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Abstract

Single-cell RNA sequencing (scRNA-seq) has broad applications across biomedical research. One of the key challenges
is to ensure that only single, live cells are included in downstream analysis, as the inclusion of compromised cells
inevitably affects data interpretation. Here, we present a generic approach for processing scRNA-seq data and
detecting low quality cells, using a curated set of over 20 biological and technical features. Our approach improves
classification accuracy by over 30 % compared to traditional methods when tested on over 5,000 cells, including CD4+
T cells, bone marrow dendritic cells, and mouse embryonic stem cells.

Background
Over the last 15 years, transcriptome-wide profiling has
been a powerful element of the modern biological re-
searcher’s toolkit [1, 2]. Recently, protocols that allow
amplification of the minute amounts of material in indi-
vidual cells have taken RNA-seq to the next level [3–5],
leading to the discovery and characterization of new
subtypes of cells [6–11]. Additionally, quantifying gene
expression in individual cells has facilitated the genome-
wide study of fluctuations in transcription (also referred
to as ‘noise’), which will ultimately further our under-
standing of complex molecular pathways such as cellular
development and immune responses [12–17].
Utilizing microfluidics or droplet technologies, tens of

thousands of cells can be sequenced in a single run [18,
19]. In contrast, conventional RNA-seq experiments
contain only up to hundreds of samples. This enormous
increase in sample size poses new challenges in data
analysis: sequencing reads need to be processed in a sys-
tematic and fast way to ease data access and minimize
errors (Fig. 1a, b).
Another important challenge is that existing available

scRNA-seq protocols often result in the captured cells

(whether chambers in microfluidic systems, microwell
plates, or droplets) being stressed, broken, or killed.
Moreover, some capture sites can be empty and some
may contain multiple cells. We refer to all such cells as
‘low quality’. These cells can lead to misinterpretation of
the data and therefore need to be excluded. Several ap-
proaches have been proposed to filter out low quality
cells [7, 13–15, 20–24], but they either require arbitrarily
setting filtering thresholds, microscopic imaging of each
individual cell, or staining cells with viability dyes.
Choosing cutoff values will only capture one part of the
entire landscape of low quality cells. In contrast, cell im-
aging does help to identify a larger number of low quality
cells as most low quality cells are visibly damaged, but it is
inefficient and time-consuming. Staining is relatively quick
but it can change the transcriptional state of the cell and
hence the outcome of the entire experiment. Lastly, none
of these methods are generally applicable to data from di-
verse protocols and thus, no unbiased method has been
developed to filter out low quality cells.
Here we present the first tool for scRNA-seq data that

can process raw data and remove low quality cells in a
straightforward and effective manner, thus ensuring that
only high quality samples enter downstream analysis.
This pipeline supports various mapping and quantification
tools with the possibility for flexible extension to new soft-
ware in the future. The pipeline takes advantage of a
highly-curated set of generic features that are incorporated
into a machine learning algorithm to identify low quality
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cells. This approach allowed us to define a new type of low
quality cells that cannot be detected visually and that can
compromise downstream analyses. Comprehensive tests
on over 5,000 cells from a variety of tissues and protocols
demonstrate the utility and effectiveness of our tool.

Results
We have developed a pipeline to preprocess, map, quan-
tify, and assess the quality of scRNA-seq data (Fig. 1b).

To evaluate data quality we obtained raw read counts of
unpublished and previously published [9] datasets com-
prising 5,000 CD4+ T cells, bone marrow dendritic cells
(BMDCs), and mouse embryonic stem cells (mESCs)
(Additional file 1: Figure S1A-C). Prior to our analysis,
each cell had already been annotated by microscopic in-
spection, indicating whether it was broken, the capture
site was empty, or contained multiple cells (Fig. 1c,
Additional file 2: Table S1). This covered a wide range

Fig. 1 Overview of pipeline and quality control. a Schematic of RNA sequencing workflow. Green indicates high and red low quality cells. b
Schematic of the computational pipeline developed to process large numbers of cells and RNA sequencing reads. c Overview of quality control
method. Gene expression data for 960 mES cells were used to extract biological and technical features capable of identifying low quality cells.
These features and microscopy annotations served as training data for a classification algorithm that is capable of predicting low quality cells in
other datasets. Additional annotation of deceptive cells as low quality helps to improve classification accuracy
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of the landscape of low quality cells. Libraries for these
data were prepared using the Smart-Seq [25], Smart-
Seq2 [24], or modified Smart-Seq with UMIs [22]. We
used 960 mESCs (further referred to as a training set)
that were cultured under different conditions (2i/LIF,
serum/LIF, alternative 2i/LIF; Additional file 1: Figure
S1D) to extract biological and technical features capable
of distinguishing low from high quality cells [26]. We
then used these biological and technical features, in
combination with prior gold standard cell annotation by
microscopy to train an SVM model (Fig. 1c). To assess
the performance of the model, we performed nested
cross-validation and subsequently applied the model to
the remaining datasets, comprising different cell types
and protocols (Additional file 1: Figure S1A). All data-
sets were mapped and quantified with the same parame-
ters using the pipeline described below.

