on the
phenotype.

5. The cell-type-specific methylation values are mixed
together in proportions that vary depending on the
phenotypes.

Over all DMSs, one would expect to see a range of
positive and negative associations with the phenotype. In
step 4, we allow these associations to differ between cell
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types in order to specify an association between change
in methylation and cell type. After having specified each
of the site- and cell-type-specific associations, we then
add between-subject variability to each site. The final step,
step 5, leads to methylation proportions as they would
appear had the mixed tissue been analyzed directly.

After simulating the data, we then test for associa-
tion between the phenotype and the methylation levels in
the mixed data at each probe. We compare the p values
obtained from these tests of association across eight sim-
ulation scenarios and eight different methods for cell-type
adjustment. Some of the DMSs were simulated to have
very small effects and therefore, statistical tests of asso-
ciation may not be significant. On the other hand, since
the cell-type proportions vary with phenotype, this can
lead to non-DMSs showing spurious associations with the
phenotype. The notation for the key parameters is given
in Table 1, and the parameter choices across different
simulation scenarios are summarized in Table 2.

Scenario 1: DMSs have differences in both means and
variances between cell types
In our first simulation scenario (Table 2), we chose to
specify distinct differences in the strength and distribu-
tion of the methylation—phenotype associations (DMS)
for the two cell types, with a binary phenotype. Differ-
ences in the DMS distributions include both direction of
the effects as well as the amount of variability across sites
and individuals; Additional file 1: Figure S1 displays his-
tograms of the 500 simulated values of the DMS means ujx
for the two cell types, showing the substantial differences
between these two distributions.

In this scenario, we would expect that an analysis not
taking cell type into consideration should result in many

Table 1 Fixed parameters in the simulation design

Parameter Description

S Number of CpGs chosen to be associated with
phenotype in simulation

Ik Mean of the cell-type-specific DMS effects for cell
type k, over all S DMSs

ok Standard deviation of cell-type-specific DMS
effects for cell type k, over all S DMSs

Ojk Variability of individual deviations at probe j in

cell type k

-
a©® = (agm,ago)) Expected proportion of the mixture from cell

types 1 and 2 when the phenotype z; is zero.

Average cell-type mixture proportions for cell
types 1 and 2 for subjects with phenotype level
Z (continuous or binary)

.
oD = <a1(z)’agz>)

P Precision of simulated cell mixture distributions.
A greater value corresponds to more clearly
defined differences in cell-type proportions with
respect to the phenotype
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p values that are smaller than expected, or equivalently
a greatly inflated slope in a p value QQ plot, due to
the strong confounding built into the simulation design.
After analyzing for all probes with unadjusted data, we
repeated the epigenome-wide analysis with eight popular
or newly developed adjustment methods (see “Methods”).
QQ plots for these eight methods as well as the uncor-
rected analysis can be seen in Fig. 2. Examination of the
left-hand side of this plot (x-axis smaller than about 3.5)
shows that there is, indeed, a genome-wide inflation of
p values in the analysis uncorrected for cell-type mixture.
Encouragingly, most methods do a fairly good job in cor-
recting for the confounding, since the corrected QQ plots
are close to the line of expectation up until the tails of
each set of p values. The reference-free method, however,
continues to display inflation even after correction.

Several numeric performance metrics can be seen in
Table 3 for this simulation scenario. One of these met-
rics is the genomic inflation factor (GIF) [28], which is the
slope of the lines seen in Fig. 2 after removing the 500
DMSs. The unadjusted GIF was 1.6, indicating a substan-
tial inflation of significance across all p values, but after
adjustment most values are quite close to 1.0, as would
be expected in the absence of any confounding. The Ref-
based, EWASher, and Deconf methods have slopes slightly
less than 1.0, implying possible over-correction.

Since we know which 500 sites were generated to be
truly DMSs, Table 3 reports both the power and the num-
ber of false positives (NFP). We declare a CpG site to be
significant if the p value falls below the fixed value 107%.
This table also shows a measure of performance based
on the Kolmogorov—Smirnov (KS) test for whether the p
value distribution matches the expected uniform distribu-
tion. Of course, the KS test assumes independence of all
the individual tests, and therefore, we are not using this
test for inference, but simply as a measure of deviation
where smaller values imply less deviation.

For this simulation (scenario 1 with distinct association
distributions in the two cell types), all methods except the
reference-free method achieved a greater reduction in the
NEP than the unadjusted analysis for the non-associated
probes. Although the power (sensitivity) for all the meth-
ods appears very low, many of the simulated effect sizes
at the chosen DMSs were very small, and nevertheless
the rankings of the different methods are still informative.
Additional file 1: Figure S1 shows the simulated means
of the cell-type distributions for the 500 probes; subse-
quently, additional random errors were introduced at the
level of each individual leading to substantial variability in
the realized methylation differences. The power of most
methods was slightly less than that of the unadjusted anal-
ysis, except for Ref-free and EWASher. The power for
EWASher is extremely poor; this method removes probes
with very high or very low levels of methylation prior
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Table 2 Parameter choices for the simulation scenarios
Simulation scenario (1, pu2) (01,02) Ojk P a® o) —a®2
- . . ) 0.57 0.08
1 Distinct differences (—0.05,0.5) (0.05,0.75) Unif(0.1, 2) 100 043 —008
: 0.57 0.08
2 No confounding (0.25,0.25) (05,05) 0.1 100 043 —008
) . 0.57 0.08
3 Opposite effects (—0.75,0.75) (0.1,0.1) 0.1 100 043 —008
) - 0.57 0.08
4 High precision 03,0.1) (01,01 0.1 200 043 —008
- 0.57 0.08
5 Low precision (03,01 (0.1,0.1) 0.1 10 043 008
' . 0.57 0.03
6 Continuous phenotype (—0.05,0.25) (0.05,0.15) 0.1 100 043 003
) A 0.57 0.08
7 . . . . 1
Few assoc. sites (1,0.95) (005,005) Unif(0.1,2) 100 043 —0.08
S 1b 10. 01 0. 0.1 0.57 0.08
8 Many assoc. sites block (0.1,04) (0.01,001) Unif(0.1, 2) 100 043 008
) . 0.57 0.08
. ¢ .2,0. .01, 0. Al
Many assoc. sites block 2 (0.2,0.7) (0.01,001) Unif(0.1, 2) 100 043 008
k = 1 corresponds to monocytes, and k = 2 corresponds to CD4* T cells

2Average change in cell-type proportion for unit increase in phenotype
bBackground correlation for block 1 was 0.4
“Background correlation for block 2 was 0.5

to constructing the components, and hence, many DMS
probes are not even included in its analyses. Results for the
Ref-free power must be interpreted cautiously since the
type 1 error is so substantially elevated for this method.
The KS statistic confirms the conclusions obtained from
other metrics, showing small values for most meth-
ods except for the unadjusted data and the Ref-free
method.

