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Abstract

The rapidly increasing quantity of genome-wide
chromosome conformation capture data presents
great opportunities and challenges in the
computational modeling and interpretation of the
three-dimensional genome. In particular, with recent
trends towards higher-resolution high-throughput
chromosome conformation capture (Hi-C) data, the
diversity and complexity of biological hypotheses that
can be tested necessitates rigorous computational and
statistical methods as well as scalable pipelines to
interpret these datasets. Here we review computational
tools to interpret Hi-C data, including pipelines for
mapping, filtering, and normalization, and methods for
confidence estimation, domain calling, visualization,
and three-dimensional modeling.
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Introduction

Now, more than ever, it is recognized that the three-
dimensional organization of chromatin affects gene
regulation and genome function. Capturing chromosome
conformation, first at the level of single locus (3C, 4C)
[1-4] or a set of loci (5C, ChIA-PET) [5, 6], and then
genome-wide (Hi-C) [7-9], made it possible to link chro-
matin structure to gene regulation [10-18], DNA replica-
tion timing [19-21], and somatic copy number alterations
[22, 23]. Furthermore, genome-wide conformation cap-
ture studies reveal conserved structural features that are
now accepted as organizing principles of chromatin fold-
ing [7, 15, 18, 24]. Hi-C data have also proved to be useful
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in many other applications, ranging from genome assem-
bly and haplotyping [25-27] to finding the coordinates
of centromeres and ribosomal DNA (rDNA) [28, 29]. See
[7-9, 18, 24, 30] for detailed descriptions of how the
Hi-C assay and its variants work. Briefly, the traditional
Hi-C assay consists of six steps: (1) crosslinking cells with
formaldehyde, (2) digesting the DNA with a restriction
enzyme that leaves sticky ends, (3) filling in the sticky ends
and marking them with biotin, (4) ligating the crosslinked
fragments, (5) shearing the resulting DNA and pulling
down the fragments with biotin, and (6) sequencing the
pulled down fragments using paired-end reads. This pro-
cedure produces a genome-wide sequencing library that
provides a proxy for measuring the three-dimensional
distances among all possible locus pairs in the genome.

We discuss below the processing pipelines, tools, and
methodologies for analysis of Hi-C data. Understanding
how these Hi-C analysis methods work and the available
options to perform each analysis step is becoming more
important with the increasing number and variety of Hi-C
datasets. Currently, Hi-C data are available for a wide
variety of organisms, such as yeasts [8, 28, 31-33], bacteria
[34], fruit fly [30, 35, 36], plants [37—39], malarial para-
sites [16, 40], and numerous human and mouse cell lines
[7, 15, 18, 24, 41-44].

Mapping, filtering, and classification of Hi-C reads

The initial processing step for Hi-C data typically con-
sists of trimming of reads (if necessary), mapping the
reads to the corresponding reference genome with assay-
specific pre- and post-processing to improve the percent
of mapped reads, and filtering of the mapped reads and
read pairs at several different levels. We outline below
the details of several mapping and filtering approaches
used for Hi-C data. Note that, to distinguish between
single-end and paired-end reads, we will refer to them as
‘reads’ and ‘read pairs’, respectively.

Mapping
The two ends of a paired-end Hi-C read ideally corre-
spond to locations that are far apart along the genome. In
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other words, most sequence fragments in a high-quality
Hi-C library are composed of DNA from two or more
non-contiguous loci. Such fragments are referred to as
chimeras. When the two ends of a long chimeric frag-
ment are sequenced, if the ligation junction falls near the
middle of the fragment, then each of the resulting reads
will map to a different location in the genome. How-
ever, if the ligation junction happens to fall within one of
the sequenced ends of the fragment, then the read itself
will be chimeric. Furthermore, if the parent fragment is a
chimera involving more than two genomic loci, then both
reads can potentially be chimeric. The frequency of such
chimeric reads depends heavily on several factors, includ-
ing the size-selection step and the read length used for
sequencing [18, 45].