Pipeline to process scRNA-seq data
Previous studies using conventional bulk RNA-seq rarely
analyzed more than a dozen samples simultaneously.
However, the nature of single cell sequencing generates
from thousands to tens of thousands samples in a single
experiment [18, 19]. Currently available pipelines [27–29]
do not take this massive data flow into consideration and
are ineffective and complicated in terms of systematically
processing and storing large number of cells.
We implemented a pipeline capable of: (1) data pre-

processing; (2) mapping; and (3) quantifying (Fig. 1b)
mRNA expression levels in a large number of samples.
Each step of the pipeline can be executed as a single
module or can be combined. It supports numerous map-
ping and quantification tools (Fig. 1b). Additionally, the
pipeline allows allele-specific experiments to be quanti-
fied, which is an important application [12, 30, 31].
Users can process individual cells or apply the pipeline
in parallel to process thousands of cells simultaneously.
For straightforward access to output, each step generates
simple subdirectories for file storage. It automatically de-
tects available tools and reference genomes and proposes
these to the user. Overall it offers a flexible way to
process large quantities of scRNA-seq data.

Biological features of low quality cells
To identify features that distinguish high and low quality
cells (defined through visual annotation within C1 cap-
ture sites), we first used our pipeline to quantify gene ex-
pression levels of our training set of 960 mESCs [26].
Subsequently, we grouped genes into functional categor-
ies (Gene Ontology terms) and identified those that
showed differences in expression level between each type
of low quality (multiple, broken, empty) and high quality
cells (Methods).

We first tested whether each type of low quality cell
(broken, empty, multiple) has higher average gene ex-
pression in specific functional categories (Gene Ontology
terms) compared to high quality cells. Second, we calcu-
lated whether gene expression in these functional categor-
ies is noisier for low versus high quality cells (see
Methods). Our results suggest that there are indeed several
top-level biological processes and components that are sig-
nificantly different.
Specifically, genes relating to Cytoplasm (Padjust < 2.2 ×

10−16), Metabolism (Padjust < 2.2 × 10−16), Mitochondrion
(Padjust < 2.2 × 10−16), Membrane (Padjust < 2.2 × 10−16),
and a few other categories (Fig. 2a, b, Additional file 3:
Table S2) are strongly downregulated (on average, two-
sided paired t-test) in broken cells. Other downregulated
biological categories correspond to basic molecular func-
tions and biological processes (gray dots). Some of these
categories have been previously described as being indi-
cative of poor quality cells [7, 13–15, 20–24]. Further-
more, broken cells have transcriptome-wide increased
noise levels compared to high quality cells. Interestingly,
wells containing multiple cells (multiples) show similar
expression and noise patterns to broken cells (Fig. 2b,
Additional file 3: Table S2). This suggests that multiple
cells contain a mixture of broken and high quality cells.
Next, we calculated for each cell the proportion of

reads mapped to genes relating to previously described
categories (Fig. 2c). Consistent with our previous results,
most categories are downregulated in broken cells (green
labeled GO terms). However, genes relating to Mem-
brane (Padjust = 0.017, one-sided t-test), mitochondrially
encoded genes (mtDNA, 37 genes, P = 9.96 × 10−6), and
mitchondrially localized proteins (approximately 1,500
genes) are marginally upregulated (red labeled GO
terms). As mentioned above, we observed that RNAs
coding for mitochondrially localized proteins (approxi-
mately 1,500 genes) are upregulated in broken cells.
However, differential expression analysis (using DESeq
[32]) between low and high quality cells revealed that
only half of the genes are upregulated and the other half
downregulated (Additional file 4: Table S3, Fig. 2c) and
we therefore treat them as separate features.
Previous studies discovered similar patterns [33].

There is an extensive literature on the relationship be-
tween mtDNA, mitochondrially localized proteins, and
cell death [34, 35]. However, upregulation of RNA levels
of mtDNA in broken cells suggests losses in cytoplasmic
content. In a situation where cell membrane is broken,
cytoplasmic RNA will be lost, but RNAs enclosed in the
mitochondria will be retained, thus explaining our obser-
vation (Fig. 2a-c, Additional file 3: Table S2). Overall,
our analysis suggests that empty wells can be remarkably
clearly distinct from the remainder, while broken cells
and multiples are distinct in most but not all of the
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Fig. 2 (See legend on next page.)
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categories (for example, Cytoplasm, Extracellular region,
Mitochondria, mtDNA; Additional file 4: Table S3,
Fig. 2c).

Technical features that distinguish low from high quality
cells
As well as expression patterns that distinguish low from
high quality cells, we investigated the relationship be-
tween technical features and quality. We found 10 fea-
tures that separate the different types of low quality cells
from high quality cells (Fig. 2d). Similar to biological fea-
tures (Fig. 2c), most technical features have higher
values in high quality cells (Additional file 4: Table S3,
one-sided t-test). Only the number of not aligned and
non-exonic reads is larger in broken cells (P = 0.0014,
P = 0.005, respectively; Additional file 4: Table S3), fur-
ther supporting the hypothesis that these cells have lost
transcripts prior to cell lysis. We also compared the
proportion of duplicated reads (Additional file 5: Figure
S2A) between low and high quality cells and observed a
difference between multiples and high quality cells (P =
0.0711; Additional file 4: Table S3). We further exam-
ined the ratio between ERCC spike-ins and exonic read
counts, and observed that a subset of the low quality
cells has higher ratios compared to high quality cells
(Additional file 4: Table S3 and Additional file 5: Figure
S2B). It is likely that the cells with high ratios are
broken and due to endogenous transcript loss, most
reads map to the spike-in RNA.
In addition, we designed three features based on the