Scenario 2: no confounding

It is also of interest to examine performance when there
is no confounding. By simulating data with the same
cell-type-specific means and variances in both cell types
(scenario 2 in Table 2), the unadjusted analysis should not
be subject to any bias. As expected, Table 4 shows low NFP
and good power for the unadjusted method, and similar
results are obtained for CellCDec, Deconf, and Ref-based.
In Additional file 1: Figure S2, it can be seen that the unad-
justed results lie very close to the line of expectation, apart
from the tail of the distribution where the DMSs predom-
inate. It is interesting to note that SVA, RUV, Ref-free,
and in particular ISVA display high NFP, implying that far
too many DMS probes are being inferred. Despite that no
confounding was simulated, the GIF for the unadjusted
data is slightly inflated; in fact, after adjustment, the GIF
increases for Ref-free and ISVA. In contrast, the GIF is less
than 1 for CellCDec, Deconf, and the Ref-based methods,
implying some over-correction.

Scenario 3: opposite effects in different cell types

To investigate a case of severe differential effects, in sce-
nario 3, the cell-type-specific means px were selected to
have opposite signs in the two cell types. In this case,
the mixed sample can have small DMS effects, since the
two cell-type-specific effects may cancel each other. Con-
firming this expectation, there is no inflation of the test
statistics in the unadjusted data (GIF = 0.97, Table 5). Like
the previous scenarios, we see very poor power and over-
correction with EWASher, and extremely inflated NFP
with the Ref-free method (Additional file 1: Figure S3).
Small power improvements over the unadjusted analysis
can be seen when using any of the other methods.

Scenarios 4 and 5: altered precision simulations

Two scenarios were generated where we changed the pre-
cision of the individuals’ cell-type distributions between
cases and controls. That is, a higher precision corresponds
to a more pronounced separation in the cell-type distribu-
tions between cases and controls, while a lower precision
makes the two distributions more difficult to distinguish.
Here, both T cells and monocytes were chosen to have
distinct, positive net association with the phenotype; how-
ever, the precision parameter, p, from the Dirichlet distri-
bution was varied such that p = 200 for high precision
and p = 10 for low precision. QQ plots are shown in
Additional file 1: Figure S4 (high precision) and S5 (low
precision), and numeric metrics are in Tables 6 and 7.
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Fig. 2 QQ plots showing distributions of p values in simulation
scenario 1 where the true effects in the different cell types have very
distinct distributions. Results are shown with no adjustment for
cell-type mixture as well as with eight other methods; these are split
across two panels, (@) and (b), to clarify the display

In the high-precision scenario, the NFP is extremely
high when no adjustment is used. Most methods, how-
ever, perform quite well in reducing the GIF and KS
statistics, reducing the NFP and retaining decent power
(with the exceptions of Ref-free and EWASher as seen pre-
viously). In contrast, for the low-precision scenario, where
there is much more variability from one individual to the

Table 3 Performance metrics under simulation scenario 1
(distinct associations between cell types)

Method Number of false positives ~ Power — KS GIF K@
Unadjusted 248 0.208 0168 160 -
Ref-based 14 0146 0026 092 -
Ref-free 375 0.248 0097 133 13
SVA 32 0.124 0.021 1.05 10
ISVA 14 0.134 0004 097 12
EWASher 3 0.036 0044 092 -
CellCDec 7 0.094 0008 098 -
Deconf 13 0.178 0023 093 -
RUV 36 0.170 0018 104 43

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor
“Estimated latent dimension
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Table 4 Performance metrics under simulation scenario 2
(no confounding)

Method Number of false positives ~ Power — KS GIF K
Unadjusted 38 0.642 0059 109 -
Ref-based 13 0.594 0030 090 -
Ref-free 366 0.704 0058 125 14
SVA 79 0646 0015 106 10
ISVA 408 0.654 0.061 127 15
EWASher 0 0126 0066 083 -
CellCDec 14 0650 0021 093 -
Deconf 50 0.652 0031 092 -
RUV 134 0.640 0.007 1.00 38

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor

next in the mixture proportions, as well as substantial
differences between cases and controls, performance is
generally poor. The QQ plots display substantial inflation,
and most methods have very high NFP. Even the Ref-based
method has very high NFP, and notably the QQ plot for
RUYV has enormous inflation and with the NFP at 2943. In
fact, the unadjusted analysis appears to be one of the bet-
ter choices here, with lower NFP and good power; ISVA
also seems to perform better than the others.

Scenario 6: continuous phenotype simulation results

In our simulation with continuous phenotypes, the rel-
ative performances of the methods are different again.
Table 8 and Additional file 1: Figure S6 indicate that unlike
all the other scenarios, the Ref-free method performs
fairly decently in this case, leading to small reductions
in the GIF and KS statistics and a small improvement in
power. RUV’s performance is one of the best here, with a
low NFP, good power, and an excellent GIF value. In con-
trast, the CellCDec method, which had performed quite
well in all the other scenarios, shows extensive inflation

Table 5 Performance metrics under simulation scenario 3

(opposite effects)

Method Number of false positives ~ Power  KS GIF K
Unadjusted 5 0.490 0041 097 -
Ref-based 1 0.506 0036 087 -
Ref-free 176 0608 0053 119 14
SVA 37 0562 0003 100 10
ISVA 49 0.558 0.006  1.01 14
EWASher 0 0128 0092 074 -
CellCDec 3 0.502 0033 088 -
Deconf 2 0522 0035 089 -
RUV 23 0.532 0012 100 37

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor
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Table 6 Performance metrics under simulation scenario 4 (high
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Table 8 Performance metrics under simulation scenario 6

precision) (continuous)

Method Number of false positives ~ Power  KS GIF k Method Number of false positives ~ Power  KS GIF K
Unadjusted 368 0.600 0142 132 - Unadjusted 135 0532 0.081 137 -
Ref-based 64 0460 0043 1.04 - Ref-based 13 0.498 0.031 099 -
Ref-free 437 0.694 0.101 136 13 Ref-free 125 0.618 0.061 117 14
SVA 79 0534 0032 109 11 SVA 29 0502 0006 0.99 10
ISVA 198 0.522 0062 120 14 ISVA 114 0.520 0076 1.21 14
EWASher 16 0.072 0038 094 - CellCDec 422 0420 0079 144 -
CellCDec 54 0.546 0031 105 - Deconf? - - - - -
Deconf 58 0.520 0014 102 - RUV 16 0.550 0.006 0966 39
RUV 155 0.568 0.051 115 32 KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor

across the QQ plots (GIF = 1.44) and a very high NFP.
We were unable to obtain results for the Deconf method
with three components within the available computa-
tional time limits on the Mammouth Compute Canada
cluster. We note that the EWASher method does not
allow continuous phenotypes and cannot be used in this
scenario.