Partly as a result of this dependence and partly because
of interpretation differences, there are now many pro-
posed ways to handle mapping of Hi-C reads. The sim-
plest approach is to filter out any read that does not fully
map to the genome because it is chimeric. This approach
may be acceptable when size-selected fragments are very
long (800 bp) and read length is relatively short (50 bp)
[30]. However, shorter fragment lengths and longer reads
are more commonly used in Hi-C experiments. For
instance, using the 4-cutter restriction enzyme Mbol, size
selecting for 300-500 bp fragments and sequencing with
101 bp reads leads to approximately 20 % of sequenced
read pairs with at least one chimeric end [18]. We are
aware of at least four different ways to ‘rescue’ information
from such chimeric Hi-C reads. Two of these alternatives
pre-process reads before initial mapping and the other
two post-process the results after an initial attempt to
map all reads at their full lengths. Instructions for these
methods are as follows.

Pre-truncation: Pre-process all the reads and truncate
the ones that contain potential ligation junctions to keep
the longest piece without a junction sequence [46] (Fig. 1a,
blue box). For restriction enzymes that leave sticky ends,
the ligation junction sequence is a concatenation of two
filled-in restriction sites (for example, AAGCTAGCTT
for HindIII that cuts at A|JAGCTT and GATCGATC for
Mbol that cuts at GATC]).

Iterative mapping: Trim the reads to only keep the
25 bp-long 5’ portion. If this portion fails to map uniquely
then repeat the mapping attempt by adding 5 bp to the
read at each iteration until the full read length is reached
(Fig. 1a, pink box) [47].

Allow split alignments: For mapping use a short-read
aligner that allows split alignments within a read (such
as BWA’s bwa-sw mode [48]). Identify reads that fully
align and that align in split mode and post-process
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the latter category to only keep the ‘unambiguous’
read pairs that have one end mapping to two loci A
and B and the other end mapping to either A or B
(Fig. 1a, green box) [18].

Splitif not mapped: Attempt to map all the reads at their
full lengths using the regular mode of an aligner (such as
BWA’s aln (48] or Bowtie [49]). Among the non-mapped
reads, identify the ones containing exactly one restriction
site, break such reads into two pieces and map each piece
independently back to the genome. This approach allows
the identification of simultaneous contacts among three
or four loci, which can then be broken into pairs [45].
Note that the search for a restriction site is valid only for
protocols that skip the end repair step or use a blunt end
restriction enzyme (such as Alul that cuts at AG|CT). For
traditional Hi-C libraries, this step needs to be replaced by
a search for the ligation junction sequence.

Read-level filtering

Once the individual reads are mapped to the genome, the
next step is to decide which of these mapped reads to
‘trust’ The first step is to apply standard filters on the
number of mismatches (usually none allowed), mapping
quality (MAPQ score), and uniqueness of the mapped
reads, similar to any other sequencing-based assay. The
second step is to create a list of all possible restriction
sites (not to be confused with ligation junction sequences)
in the reference genome and to assign each read to the
nearest restriction site. It is important to note that the
number of restriction sites can be high (for the human
genome > 800,000 and > 7 million for HindIII and Mbol,
respectively), necessitating the use of scalable methods
such as binary search to find the nearest restriction site
for each read. In the third step, the distance between
each read’s start coordinate and the nearest restriction
site is used to filter out reads that do not agree with the
size-selection step (Fig. 1b).