assumption that broken cells contain a lower and mul-
tiple cells a higher number of transcripts compared to a
typical high quality single cell. For the first feature we
calculated the number of highly expressed and highly
variable genes. For the second feature we calculated the
variance across genes. Lastly, we hypothesized that the
number of genes expressed at a particular level would
differ between cells. Thus, we binned normalized read
counts into intervals (very low to very high) and counted
the number of genes in each interval (for example,
‘Number of genes lowly expressed’; Fig. 2d). These add-
itional features show substantial differences in broken
compared to high quality cells (Fig. 2d, Additional file 4:
Table S3). Surprisingly, the patterns were highly similar

between broken and multiple cells. One potential ex-
planation for this is that broken cells have inadvertently
been called as multiples in the manual annotation using
microscopy. Overall, our results show that technical fea-
tures can help distinguish low and high quality cells.

Features independent of cell type
To understand how generalizable these features are
across various cell types and protocols, we downloaded
and processed gene expression data from over 5,000 sin-
gle cells from published [8, 9, 13, 26, 36] and unpub-
lished datasets comprising CD4+ T cells and mESCs.
We applied principal component analysis (PCA) using
all features on these cells, and observed that the first
two principal components (Fig. 2e) clearly separate the
different cell types. This suggests that at least a subset of
the features considered are cell type specific.
To eliminate such cell type specific effects, we dis-

carded features that have large loadings on the first two
principal components (removing features with loadings
less than the lowest 25 % or larger than the top 25 % of
the first or second principal component). Further, we re-
moved features that are likely to depend on the experi-
mental setting (for example, total number of sequenced
reads). This resulted in seven features that are independ-
ent of cell type and protocol: Cytoplasm, Mitochond-
rially localized proteins, mtDNA encoded genes,
Mapped reads, Multi-mapped reads, Non-exonic reads,
and Transcriptome variance.
Somewhat surprisingly, the levels of Membrane, Ribo-

somes, Metabolism, Apoptosis, and Housekeeping genes
are highly cell type specific. In contrast, Mitochondrial
(localized or encoded) and Cytoplasmic genes are more
generic features. Moreover, the proportion of mapped,
multi-mapped, not aligned, non-exonic reads, and vari-
ance across genes do not contribute to the variability in
the PCA plot (Fig. 2e). Interestingly, only moderately
and strongly expressed genes seem to be similar between
the datasets. Genes that are very strong or lowly
expressed are highly cell type specific. Finally, to ensure
that we can reproduce our results with only a subset of
our data, we performed the same analysis on only 25 %
of cells of each cell type and achieved identical results
(Additional file 5: Figure S2C).

(See figure on previous page.)
Fig. 2 Biology and technical features of low quality cells. a, b Comparison of the levels of gene expression and noise for Gene Ontology (GO)
terms between broken (a), multiples (b), and high quality cells. The logarithm (log10) of P values from a two-sided paired t-test using mean normalized
read count (x-axis) and Distance-to-Median (DM) (y-axis) was computed for each GO category and plotted against each other by multiplying
the sign of the t-statistic. c Boxplots of biological and d technical features comparing log10 transformed values (y-axis) between each type of
low quality (multiple, broken, empty) and high quality cells (x-axis). Each dot corresponds to one cell. GO categories labeled green indicate
upregulation in high quality cells. GO categories labeled red indicate upregulation in low quality cells. e Principal component analysis of single
cells from different cell types. Cells from different experiments (or laboratories) but the same cell type are presented in the same color. Using all
features results in a clear distinction between each type. Removing features causing this separation results in a set of common features
applicable to any cell type and protocol
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Deceptive cells appear intact but are low quality
Annotation based on visual inspection under the micro-
scope is not always perfect: broken cells can be wrongly
annotated and even seemingly empty capture sites may
contain enough RNA to yield high gene expression. To
explore this further, we performed PCA on our training
set of 960 mES cells. As we are performing this analysis
on only one cell type, we used all features as input for
PCA. We plotted the first two principal components and
colored visually intact and visibly damaged cells as de-
fined by microscopy. This revealed a dense cluster of
visually intact cells, with visibly damaged cells clearly be-
ing marked as outliers. Strikingly, 92 visually intact cells
are scattered amongst the damaged cells (Fig. 3a). We
applied an unsupervised outlier detection algorithm
(‘mvoutlier’ R package [37]) to confirm that these cells
do not belong to the dense cluster and are enriched in
the outlier area (P = 0.00916, Fisher’s exact test, Fig. 3a).
Unsurprisingly, visibly damaged cells are also enriched
in the outlier area (P = 3.9 × 10−9; Fig. 3a). We further
refer to the visually intact cells that cluster with dam-
aged cells as ‘deceptive’.
This prompted us to explore the difference between

deceptive versus intact cells. To do this, we applied the
same statistical test as described above (two-sided paired
t-test; Fig. 2a, b). We found that similar to broken cells
genes encoded by mtDNA encoded genes and genes re-
lated to Membrane are strongly upregulated in the de-
ceptive cells (Fig. 3b, Additional file 3: Table S2).
Moreover, transcriptome-wide noise is also greater, that
is, this means they have more cell-to-cell variation than
healthy cells relative to each other. Consequently, al-
though these cells appear healthy under microscopic
supervision, they are either pre-apoptotic or ruptured
after the visualization.
In Fig. 3c we show an image of a deceptive cell (which