Scenario 7: simulation with a small number of true DMSs
To consider cell-type mixture effects when there are only a
few epistable alleles, as has been observed in several stud-
ies [29, 30], we created a simulation with only 50 DMSs,
exhibiting moderate to strong positive associations with
the phenotype in both cell types. Ten replications of the
simulation were performed. The parameters in Table 1
were held constant over the different replications, except
for oj, which was generated from a uniform distribution
to induce some additional variation. Box plots comparing
performance over the ten replications can be seen in Fig. 3.
QQ plots for all methods under one of the replications can
be seen in Additional file 1: Figure S7.

Table 7 Performance metrics under simulation scenario 5 (low

precision)

Method Number of false positives ~ Power  KS GIF k
Unadjusted 127 0.622 0.241 147 -
Ref-based 354 0.654 0198 149 -
Ref-free 596 0670 0145 148 12
SVA 123 0644 0091 123 6
ISVA 72 0482 0.040 112 M
EWASher 1 0052 0030 092 -
CellCDec 169 0.598 0008 127 -
Deconf 184 0.644 0204 141 -
RUV 2943 0.654 0228 193 33

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor

@No results were obtained with K = 3 in the allowable time on the computational
cluster Mammouth

Unsurprisingly, the performance metrics are quite vari-
able when the analysis does not adjust for cell-type com-
position. The NFP of both the reference-free method and
RUV vary substantially. In contrast, both the reference-
based and SVA methods show a very good reduction in
the number of non-DMSs below this p value threshold
across all replications. Most methods do not achieve a
power as high as the unadjusted method; however, the
lowered NFP is a worthy tradeoff for the loss in power,
especially for the reference-based and SVA methods. Most
methods improve the KS statistic and GIF, except for the
reference-free method, which has values almost as high as
those in the unadjusted analysis.

Scenario 8: widespread, subtle, correlated DMS effects

In the final simulation scenario, we simulated a large num-
ber of associated DMSs to capture the possibility of a
subtle genome-wide shift in methylation, such as might
be seen for a large change in metabolic functioning or
in immune system function. Here, we randomly selected
10,000 CpG sites to be DMSs, and unlike the previous
simulation scenarios, we created dependence between the
phenotype-associated methylation shifts at these sites.
The DMSs were grouped into two blocks of size 5000,
and a moderate background level of correlation between
the mean effect sizes uj was included in each block.
Effect sizes across blocks were still generated indepen-
dently. Additional details of the dependence structure can
be seen in step 4 of the “Methods” section, and the param-
eter choices can be seen in Table 2. Box plots comparing
performance over the ten replications are shown in Fig. 4.
QQ plots for all methods under one of the replications can
be seen in Additional file 1: Figure S8.

In this scenario, NFP is less variable among the different
adjustment methods, with the exception of the reference-
free method. Once again, the reference-based and SVA
methods do quite well, but Deconf and CellCDec also
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perform well in this scenario. Power is lower in all meth-
ods compared to the other simulation scenarios, with
the exception of the reference-free method, though the
high NFP for that method undermines this result. Most
methods perform fairly similarly when considering the KS
statistic and GIF.

Estimated latent dimension

Our simulation is based on complex mixtures of methyla-
tion profiles from two separated cell types. It is, therefore,
interesting to note that for all the methods that provide
estimates for the latent dimension (the last column of
Tables 3, 4, 5, 6, 7 and 8), these estimates are consis-
tently much larger than 2. Estimates are obtained for the
Ref-free, SVA, ISVA, and RUV methods. Both SVA and
ISVA assume the number of surrogate variables is less
than or equal to the number of true confounders whose
linear space they span, and for RUV, the authors them-
selves commented that the estimated values for K do
not necessarily reflect the true dimension [27]. All esti-
mates are generally greater than ten, and RUV’s estimates
tend to be over 30. In fact, there may be some additional
sources of variation present in the original cell-separated

methylation data, and these factors are likely being cap-
tured by these numerous latent variables. In fact, analy-
ses of the original cell-type-separated data using patient
age as the predictor resulted in estimated latent dimen-
sions that were themselves large. For example, random
matrix theory [31] (which is used for dimension estima-
tion in the reference-free method and ISVA) estimated a
latent dimension of ten for both T cells and monocytes
when analyzed separately. Furthermore, SVA estimated
the number of surrogate variables to be seven and nine for
T cell and monocytes, respectively.

Results from analysis of the ARCTIC data set

We tested the performance of these eight adjustment
methods on 450K measurements from the Assessment
of Risk in Colorectal Tumors in Canada (ARCTIC) study
[32], and the methylation data are deposited in dbGAP
under accession number [phs000779.v1.pl]. We ana-
lyzed only 977 control subjects from this study, restrict-
ing to those where DNA methylation was measured
on lymphocyte pellets, and examined the association
between smoking (ever smoked) and methylation lev-
els at all autosomal probes who passed quality control
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(473,864 probes). We excluded the colorectal cancer
patients from this analysis due to concerns that their
methylation profiles may have been affected by treat-
ment. Patient age was included as a covariate in all
analyses.

Figure 5 shows the QQ plots for seven adjustment meth-
ods, and Table 9 provides KS and GIF numeric metrics of
performance. The Deconf and CellCDec methods could
not be used with these data since the computational time
exceeded the 5-day limit allowed on the Mammouth clus-
ter of Calcul Quebec. As was seen in our simulations, the
EWASher method seems to over-correct, leaving no sig-
nificant probes, and the GIF is much smaller than 1.0.
However, all other methods lead to QQ plots where the
slope is larger after correction than before; the GIF esti-
mates are substantially larger than for the unadjusted
analysis. For SVA and ISVA, the KS statistic is increased
after corrections are applied. Furthermore, among the top
1000 probes selected by each method (based on raw p
value), none were shared by all methods (including unad-
justed results). If EWASher was excluded, 87 probes over-
lapped among the most significant 1000, and 89 probes
overlapped among methods excluding EWASher and the

unadjusted results. Therefore, the methods are highlight-
ing quite different results for the most significant probes.
In Table 10, p values are shown for probes that have been
linked to smoking status in a large published EWAS [33].
They specifically discuss seven CpGs, previously reported
as associated with smoking, that were replicated in their
work. Although substantial evidence of association can be
seen at all probes, it is interesting to see the differences
in significance across methods. For example, at probe
cg21161138, significance ranges from 1077 to 107%°.