we predict to be low quality) next to a typical image of
an intact cell from the same mouse ES cell dataset [26]
(Additional file 5: Figure S2D). From these images, there
is no obvious difference between the intact cell in the
dense area and the deceptive cell. Nevertheless, the tran-
scriptomic data show a higher fraction of reads mapped
to external spike-ins (that is, less total RNA) and more
expression of mtDNA-encoded genes (Fig. 3b) for the
deceptive cells. One possibility is that these cells are
subtly damaged such that they are leaking mRNA from
their cytoplasm, but the damage is not visible from the
microscopy images.

Impact of including deceptive cells in downstream data
analysis
We then probed the impact of these deceptive cells on
downstream analysis. As mentioned above, our training
set comprised mESCs cultured under three different

conditions: 2i/LIF, serum/LIF, and alternative 2i/LIF. We
performed clustering, differential expression, and cell-to-
cell variation analysis between 2i/LIF and serum/LIF
cells. Each analysis was performed twice: excluding low
quality cells that are visibly damaged and a second time
by also excluding deceptive cells. A PCA excluding vis-
ibly damaged cells (using all expressed genes) did not
show the expected three subpopulations as clusters. Fur-
ther, differential expression between 2i/LIF and serum/
LIF cells resulted in only a small number of differentially
expressed genes (116 genes, P <0.05, DESeq).
By contrast, upon removal of deceptive cells, PCA sep-

arates the cells clearly into the three expected distinct
clusters (Fig. 3d). Differential expression also returns a
much higher number of significant genes (855 vs. 116
genes, P adjusted <0.05, DESeq [32], Fig. 3e). Gene set
enrichment analysis of these 855 genes (topGO R pack-
age [38]) revealed that functional categories (Gene
Ontology Terms) such as positive regulation of cell mi-
gration (P = 4.9 × 10−9, GO:0007264) and protein binding
(Fig. 3e boxplot, P = 3.5 × 10−13, GO:0005515) were dif-
ferentially expressed between serum/LIF and 2i/LIF.
These GO terms contain 56 key genes that are strongly
involved in pluripotency such as Nanog, Klf4, Prdm14,
and Tcl1, and have been previously observed to be dif-
ferentially expressed between the two conditions [39].
To compare cell-to-cell variation we calculated the co-

efficient of variation (CV) for each gene and compared
it against the mean expression. This revealed a set of
highly expressed and highly variable genes that disappear
if deceptive cells are excluded (Fig. 3f ). These genes are
significantly enriched in biological processes such as
Mitochondrial respiratory chain complex (P = 6.2 × 10−5,
GO:0033108) and Regulation of transcription (P = 7.0 ×
10−5, GO:0006355). It seems that deceptive cells have
lower expression of genes in these two functional cat-
egories, as overall expression level drops substantially if
they are included (Fig. 3f Boxplots). This hypothesis is
further supported by the statistical test described above
(Fig. 3b) as most of the functional categories seem to be
downregulated in deceptive cells. These results strongly
suggest that these cells are broken but not visible as
such under the microscope. Therefore, they need to be
treated as low quality and excluded from downstream
analysis.

Identification of low quality cells
After curating a set of mESC specific and common fea-
tures, our aim was to automatically detect low quality
cells for any dataset irrespective of cell type and proto-
col. We first tested conventional quality control methods
such as: (1) using a PCA to identify outlying cells; and
(2) comparing the ratio of reads mapped to ERCC
against total mapped reads (Fig. 4a). With both methods
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Fig. 3 (See legend on next page.)

Ilicic et al. Genome Biology  (2016) 17:29 Page 7 of 15



deceptive cells (described in Fig. 3) become apparent.
However, visibly damaged low quality cells are difficult
to detect by eye.
In contrast, by comparing PC1 and PC2 on curated

features (Fig. 3), not only deceptive but also visibly dam-
aged low quality cells can be easily spotted. This is very
advantageous if no prior annotation is available, as it be-
comes easier to distinguish low from high quality cells.
While our approach allows visibly damaged cells to be

identified visually we were interested in our ability to
discriminate more analytically between visibly damaged
cells (sensitivity) and high quality cells (specificity). In-
stead of arbitrarily choosing a cutoff point and deciding
whether a cell is of low or of high quality, we applied a
widely used outlier detection algorithm to classify each
cell (‘mvoutlier’ R package [37]). We compared the clas-
sification outcome to the gold standard annotation and
computed the sensitivity and specificity.
Conventional quality control methods were only able

to capture half of the visibly damaged cells (Fig. 4b,
Additional file 6: Figure S3A). Our features increased
classification accuracy by more than 25 %. Detecting
high quality cells (specificity) was reasonably accurate
(approximately 70 %) across all three methods.
Having tested unsupervised methods, we next evalu-

ated the performance of an SVM classifier through
nested cross-validation (Methods, Fig. 3b). Using this ap-
proach, sensitivity remained similar to the feature-based
PCA and outperformed traditional methods (Fig. 4b).
More importantly, the SVM was able to achieve an in-
crease in specificity of over 20 % to 30 % compared to
all other methods. Moreover, this observation did not
change if TPM normalized counts were used as input
(see Methods), instead of library size normalized counts
(Additional file 6: Figure S3C).
Next, we investigated the effect of training the SVM

using all versus common features by training the SVM,
respectively. As expected, training on all features re-
sulted in higher sensitivity than training only on com-
mon features (Fig. 4c). Specificity was high in both cases.
Using a linear kernel we investigated features with the
largest impact on classification considering all and com-
mon features. We extracted the weight of each feature

and plotted its frequency (Fig. 4d). As expected, Mito-
chondrial related categories and technical features such
as proportion of mapped reads and non-exonic reads
seemed to be characteristic for low quality cells. ‘Cell-to-
mean-correlation’ appeared to be the most important
factor in identifying high quality cells. Nevertheless, it is
important to emphasize that a combination of factors
yielded the best classification accuracy.

Application to diverse cell types and protocols
Next, we asked whether the model derived using the
training data can be applied to find low quality cells in
datasets comprising other cell types and across diverse
protocols. To this end we trained an SVM model using
the full training dataset and estimated optimal hyper-
parameters. To maximize accuracy, we generated a
model ensemble (Methods). We applied the ensemble to
other datasets and measured sensitivity and specificity
by considering all features as well as the common
features.
The ensemble performed very well on data from differ-

ent mESC experiments if trained on all features, and
sensitivity was high in each independent mESC dataset
(Fig. 5a). Interestingly, specificity was high in all but one
dataset. Due to problems with the library preparation,
the number of genes in this particular dataset is signifi-
cantly lower (P < 2.2 × 10−16, Wilcoxon rank sum test)
compared to the other datasets (Fig. 5a). As expected,
classification failed in other cell types and protocols
since all cells are considered as high quality (zero sensi-
tivity), due to training the model with cell-type specific
features (Fig. 2e).
Applying the ensemble considering only common fea-

tures decreased sensitivity on other mESC datasets. This
is due to the high number of multiples contained in
these datasets, which are then classified as high quality
cells (Fig. 5b) because we use a smaller set of features.
However, in the case of CD4+ T cells and BMDCs, the
ensemble performed very well in classifying low and
high quality cells (Fig. 5b).
To classify cells generated using UMI-based protocols,

we transformed absolute transcript counts to raw read
counts (Additional file 7: Figure S4A) using regression

(See figure on previous page.)
Fig. 3 Deceptive cells appear intact but are low quality. a PCA of first two principal components of 960 mESCs using all features. There is a clear
separation between visually intact and visibly damaged cells. However, a noticeable fraction of visibly intact cells clusters with visibly damaged
cells, and we term these ‘deceptive’ cells, as they look intact but are most likely damaged inside. b Statistical test from 2A-B. Similarity in GO terms
indicate that the deceptive cells are also likely broken. c-e Different types of analysis illustrating the effect of removing low quality cells based
purely on visual damaged (left side), and in addition, deceptive cells (right) from the training set. c Microscopy images of two chambers from a
Fluidigm C1 chip showing the similarity between a genuine visually intact, high quality cell, and one annotated as such but positioned as an
outlier cell in the PCA. d Principal component analysis of the training set (serum/LIF, 2i/LIF, alternative 2i/LIF). e Differential expression between
serum/LIF and 2i/LIF cells. Boxplots of protein binding enriched GO categories in the middle, illustrating change in gene expression levels when
deceptive cells are excluded. f Coefficient of variation compared against mean expression of each gene. Boxplot in the middle illustrates the
change in gene expression levels for two significantly enriched GO categories
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(Methods). We extracted features based on the trans-
formed counts. Even without transformation, PCA of the
features shows clear separation between the annotated
low and high quality cells (Additional file 7: Figure S4B).
We further applied the PCA-based method on two data-
sets containing published human cancer cell lines without

prior quality annotation. It again clearly separates low
from high quality cells in each dataset (Additional file 7:
Figure S4C, D) having classified approximately 25 % of
cells as low quality. To test if this is reasonable, we plotted
the top three eigenvalues of each principal component
(Additional file 7: Figure S4C, D boxplots). Similar to our

Fig. 4 Identification of low quality cells. a Visualizing low and high quality cells with traditional and feature-based PCA method. The feature-based
method makes it easier to detect low quality cells visually as most of them are outliers. b Accuracy measurements to evaluate the performance of each
method. Sensitivity is defined as the proportion of correctly identified low quality cells. Specificity is defined as the proportion of correctly identified
high quality cells. SVM outperforms all other methods as it has reasonable sensitivity and high specificity. c Comparing the effect of all versus common
features upon the trained on SVM: all features result in higher sensitivity and specificity. F-score is defined as the harmonic mean between sensitivity
and specificity. d Linear SVM feature weights illustrated as word clouds. Red features are informative for low quality and green features for high
quality cells
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Fig. 5 Classification accuracy of other cell types and protocols. a, b Sensitivity and specificity of each dataset considering (a) all features, (b)
common features. c Number of annotated damaged cells based on C1 capture-site visual inspection and the corresponding detection rate using
common features. Dark colors indicate improvement when deceptive cells are re-labeled as low quality cells
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previous results (Figs. 2 and 3), genes related to mtDNA
were upregulated in low quality cells, as well as the
ERCC/mapped reads ratio. This suggests that these cells
are broken and thus of low quality.
We also tested our mouse SVM model on human