Results from analysis of the rheumatoid arthritis data set
We also performed analysis of data from a rheuma-
toid arthritis study published in 2013 [34]. The data are
available from GEO (http://www.ncbi.nlm.nih.gov/geo/).
Methylation was measured with the Illumina 450K array
in whole-blood samples from 354 anti-citrullinated pro-
tein antibody-associated rheumatoid arthritis cases and
337 controls. The manuscript reported 51,478 CpGs as
demonstrating evidence of significant association with
disease status. Akin to the ARCTIC analysis, we compared
the results of running the different cell-type adjustment
methods on these data.
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We attempted to replicate the original analysis as closely
as possible by using the Illumina control probe scaling
procedure, including the same covariates in our linear
model (age, sex, and smoking status), and adjusting for
cell-type composition using the reference-based method.
However, when extracting the significant CpGs men-
tioned in their Additional file 1, the distribution of raw p
values in our analysis did not match those in the original
paper. This could suggest there is a step in the origi-
nal analysis not explicitly stated in the paper’s “Methods”
section. However, since for our purposes, we wish to
compare the results of the adjustment methods relative

Table 9 Performance metrics for the ARCTIC data with the most
significant probes removed (top 5 %)

Method KS statistic GIF k
Unadjusted 0.0758 09142 -
Ref-based 0.0508 0.9907 -
Ref-free 0.0296 1.1499 32
SVA 0.0362 1.0962 15
ISVA 0.1208 1.6820 39
EWASher 0.7291 1.0164 -
RUV with three components 0.0906 1.2423 -

It was not possible to obtain results for the CellCDec and Deconf methods

KS Kolmogorov-Smirnov statistic, GIF genomic inflation factor

to each other, we do not believe this to be a significant
issue. For our comparison, we have used functional nor-
malization [35]. Comparisons of the distribution of the
reported p values and the ones we obtained can be seen in
Additional file 1: Figure S9.

The results from our analysis are summarized in Fig. 6.
We performed the cell-type adjustment methods using all
probes on autosomes, but restricted the analysis to the
51,478 probes reported in the paper. We examine the pro-
portion of CpGs present in the top d significant CpGs
found in each method that were also present in the top
d CpGs found in the original paper. The method showing
the highest concordance with the originally reported CpG
list is the reference-based method, which was expected
given that the reference-based method was used in the
original analysis. It is evident, however, that the different
adjustment methods do not replicate the findings of the
original study, especially for smaller values of d. We have
shown that the choice of cell-type adjustment method can
drastically change the conclusions of an EWAS.

Computational performance

To compare computational time across the different
adjustment methods, we selected a random sample of
10,000 CpGs from the ARCTIC methylation matrix to
create a benchmark data set. As we are not making
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Table 10 P values for sites previously found to be associated with smoking [33]

Site Unadj Ref-Based Ref-free SVA ISVA EWASher? RUV

cg06644428 2.83E-20 2.04E-21 1.96E-27 9.19E-27 441E-20 - 1.64E-22
cg05951221 2.72E-43 1.21E-45 541E-56 3.96E-58 3.20E-45 5.77E-01 1.05E-53
€g21566642 1.72E-49 6.93E-50 4.20E-54 6.59E-58 8.09E-54 6.45E-01 5.94E-58
€g01940273 2.09E-35 3.30E-38 4.07E-43 7.07E-46 6.93E-42 3.07E-01 1.45E-44
€g19859270 491E-13 2.52E-22 4.76E-35 2.21E-35 5.15E-28 - 2.16E-35
cg05575921 1.58E-35 7.79E-39 7.89E-52 5.65E-41 1.34E-40 - 343E-41
€g21161138 243E-07 2.99E-10 1.24E-25 1.68E-25 2.84E-21 9.05E-01 6.07E-21
cg06126421 1.78E-23 1.06E-33 7.38E-34 7.37E-33 9.69E-34 7.05E-01 2.55E-36
cg03636183 9.27E-21 6.74E-24 6.10E-37 1.51E-34 4.77E-30 3.09E-01 1.60E-31

@Several sites were filtered out by EWASher

any statistical inference here, all samples were included,
regardless of whether we had matching cell-type sets or
quality control status. Some of the methods calculate
p values and parameter estimates internally, and others
require the use of an external function to perform a linear
fit. Therefore, to make the computational times compa-
rable, we define the start time as when the adjustment
method is first called, and the end time when all estimates
and p values have been obtained.

Figure 7 shows the running times on the log scale, as
the sample size increases (N = 50 to N = 500), and
for methods where a value of the latent dimension K can
be specified, running times as K increases with a fixed
sample size (N = 50). There are major differences in
running times for the cell-type adjustment methods. Not
surprisingly, the Ref-based method is very fast, as is RUV.

©
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Fig. 6 Agreement of the proportion of top d CpGs declared
significant in the different cell-type adjustment methods with the top
d CpGs in the originally reported list of significant CpGs from the
rheumatoid arthritis study

The slowest methods are Deconf and CellCDec. The com-
putational time required for the Ref-free method also
increases quickly with the sample size. In Fig. 7b, it is
interesting to note that increasing K has very little effect
on the speed of four of the six methods that require a
specification of K. However, the computational times for
both CellCDec and Deconf increase exponentially with
larger values of K. As noted previously, we were not able
to obtain results for these methods with the ARCTIC data
set when using all autosomal probes. We note also that
the complexity of preparation of the input files also varies
from one algorithm to another.

Discussion

We have presented an extensive comparison of eight
different methods for adjusting for cell-type-mixture
confounding, by designing a rich simulation based on
cell-type-separated methylation data in SARD patients.
Our simulation contained multiple levels of variability,
between cell types, at the level of the probe means, and
at the level of the individual. We found that there was
no adjustment method whose performance was uniformly
the best, and in fact in some of our scenarios, the unad-
justed results were quite comparable to the best adjusted
results. These general conclusions were similar whether
we had a few DMSs of large effect (scenario 7) or many
correlated DMSs of smaller effect size (scenario 8).

Ten replications were run in both simulation scenar-
ios 7 and 8. However, for scenarios 1 through 6, the
reported results were obtained from one run of the sim-
ulation for each scenario. There are two reasons for this:
firstly, the computational time for some methods was very
long, and hence, multiple simulations would be extremely
time-consuming. More fundamentally, however, since our
metrics of performance are calculated from the distribu-
tions of behavior across all good quality probes in the
450K array, we obtained very similar results from repeated
runs of our simulations, during the phase when we were
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designing the simulation setup and choosing parameter
values.

In many of our simulated scenarios, as might be
expected, the reference-based method performed well.
This method is very easy to implement, and as seen in the
computing performance section, it runs very quickly, even
on larger sample sizes. It usually achieved good statistical
power, and, with one exception, reduced NFP relative to
the unadjusted model. It also has the advantage of being
able to estimate directly the cell-type composition of each
sample. Therefore, the Ref-based method is an obvious
choice when a complete set of the required cell-separated
methylation profiles are available; however, this is not
always the case. For some tissues, cell types that are of par-
ticular interest are very difficult or impossible to extract;
one example here would be the syncytiotrophoblast cells
in placenta [36, 37].