cancer cells and observed that it performed best (65 %
accuracy based on prior feature-based PCA annotation)
when excluding genes relating to Cytoplasm as a fea-
ture. PCA on a combination of our mouse training
set and the human cancer samples revealed that the Cyto-
plasm feature separated the two species (Additional file 7:
Figure S4E). This means that an SVM model trained on
mouse cells cannot be directly applied to human cancer
cell lines.
Above, we treated deceptive cells as low quality in all

datasets. Now, we ask how the classifier performs when
it is trained on data where they are, as initially thought,
annotated as being of high quality. We measured the
number of detected visibly damaged cells twice: Once by
labeling deceptive cells as high quality, and a second
time as low quality (both trained on common features).
We then calculated the number of additionally detected
damaged cells for each cell type. As expected, when de-
ceptive cells are labeled as low quality, additional visibly
damaged cells were detected (Fig. 5c). Overall, this con-
firms that deceptive cells do need to be treated as low
quality and that they improve sensitivity. These results
confirm that the PCA-based version and our SVM
model are able to remove low quality cells from datasets
of various cell types and protocols.

Discussion
scRNA-sequencing experiments generate an enormous
dataflow that needs to be stored and processed systemat-
ically. Our pipeline offers simple options to enable inex-
perienced command line users to process a large
number of cells. It can be parallelized for rapid process-
ing of thousands of cells, and identical parameters can
be applied to ensure comparability. Users have the abil-
ity to combine modules of the pipeline and easily choose
the appropriate mapping and quantification tool (Fig. 1b).
The pipeline can be run on an internal cluster or on
Amazon’s AWS cloud. This enables scientists without
large computing facilities to process large amounts of
data.
Once the data are processed, low quality cells need to

be removed. The number of low quality cells will vary
depending on the experimental setting. Most of the data
we used contained between 10 % and 40 % low quality
cells (Additional file 1: Figure S1B). With microfluidic
capture methods visual inspection under the microscope
allows identification of wells containing broken, empty,
and multiple cells to be found. However, continuous
improvements in library preparation protocols and

decrease in sequencing costs are enabling thousands of
single cells to be sequenced in parallel. Determining the
quality of each cell through visual inspection will there-
fore become impractical if not unfeasible. Even if one
does take the time: some will appear intact but are in
fact low quality (deceptive cells; Fig. 3). Similarly, multi-
ples that are stacked (one over the other) will appear as
single cells. Fluidigm have published a white paper
reporting up to 30 % of multiples present in their stud-
ied data (through dual-fluorescent coloring of a mixture
of mouse and human cell types) [40]. They suggest that
two independent operators image each capture site at
40× magnification with Z-stacking [40]. Some, non-
microfluidic capture technologies do not support micro-
scopic inspection, making it even harder to filter out low
quality cells. This emphasizes the need for some meta-
data about cells for any capture technology. We have
shown that there are biological and technical features
within the sequencing data that allow automatic identifi-
cation of the majority of low quality cells (Fig. 2).
PCA and subsequent outlier detection of features im-

proves visualization of low quality cells compared to
traditional methods (Fig. 4a). However, this is not ideal
for reliably discarding the majority of low quality cells.
In the case of faulty capture devices or low capture effi-
ciency, many low quality cells will be contained in a
dataset. Visualizing such data would yield dense clouds
of low quality cells. Hence, outlier detection algorithms
would treat them as high quality.
Therefore, we developed a supervised classification

approach and showed that it performs very well on
all datasets and is capable of removing a higher num-
ber of low quality cells compared to other methods
(Figs. 4b, 5).
Using all features, the classifier removes the majority

of low quality cells, including multiples (Fig. 5). More-
over, it removes a subtype of low quality cells that can-
not be detected under the microscope (Fig. 3). It appears
that these cells are damaged enough for transcript loss
to occur and to produce stress signals, but still appear
reasonably intact upon microscopic inspection. Import-
antly, the impact of this subtype on downstream data in-
terpretation can be large (Fig. 3d-f ).
Applying the classifier to other cell types overall works

reasonably well when using common features (Fig. 5b).
Nevertheless, datasets with high numbers of multiples
remain hard to identify when training the classifier using
only the common features. Similarly, applying the classi-
fier to cells collected from distinct cell-types or from
species that are not closely related to that from which
the classifier was built, remains challenging. To over-
come these issues, users have the possibility to extract
features independently prior to performing the classifica-
tion. These or other additional features, in combination
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with cell annotations, can then be used to train a new
model that targets a certain cell type or protocol, thus
improving accuracy. To do this, annotating only a frac-
tion of the cells would be sufficient to classify the
remaining cells with high accuracy [8].
Overall, our approach allows the majority of low qual-

ity cells to be discarded, regardless of whether any prior
annotation exists. Using correctly annotated cells is im-
mensely important when training the classifier: wrong
annotation will very likely yield poor performance. In
the future, our model could be further improved by
more detailed annotations of cells, larger datasets, and
perhaps using alternative computational classification
methods.

Methods
Implementation of pipeline
The pipeline is a fast and simple Python script, imple-
mented to be executable as independent modules. The
number of required pre-installed packages is very low,
making it portable and easily executable. It supports the
following mapping tools: Bowtie1 [41], Bowtie2 [42],
BWA1 [43], BWA2 [44], GSNAP [45], STAR [46],
TopHat1 [47], and TopHat2 [48]. It supports two quan-
tification tools: HTSeq [49] and Cufflinks [50]. All pre-
sented datasets (except the UMI data) were processed
with the pipeline. Reads were mapped to the Mus mus-
culus genome (Ensembl version 38.73) using GSNAP
[45] (version 2013-02-05) and HTSeq [49] (version 0.6.1)
for gene expression quantification.

Normalization of raw read counts
To ensure that each cell can be classified independently
we normalized raw reads of each cell by dividing each
gene by the total number of mapped reads (excluding
reads mapped to ERCC). Normalization approaches, such
as the commonly used DESeq size factor normalization
[32] are not appropriate for classification: size factors are a
result of calculating a reference sample and taking the me-
dian gene of each cell that deviates from that reference.
Doing this independently on the training set and on a pre-
diction set of samples could lead to biased classification
results. Thus by simply accounting for the total number of
reads in each cell datasets can be easily normalized with-
out considering the training set.
Additionally, as we do not use genes but quality fea-

tures, normalization becomes less of an issue. To gener-
ate biological features, we grouped the genes into GO
terms. We then summed up counts of all genes for each
GO term and divided the counts by the total number of
mapped reads. In other words, we calculated the proportion
of reads mapping to groups of genes (ignoring overlaps)
representing each GO category, and used this proportion
for training the SVM.

TPM normalization
As an alternative to raw read counts produced by HTSeq
[49], we also support transcripts per million (TPMs) as in-
put for our PCA-based and SVM version. We were not
able to detect substantial differences in performance when
comparing to raw read counts (Fig. 4 and Additional file
6: Figure S3C). To get TPMs we first used Cufflinks [50]
to generate FPKM (fragments per kilobase of transcript
per million) and transformed these to TPM values. To cal-
culate TPM values for biological features (for example,
mtDNA) we summed up all TPM values of genes belong-
ing to one particular group.

Determining functional categories with differential gene
expression
To test differences in expression between low and high
quality cells, we compared two sets of expression values for
each GO term using a two-sided paired t-test. In addition,
we determined differentially expressed genes using both the
DESeq [32] and Piano [51] package available on Bioconduc-
tor. Cell-to-cell variation for each GO term was also deter-
mined by calculating the two-sided paired t-test on the
previously described [26] DM values. The associations be-
tween GO terms and their child terms were obtained from
the GO.db annotation Bioconductor [38] package.

Accuracy measurements
Sensitivity and specificity were calculated as follows:

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

;

where true positives (TP) are the number of low quality
cells and true negatives (TN) are the number of high
quality cells. This defines sensitivity as the proportion of
correctly classified low quality cells, and specificity as
the proportion of correctly identified high quality cells.
Total accuracy was calculated as follows:

Accuracy ¼ TNþTP
TNþTPþFNþFP . The training set (960 mES

cells) contained an imbalanced class distribution (80
TN/20 TP) and therefore total accuracy was not
ideal for performance measurements. Instead, we calcu-
lated a harmonic mean between sensitivity and specificity

called the Fβ Score: Fβ ¼ 1þβ2ð Þ�TP
1þβ2ð Þ�TPþβ2�FNþFP

.

The score outputs values between 0 and 1, where 1
means 100 % sensitivity and specificity. Assigning β = 2
achieved highest accuracy rates when comparing per-
formance of nested cross-validation with different β. We
also tested Matthews correlation coefficient [52] (MCC)
score, an alternative to F-score, which performed poorly
on our datasets.
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SVM classification of low quality cells
For classification we used the functions provided in the R
package ‘e1071’ [53]. To determine SVM-classification
model stability we performed nested cross-validation
(Additional file 6: Figure S3). Nested cross-validation min-
imizes overfitting and allowed us to measure sensitivity
and specificity in each fold. This procedure consists of two
loops. The outer loop splits the data into 10 folds and uses
one fold to measure sensitivity and specificity. The inner
loop splits the other nine folds again into 10 folds to esti-
mate optimal hyperparameters. We picked the highest F1-
score (harmonic mean between sensitivity and specificity) in
each inner fold to optimize hyperparameters. Simply choos-
ing the parameters with the highest total accuracy would
have led to low sensitivity because the training dataset has
an imbalanced distribution of high and low quality cells (80
and 20, respectively). We then used the accuracy rate for
each fold to determine the final accuracy (Fig. 4b, c).
We used a radial kernel that transforms the data to

higher dimensions to ensure more accurate classifica-
tion. We also tested linear kernel and observed a small
drop in classification accuracy. To obtain optimal pre-
diction accuracy we estimated hyperparameters. These
comprise gamma, cost, and class weights to account for
the imbalanced class distribution. We applied nested
cross-validation to narrow down possible choices of
hyperparameters. For each parameter, we then retrieved
an F-score prior to bootstrapping the data. The highest
score was the criterion to choose the best parameter.