In every case we examined, EWASher did a very good
job in reducing p value inflation, and GIF values were
substantially reduced from the unadjusted analyses. How-
ever, that this method so strictly forces the GIF factor
downwards may raise concerns about over-correction. If
there were, for example, global hypermethylation associ-
ated with a disease, adjustment using EWASher would
be overly conservative. Additionally, part of the algorithm
involves filtering out loci that are unilaterally high or low
among all subjects. The assumption behind this filter is
that these loci are, for all intents and purposes, com-
pletely methylated or unmethylated and any associations
between these probes and the phenotype are not interest-
ing. This may be an overly strong assumption. In our sim-
ulations, this filter results in the dramatically worse power
of this method, since we did not restrict the randomly
selected DMS loci to any particular mean level of methy-
lation. Furthermore, the EWASher method is quite diffi-
cult to implement. Although most methods can be run
in R (https://www.r-project.org), EWASher requires the

user to create three separate input files for a standalone
executable, and then to perform post-processing in R.
We cannot explain the poor performance in our sim-
ulations of the Ref-free method. The NFP were almost
always more inflated than in the raw data, and this infla-
tion is clearly visible in the QQ plots. Furthermore, the
implementation was somewhat more complex since the
approach involved one step to estimate the latent dimen-
sion, a second to get parameter estimates, and then finally
bootstrap calculations to obtain standard errors. The per-
formance of the Ref-free method was good for scenario
6 with a continuous phenotype, so we hypothesize that
there are some linearity assumptions in the correction that
are being violated in our binary phenotype simulations.
The performance of CellCDec and Deconf was generally
quite good for binary phenotypes. The CellCDec method
exists as a C++ program, and was quite easy to imple-
ment. The number of latent cell types must be specified in
advance, which is a limitation. The run time was longer for
this algorithm than the others, and increased quickly with
the assumed number of cell types; in fact, we were unable
to obtain results with the ARCTIC data. CellCDec does
not use phenotype information; it would be interesting to
see how this program performs if it took the phenotype
and other covariates into account. For Deconf, the most
important limitation was the running time. In all cases,
it took longer to run than the other adjustment methods,
and we were unable to obtain results for the ARCTIC data.
The run time was sensitive to both increases in sample size
and number of cell types. Akin to CellCDec, that it does
not internally estimate the number of cell types is an issue.
The results for ISVA and RUV were often among the
better ones with a couple of notable exceptions: NFP
were extremely high for RUV in the low-precision sce-
nario, and for ISVA in the no confounding scenario. The
computational time for the ISVA method also increased
quite rapidly with sample size. RUV is very easy to run
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and is available as an R function. It contains a function
to estimate the latent dimension (K), although, akin to
the other methods that estimate K, the estimated dimen-
sion tends to be much higher than the simulated reality.
We performed some investigations into how RUV per-
forms at a range of values for K, and the best performance
was observed, in most simulation scenarios, at smaller
values such as K = 3. Recently, Houseman also found
that estimated latent dimensions obtained through ran-
dom matrix theory may not be the best choices [38].
RUV is also extremely fast, slower only than the Ref-based
method, and as shown in Fig. 7, the computational time
is essentially invariant as the latent dimension is varied,
making this an attractive option. Nevertheless, the SVA
method, although rarely the best, did not have any notable
failures across our scenarios, and was easy to implement.

There are other methods for deconvolution that we did
not examine, especially in the computer science and engi-
neering literature [39]. However, it is not clear whether
these methods would be easily adapted for use on methy-
lation data. Also, new methods for DNA methylation
analysis continue to be published, such as [40]. However,
the spectrum of methods that we have examined includes
the most-commonly used approaches. All methods that
we have examined assume approximately linear relation-
ships between the phenotype and the methylation levels
or covariates; however, this should not be an important
limitation since approximate linearity should hold [38].

The latent dimension, when estimated, was rarely simi-
lar to the dimension of K = 2 implemented in our simula-
tion. However, these estimates of K capture aspects of het-
erogeneity in the data that are only partially attributable
to the mixture of data from two cell types. This hetero-
geneity may also be partially due to technological artefacts
from batch effects or experimental conditions, and in par-
ticular to the fact that subtler cell lineage differences will
still be present even after cell sorting [38].

In summary, our simulation study comparing methods
found a wide range of performance across our scenarios
with notable failures of some methods in some situations.
We recommend SVA as a safe approach for adjustment
for a cell-type mixture since it performed adequately in
all simulations with reasonable computation time. In all
situations, EWAS results are extremely sensitive to the
normalization and cell-type adjustment methods used,
and hence, this issue should receive more attention when
interpreting findings.

A set of scripts enabling implementation of all
these methods can be found at https://github.com/
GreenwoodLab/CellTypeAdjustment.

Conclusions
We have compared eight different methods for adjusting
methylation data for cell-type-mixture confounding in a
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rich and multi-layered simulation study, and in a large
set of samples where methylation was measured in whole
blood. No method performs best in all simulated scenar-
ios, nevertheless we recommend SVA as a method that
performed adequately without notable failures.

Methods

Patient data and quality checks

Ethical approval was obtained at the Jewish General Hos-
pital and at McGill University, Montreal, QC, to obtain
whole-blood samples from the patients with SARDs, at
the time of initial diagnosis prior to any treatment. Cell
purification and phenotyping protocols for cell subset
isolation, analysis, purity evaluation, fractionation, and
storage were standardized and optimized. Then 40 ml of
peripheral blood were obtained from the above subjects
and processed within 4 hours. PBMCs were separated
with lymphocyte separation medium (Mediatech, Inc.).
Isolated PBMCs were sequentially incubated with anti-
CD19, anti-CD14, and anti-CD4 microbeads (Miltenyi
Biotec). Automated cell separation of specific cell subpop-
ulations was performed with auto-MACS using positive
selection programs. An aliquot of the specific isolated
cell subtypes was used for purity assessment with flow
cytometric analysis. A minimum of 2 million cells from
each subpopulation with a purity higher than 95 % were
frozen in liquid nitrogen for the epigenomic studies. The
optimized protocols required the isolation of sufficient
numbers of CD4" lymphocytes (9.04 & 4.03 x 10°) and
CD14% monocytes (7.89 +2.96 x 10°), and CD19% B lym-
phocytes (2.0241.42 x 10°), of sufficient purity to perform
the epigenetic analyses.

The required number of cells with the right purity was
not always available, especially for the CD19" B lym-
phocytes, so we did not have all three cell types for all
patients; for this reason, the simulation used only two cell
types and 46 patients. [llumina Infinium HumanMethy-
lation450 BeadChip data were normalized with funnorm
[35]. Also, a number of probes were removed, specifi-
cally those on the sex chromosomes as well as probes
close to single-nucleotide polymorphisms [41]. There
were 375,639 probes remaining after filtering.

Details of the simulation method
This simulation design was initially developed in the mas-
ter’s thesis of the first author [42].

1. Selection of DMS probes: S = 500 probes were
randomly selected to be associated with the
phenotype.

2. Phenotype (z;, i = 1,...,n): A random sample of size
46 was drawn from either a Bernoulli distribution
(p = 0.5) for a binary phenotype, or from a standard
normal distribution for a continuous phenotype.
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3. Cell-type-specific methylation values for non-DMS
probes: Let B represent the true methylation value
for individual i, probe j, and cell type k. For a probe
that is not a DMS probe, the simulated value
/3,{]'/( = ﬁijk~

4. Cell-type-specific methylation values for DMS
probes:

e Cell-type-specific means are sampled from
normal distributions with given parameters.
That is, for chosen values uy and oy for k = 1, 2,
cell-type-specific means that for each DMS
probe, uuj are generated from pj ~ N (i, o).
In scenario 8, we split the DMSs into two blocks
and simulate effect sizes from a multivariable
normal distribution with a fixed background
correlation in each block. That is, probes in the
same block are correlated, but probes across
blocks are independent from one another. In
this scenario, the parameters uy for k = 1,2
differ between the blocks.

e The simulated cell-type-specific methylation
effect, €, at a DMS, for an individual sample i
and an individual probe j, is another random
quantity, so that

N 2
ejx ~ N (M,k,djk)

where oy is a parameter provided to the
simulation.

e For either a binary or continuous phenotype z;,
the simulated methylation value B;j is then

IBi/jk = logit™! (logit (ﬁ,-jk) + zieyi) -

Although all the random effects were simulated
on a linear scale, the results are reconverted to
the (0,1) scale since several of the cell-type
adjustment methods require this range.

5. Combining across cell types:

e Each individual is assumed to have a unique
mixture of the two cell types in a way that
depends on the phenotype, z. Let

T
a© = (aio), a§0)> represent the average
proportions of the two cell types when z; = 0,

&
and then let «®) = (a%z),otéz)) be these
proportions when z; = Z. We then say,

aP=a9 47

average change in proportion in monocytes
average change in proportion in T cells

oY)
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e The cell-type proportions pj for individual i

were then generated from Dirichlet (pal((z)>,

where p > 0 is a precision parameter, such that
larger precision corresponds to less variation in
the observed values.

e The final simulated beta value for person i at
CpG site j becomes

ﬁﬁ; = pnBjj + B (2)

Key notation definitions are summarized in Table 1, and
parameter choices for the simulations are in Table 2.

Description of adjustment methods

The performance of eight popular methods is compared.
Brief descriptions of each method are provided here, and
Table 11 compares some key features of the methods,
including some details of the implementations. This set
of eight methods is not an exhaustive list of all methods
available at this time. In fact, in other fields, particu-
larly engineering and computer science, there exists a
plethora of other methods under the guise of deconvo-
lution providing the same kind of correction for unmea-
sured confounding in other high-throughput data sources
[39]. However, we include and compare many of the
approaches that are in common usage in the last few years
in the world of genomics and epigenomics.

Reference-based

This method was published in 2012 by Houseman et al.
[19]. It relies on the existence of a separate data set
containing methylation measurements on separated cell
types. The method uses methylation profiles for the indi-
vidual cell types to estimate directly the cell-type compo-
sition of each sample. However, cell-separated data are not
always available for all constituent cell types.

Reference-free

The second method from Houseman et al. does not
depend on a reference data set, and therefore, can be used
in methylation studies on any tissue type [20]. Rather than
directly estimating cell-type composition, the reference-
free method performs a singular value decomposition on
the concatenation of the estimated coefficient and resid-
ual matrices from an initial, unadjusted model. A set of
latent vectors is then obtained that accounts for cell type
in further analyses.

Surrogate variable analysis

Surrogate variable analysis (SVA) is a popular method that
was introduced by Leek and Storey in 2007 [23]. It was not
specifically intended for use in methylation studies, but is
nonetheless well suited for such analyses. SVA seeks a set
of surrogate variables that span the same linear space as
the unmeasured confounders (i.e. cell-type proportions).
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Table 11 Comparison of some features of the methods for cell-type mixture adjustment

Method  Phen. allowed? Input values? K Link

Ref-based Any Beta N/A http://people.oregonstate.edu/~housemae/software/TutorialLondon2014
http://bioconductor.org/packages/release/bioc/html/minfi.html

Ref-free  Any Beta Estimated http://cran.r-project.org/web/packages/RefFreeEWAS/index.html

SVA Any Beta or logit(beta) Estimated http://bioconductor.org/packages/release/bioc/html/sva.html

ISVA Continuous Beta or logit(beta) Estimated http://cran.r-project.org/web/packages/isva/index.html

EWASher  Binary Beta Estimated http://research.microsoft.com/en-us/downloads/472fe637-7cb9-47d4-a0df-37118760ccd1

CellCDec  Not used Beta Input https://github.com/jameswagner/CellCDec

Deconf  Not used Beta or logit(beta) Input http://web.cbio.uct.ac.za/~renaud/CRAN

RUV Any Beta or logit(beta) Estimated https://cran.r-project.org/web/packages/ruv/index.html

2What kinds of phenotype are allowed?

5Does the method use methylation proportions (beta values)? Or logit transformed beta values?
“Does the method estimate the number of latent cell types K, or is K input into the algorithm?

It is based on a singular value decomposition on the resid-
ual matrix from a regression model not accounting for
cell-type composition. The total number of surrogate vari-
ables included in the model is based on a permutation
test.

Independent surrogate variable analysis

Independent surrogate variable analysis (ISVA) from
Teschendorff et al. [24] is very similar in principle to
SVA. The main difference is that instead of applying
singular value decomposition, it uses independent com-
ponent analysis (ICA), which attempts to find a set of
latent variables that are as statistically independent as
possible.

FaST-LMM-EWASher (EWASher)

This method from Zou et al. [22] extends the Factored
Spectrally Transformed Linear Mixed Model algorithm
(FaST-LMM) [43] for use in the context of EWAS. A sim-
ilarity matrix is calculated based on the methylation pro-
files, and principal components are subsequently included
in the linear mixed model until GIF is controlled. The
maximum number of principal components allowed was
fixed as ten.

Removing unwanted variation

The method called Removing Unwanted Variation (RUV)
was published in 2012 [26] by Gagnon-Bartsch and Speed.
It performs a factor analysis on negative control probes
to separate out variation due to unmeasured confounders,
while leaving the variation due to the factors of interest
intact. Here we use RUV-4, an extension to the original
published version, which uses elements from RUV as well
as SVA [27]. Control probes were chosen from a list of
500 probes on the 450K platform known to be differen-
tially methylated with blood cell type and age [13]. We
selected probes that were not strongly correlated with the
simulated phenotype.

Deconfounding

The Deconf method from Repsilber et al. [25] was devel-
oped for gene expression studies on heterogeneous tissue
samples, but is applicable for use in EWAS. The algo-
rithm performs a non-negative matrix factorization on the
methylation matrix, but does not consider the phenotype
in correcting for the heterogeneity and does not estimate
the number of cell types present.