Model ensemble
Research in the field of machine learning has shown that
classification accuracy can be improved by combining
different classification models. This combination is re-
ferred to as a model ensemble. To retrieve an ensemble,
we applied the above described hyperparameter estima-
tion 50 times. Performing hyperparameter estimation
multiple times shuffles the training and validation data-
sets, which results in different parameters as output.
Therefore, our ensemble consists of 50 models with differ-
ent hyperparameter combinations. To predict a single data
point, each model outputs a class prediction value and a
majority voting scheme determines the final outcome.

Count transformation for UMI datasets
To convert the absolute number of transcripts of an
scRNA-seq dataset generated using a UMI protocol to
the number of reads, we modeled the relationship be-
tween the independent variable xi (the mean number of
transcripts of gene i) and the dependent variable yi (the
mean number of reads of gene i from the 960 mESCs
training set) using a cubic polynomial regression, where
we added a pseudo count of 0.1 to both xi and yi and
log-transformed the data. The polynomial regression

coefficients were estimated by the nlsLM function in the
minpack.lm R package.

Data availability
To ease usability, we developed an R package, which
contains functions to extract all necessary classification fea-
tures from single-cell gene expression data. The package vi-
sualizes outliers, which were initially annotated as high
quality. Additionally, it offers the ability to automatically fil-
ter out low quality cells by using our previously trained
SVM model. This gives the user the flexibility to combine
this algorithm with prior annotation to identify deceptive
cells (Fig. 3), or if no annotation is available, to automatically
remove low quality cells. Moreover, the R package is built
into the processing pipeline. This enables the user to auto-
matically filter out low quality cells whilst data is being proc-
essed. In this way, even inexperienced users can process
thousands of cells by using only a single simple command.
The R package is available on our GitHub repository under
https://github.com/ti243/cellity and the Python pipeline can
be found under https://github.com/ti243/celloline. Both soft-
ware tools fall under the GNU General Public License 3.0.
The data are available under following Array express

accessions.

training set mES [26]: E-MTAB-2600
mES [9]: E-MTAB-3749
Th2 [13]: E-MTAB-1499
BMDC [8]: E-GEOD-48968
UMI (Islam et al., 2014 [22]): E-GEOD-46980
mES2 + 3: anonymized, published elsewhere
CD4+ T cells: anonymized, published elsewhere

Ethics approval
Does not apply to this work and therefore is irrelevant.

Additional files

Additional file 1: Figure S1. Overview of single cell RNA sequencing
datasets. (A) Total number of cells per dataset. (B) Number of high quality
and low quality cells per dataset. (C) Proportion of each type of low
quality cells (broken, empty, multiple). (D) Number of cells for 2i/LIF,
alternative 2i/LIF, and serum/LIF condition for the training dataset
(960 mESCs). (PDF 441 kb)

Additional file 2: Table S1. Quality annotation of cells for all tested
datasets. (XLSX 146 kb)

Additional file 3: Table S2. P values of two-sided paired t-test comparing
expression and noise level, between each type of low quality cell for
different GO-terms (training mES dataset). (XLSX 2641 kb)

Additional file 4: Table S3. P values of t-test comparing features
between each type of low quality and high quality cells (training mES
dataset). (TXT 1 kb)

Additional file 5: Figure S2. Additional technical features and subsets
of data. Boxplots comparing (A) ratio of of duplicated reads/exonic (B)
ratio spike-in/exonic expression between high quality and multiple,
broken, empty cells. (C) PCA of features using only 25 % of data shows
identical results compared to using all data. (D) Comparison of two

Ilicic et al. Genome Biology  (2016) 17:29 Page 13 of 15

https://github.com/ti243/cellity
https://github.com/ti243/celloline
dx.doi.org/10.1186/s13059-016-0888-1
dx.doi.org/10.1186/s13059-016-0888-1
dx.doi.org/10.1186/s13059-016-0888-1
dx.doi.org/10.1186/s13059-016-0888-1
dx.doi.org/10.1186/s13059-016-0888-1


microscopic images of a single C1 capturing site containing one intact
and one deceptive cell, respectively. (PDF 1026 kb)

Additional file 6: Figure S3. Post-QC outliers and SVM performance
evaluation. (A) Visualization of low and high quality cells after outlier
detection with traditional and with our PCA feature-based methods (B)
Schematic of nested cross-validation. The training set was split twice into
10 folds. The inner folds were important to estimate optimal hyperparameters,
whereas the outer folds served to measure accuracy. Optimal hyperparameters
were saved for later use. (C) Sensitivity and specificity of feature-based PCA
and SVM using TPM values. (PDF 558 kb)

Additional file 7: Figure S4. Datasets distant from mES training data.
(A) Comparing log normalized UMI counts (y-axis) and log normalized
read counts (x-axis) for each gene in 960 mESCs. (B) PCA of first two
principal components of all features. Low quality cells separate from high
quality cells. (C, D) PCA plot of features of two published human cancer
cell datasets [28, 53]. Boxplots on the left and bottom show the top three
features separating low from high quality cells for PC1 and PC2,
respectively. They align with our previous findings that the mtDNA and
ERCC to mapped reads ratios are upregulated in low quality cells. (E)
Feature-based PCA combining mouse ES training set and two published
human cancer datasets. ‘Cytoplasm’ separates not only the human from
the mouse but also the two different cancer samples from each other,
meaning that the features trained on mouse cells are not directly
transferrable to human cancer cells. (PDF 591 kb)
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