CellCDec

CellCDec was developed by Wagner [21], and is sim-
ilar to Deconf in that it does not consider the phe-
notype in performing its decomposition and does not
internally estimate the number of cell types present. The
method assumes a specific regression parameterization,
and makes random perturbations to the model parame-
ters, which are accepted if there is a decrease in the sum
squared residuals.

Additional statistical details

For each of the simulation scenarios 1-6, the simulation
was run once, whereas in scenarios 7 and 8, we per-
formed ten replications. DMSs were chosen randomly
in each simulation scenario and within each replication.
After cell-type adjustment, a linear model was performed
including the latent variables as covariates (except in
EWASher where the model was run within the function
call). Standard errors were obtained after performing the
empirical Bayes method eBayes from the 1imma pack-
age in R. Probes were declared significant if the p value fell
below the fixed value 1074,

In the reference-free method, standard errors were
obtained via the bootstrap procedure included in the
method. To estimate standard errors, 100 bootstrap sam-
ples were generated. We performed test runs with higher
numbers of bootstrap samples (500 and 1000), but did not
find significant differences in the resulting p values.


http://people.oregonstate.edu/~housemae/software/TutorialLondon2014
http://bioconductor.org/packages/release/bioc/html/minfi.html
http://cran.r-project.org/web/packages/RefFreeEWAS/index.html
http://bioconductor.org/packages/release/bioc/html/sva.html
http://cran.r-project.org/web/packages/isva/index.html
http://research.microsoft.com/en-us/downloads/472fe637-7cb9-47d4-a0df-37118760ccd1
https://github.com/jameswagner/CellCDec
http://web.cbio.uct.ac.za/~renaud/CRAN
https://cran.r-project.org/web/packages/ruv/index.html
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For SVA, we used the “iteratively re-weighted least
squares” option; however, no control probes were speci-
fied. For RUYV, the control probes were chosen from sites
previously shown to be associated with blood cell type and
age, but were not significantly associated with the pheno-
type of interest, a necessary condition for a probe to be
used as a control in this method.

For each of the methods requiring a pre-specified value
of K, the latent dimension, we ran the methods multiple
times with different values of K. We consistently found
that performance did not change with increasing values
of K and so when running the methods CellCDec and
Deconf, the value of K was fixed at 3 in all scenarios to
keep running times down. For the RUV method, we also
noticed better performance when K was fixed at 3, despite
that the method consistently estimated a much higher
value for that parameter. All results shown for RUV were
run with K fixed at 3.

None of the other adjustment methods had specific
options or tuning parameters that needed to be provided
by the user.

Compliance with ethical standards

Ethics committee approval for this study was obtained
at McGill University and all subjects provided informed
written consent to participate in the study. The Institu-
tional Research Board (IRB) number is [A12 M83 12A].
This study complies with the Helsinki Declaration.

Availability of supporting data
The data sets supporting the results of this article are
available in the repositories:

1. ARCTIC data are in dbGAP under accession number
[phs000779.v1.p1], http://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000779.
vl.pl.

2. The rheumatoid arthritis data are available under
accession number [GSE42861], https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861.

3. Data for simulation scenarios for cell-type mixtures
are available at Zenodo [10.5281/zenodo.46746],
https://zenodo.org/record/46746# VtW8H2SAOko.

Additional file

Additional file 1: Contains plots showing simulated effect sizes among
500 CpGs in simulation scenario 1, and QQ plots for p values of several
simulation scenarios. (PDF 771 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Study design: KM, AL, CG. Data collection: MH, SB, IC, TP. Data analysis: KM.
Writing manuscript: KM, AL, CG, MH. All authors read and approved the final
manuscript.

Page 16 of 17

Acknowledgments

Computations were made on the supercomputer Mammouth paralléle 2 from
Université de Sherbrooke, managed by Calcul Québec and Compute Canada.
The operation of this supercomputer is funded by the Canada Foundation for
Innovation (CFl), NanoQuébec, RMGA, and the Fonds de recherche du
Québec, Nature et technologies (FRQ-NT).

Funding

This work was funded by the Ludmer Centre for Neuroinformatics and Mental
Health, by the Canadian Institutes of Health Research operating grant
MOP-300545, and by a Lady Davis Institute Clinical Research Pilot Project
award.

Author details

TMcGill University, Department of Epidemiology, Biostatistics, and
Occupational Health, 1020 Pine Ave. West, H3A 1A2 Montréal, QC, Canada.
2Lady Davis Research Institute, Jewish General Hospital, 3755 Chemin de la
Cote Sainte Catherine, H3T 1E2 Montréal, QC, Canada. > Division of
Rheumatology, Jewish General Hospital, Montréal, QC, Canada. *McGill
University and Genome Quebec Innovation Centre, McGill University, Montréal,
QC, Canada. 5Departmem of Human Genetics, McGill University, Montréal, QC,
Canada. ®Department of Medicine, McGill University, Montréal, QC, Canada.
"The Research Institute of the McGill University Health Centre, Montréal, QC,
Canada. 8Department of Psychiatry, McGill University, Montréal, QC, Canada.
9The Douglas Mental Health University Institute, Verdun, QC, Canada.

Received: 1 March 2016 Accepted: 5 April 2016
Published online: 03 May 2016

References

1. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS.
Genome-wide conserved consensus transcription factor binding motifs
are hyper-methylated. BMC Genom. 2010;11(1):519.

2. RakyanV, Down T, Balding D, Beck S. Epigenome-wide association
studies for common human diseases. Nat Rev Genet. 2011;12(8):529-41.

3. Khavari DA, Sen GL, Rinn JL. DNA methylation and epigenetic control of
cellular differentiation. Cell Cycle. 2010;9(19):3880-3.

4. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al.
Genome-scale DNA methylation maps of pluripotent and differentiated
cells. Nature. 2008;454(7205):766-70.

5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.

2002;16:6-21.

Laird P. Principles and challenges of genome-wide DNA methylation

analysis. Nat Rev Genet. 2010;11:191-203.

Farid N. The immunogenetics of autoimmune diseases. Boca Raton, FL:

CRC Press; 1991.

8. PappG, Horvath|, Barath S, Gyimesi E, Spika S, Szodoray P, et al. Altered
T-cell and regulatory cell repertoire in patients with diffuse cutaneous
systems sclerosis. Scand J Rheumatol. 2011;40:205-10.

9. GambichlerT, Tigges C, Burkert B, Hoxtermann S, Altmeyer P, Kreuter A.
Absolute count of T and B lymphocyte subsets is decreased in systemic
sclerosis. Eur J Med Res. 2010;15:44-6.

10. Wagner D, Kaltenhauser S, Pierer M, Wilke B, Arnold S, Hantzschel H.

B lymphocytopenia in rheumatoid arthritis is associated with the DRB1
shared epitope and increased acute phase response. Arthritis Res.
2002;4(4):R1.

11. Manda G, Neagu M, Livescu A, Constantin C, Codreanu C, Radulescu A.
Imbalance of peripheral B lymphocytes and NK cells in rheumatoid
arthritis. J Cell Mol Med. 2003;7(1):79-88.

12. Scott D, Wolfe F, Huizinga T. Rheumatoid arthritis. Lancet.
2010,376(9746):1094-108.

13. Jaffe A, Irizarry R. Accounting for cellular heterogeneity is critical in
epi-genome-wide association studies. Genome Biol. 2014;15:R31.

14. Reinius L, Acavedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al.
Differential DNA methylation in purified human blood cells: implications
for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7):
e41361.

15. GuH, Bock C, Mikkelsen T, Jager N, Smoth Z, Tomazou E, et al.
Genome-scale DNA methylation mapping of clinical samples at
single-nucleotide resolution. Nat Methods. 2010;7:133-6.

~


http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000779.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000779.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000779.v1.p1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
https://zenodo.org/record/46746#.VtW8H2SAOko
http://dx.doi.org/10.1186/s13059-016-0935-y

McGregor et al. Genome Biology (2016) 17:84

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

Liang L, Cookson W. Grasping nettles: cellular heterogeneity and other
confounders in epigenome-wide association studies. Hum Mol Genet.
2014;21(R1):83-8.

LiuY, Aryee M, Padyukov L, Fallin M, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013;31(2):142-8.

Michels K, Binder A, Dedeurwaerder S, Epstein C, Greally J, Gut |, et al.
Recommendations for the design and analysis of epigenome-wide
association studies. Nat Methods. 2013;10(10):940-55.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinform. 2012;13(1):86.

Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture
adjustments in analysis of DNA methylation data. Bioinformatics.
2014,30(10):1431-9.

Wagner J. Computational approaches for the study of gene expression,
genetic and epigenetic variation in human. Montreal, QC: McGill
University School of Computer Science; 2015.

Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide
association studies without the need for cell-type composition. Nat
Methods. 2014;11(3):309-11.

Leek JT, Storey JD. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet. 2007;3(9):e161.

Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate
variable analysis to deconvolve confounding factors in large-scale
microarray profiling studies. Bioinformatics. 2011;27(11):1496-505.
Repsilber D, Kern'S, Telaar A, Walzl G, Black GF, Selbig J, et al. Biomarker
discovery in heterogeneous tissue samples-taking the in-silico
deconfounding approach. BMC Bioinform. 2010;11(1):27.
Gagnon-Bartsch JA, Speed TP. Using control genes to correct for
unwanted variation in microarray data. Biostatistics. 2012;13(3):539-52.
Gagnon-Bartsch JA, Jacob L, Speed TP. Removing unwanted variation
from high dimensional data with negative controls. Berkeley: Department
of Statistics. University of California; 2013.

Devlin B, Roeder K. Genomic control for association studies. Biometrics.
1999,55:997-1004.

Harris RA, Nagy-Szakal D, Kellermayer R. Human metastable epiallele
candidates link to common disorders. Epigenetics. 2013;8(2):157-63.
Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritsky E, Baker
MS, et al. Independent genomewide screens identify the tumor
suppressor VIRNA2-1 as a human epiallele responsive to
periconceptional environment. Genome Biol. 2015;16(1):118.

Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Guhr T, Stanley HE.
Random matrix approach to cross correlations in financial data. Phys Rev
E. 2002,65(6):066126.

Zanke BW, Greenwood CM, RangrejJ, Kustra R, Tenesa A, Farrington
SM, et al. Genome-wide association scan identifies a colorectal cancer
susceptibility locus on chromosome 8g24. Nat Genet. 2007,39(8):989-94.
Tsaprouni LG, Yang TP, Bell J, Dick KJ, Kanoni S, Nisbet J, et al. Cigarette
smoking reduces DNA methylation levels at multiple genomic loci but
the effect is partially reversible upon cessation. Epigenetics. 2014;9(10):
1382-96.

LiuY, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013;31(2):142-7.

Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al.
Functional normalization of 450k methylation array data improves
replication in large cancer studies. Genome Biol. 2014;15(11):503.

Le Bellego F, Vaillancourt C, Lafond J, Vol. 550. Human Embryogensis:
Methods and Protocols, Book chapter: 4. Methods in Molecular Biology.
Springer; 2009, pp. 73-87.

Kaspi T, Nebel L. Isolation of syncytiotrophoblasts from human term
placenta. Obstet Gynecol. 1974,43:549-57.

Houseman EA, Kelsy KT, Wiencke KJ, Marsit CJ. Cell-composition effects
in the analysis of DNA methylation array data: a mathematical
perspective. BMC Bioinform. 2015;16:95.

Yadav V, De S. An assessment of computational methods for estimating
purity and clonality using genomic data derived from heterogeneous
tumor tissue samples. Brief Bioinform. 2014;16(2):2320241.

40.

42.

43.

Page 17 of 17

Jones MJ, Islam SA, Edgar RD, Kobor MS. Adjusting for Cell Type
Composition in DNA Methylation Data Using a Regression-Based
Approach. Totowa, NJ: Humana Press, pp. 1-8.

Busche S, Ge B, Vidal R, Spinella J-F, SaillourV, Richer C, Healy J, Chen
S-H, Droit A, Sinnett D, Pastinen T. Integration of High-Resolution
Methylome and Transcriptome Analyses to Dissect Epigenomic Changes
in Childhood Acute Lymphoblastic Leukemia. Cancer Res. 73(14):4323-36.
McGregor K. Methods for estimating changes in DNA methylation in the
presence of cell type heterogeneity. Montreal, QC: McGill University
Department of Epidemiology, Biostatistics, and Occupational Health;
2015.

Lippert C, Listgarten J, LiuY, Kadie CM, Davidson RI, Heckerman D. FaST
linear mixed models for genome-wide association studies. Nat Methods.
2011,8(10):833-5.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

¢ We provide round the clock customer support

¢ Convenient online submission

® Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Patients and original methylation profiles
	Multi-layer simulation design
	Scenario 1: DMSs have differences in both means and variances between cell types
	Scenario 2: no confounding
	Scenario 3: opposite effects in different cell types
	Scenarios 4 and 5: altered precision simulations
	Scenario 6: continuous phenotype simulation results
	Scenario 7: simulation with a small number of true DMSs
	Scenario 8: widespread, subtle, correlated DMS effects
	Estimated latent dimension
	Results from analysis of the ARCTIC data set
	Results from analysis of the rheumatoid arthritis data set
	Computational performance

	Discussion
	Conclusions
	Methods
	Patient data and quality checks
	Details of the simulation method
	Description of adjustment methods
	Reference-based
	Reference-free
	Surrogate variable analysis
	Independent surrogate variable analysis
	FaST-LMM-EWASher (EWASher)
	Removing unwanted variation
	Deconfounding
	CellCDec
	Additional statistical details


	Compliance with ethical standards
	Availability of supporting data
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgments
	Funding
	Author details
	References