Read-pair level filtering

In most Hi-C pipelines, read pairs for which both ends
successfully pass through the initial filters are further
segregated into several categories. The aim of this classi-
fication is to identify and proceed further with only the
pairs that provide information about three-dimensional
chromatin conformation beyond linear proximity among
regions. We will refer to these as ‘informative pairs’. These
read-pair level filtering approaches can be categorized
into two main groups, strand and distance filters (Fig. 1c).
Many Hi-C pipelines use a combination of the two
approaches to ensure stringent filtering of all possible
artifacts.
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Strand filters: De novo ligations introduced by the Hi-C
protocol should have no preference for a specific strand
combination or orientation and result in paired-end
reads with each end coming from a different restriction
fragment. Figure 2 of Lajoie et al. [50] provides a detailed
description of all possible orientation combinations aris-
ing from Hi-C read mapping. Briefly, there are two main
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cases: either the read pair falls within the same restric-
tion fragment or in two distinct restriction fragments.
Regardless of the strand combination, a read pair coming
from a single restriction fragment is uninformative of
chromatin conformation and should be filtered out.
For the second case, in which a read pair links two
distinct fragments, Fig. 1c illustrates all possible strand
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Fig. 2 Impact of normalization on Hi-C contact maps. a, b Hi-C contact maps of chromosome 8 from the schizont stage of the parasite Plasmodium

falciparum [16] at 10 kb resolution before and after normalization. Blue dashed lines represent the centromere location. ¢, d Density scatter plots of

counts before (x-axis) and after (y-axis) normalization of Hi-C data from the human cell line IMR90 [15] at two different resolutions. Correlation values
are computed using all intra-chromosomal contacts within human chromosome 8. Only a subset of points are shown for visualization purposes
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combinations. In this case, if two read ends either point
towards (inward orientation (+/—)) or away from each
other (outward orientation (—/+)), the corresponding
pair is a valid pair that is informative of chromatin
conformation. The remaining same-strand pairs (+/+
or —/—) could either be valid pairs or artifacts that come
from undigested chromatin. Such pairs from undigested
chromatin will correspond to a distance between the
two mapping coordinates that is small and consistent
with the size of fragments that are selected by the size-
selection step. Detailed analyses of strand-related biases
suggest filtering inward and outward pairs separated
by < 1 kbp and < 25 kbp distances, respectively [42]. Sev-
eral recently published studies [18, 42] provide metrics
to quantify strand-related biases and suggest additional
filtering schemes for processing high-resolution Hi-C
data.

Distance filters: Most, if not all, of the read pairs dis-
carded by strand filters are intra-chromosomal pairs sep-
arated by short genomic distances. Therefore, one way
to achieve read-pair level filtering is to simply filter out
intra-chromosomal pairs below a certain distance thresh-
old. This distance-based filter was widely used for earlier
Hi-C data because it is fairly effective for low resolution
Hi-C studies [7, 8]. The distance threshold is empirically
set at 20-25 kb or larger. However, this approach dis-
cards, in addition to artifacts such as self ligation products
or undigested chromatin, potentially interesting contacts
occurring within this distance range (Fig. 1c). Another
downside of a simple distance threshold is its inability
to detect certain artifacts, such as self-ligations for very
long (> 25 kb) fragments.

One last filtering step is the identification and removal
of duplicated read pairs. Because reads produced by stan-
dard Hi-C assays come from a population of cells, these
duplicates may indeed be valid read pairs from different
cells or PCR duplicates of a read pair from one single cell.
Lacking a method to distinguish between these two cases,
current practice is to simply discard all but one pair from a
set of duplicates. This approach avoids any potential PCR
artifacts at the expense of losing some potentially informa-
tive read counts. However, because of the high complexity
of Hi-C libraries, the duplicate percentage is generally very
low. Duplicate removal can be carried out by Picard [51]
or a simple shell script.

Table 1 summarizes currently available Hi-C tools and
pipelines, and indicates which processing steps can be
performed with each tool. Comprehensive and up-to-date
lists of these tools are available from Omictools [52] and
the Structural Genomics group at CNAG, part of the
Spanish Center for Genomic Regulation [53]. Some of
these tools focus more on the initial steps such as map-
ping and filtering (such as HiCUP and HiC-inspector),
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whereas others focus on downstream analysis tasks such
as normalization, visualization, and statistical confidence
estimation. The latter tasks are described below.

Normalization of Hi-C contact maps

Not long after the first Hi-C datasets became available
[7, 8], several sequence-dependent features were shown
to substantially bias Hi-C readouts [54]. These include
biases that are associated with sequencing platforms (such
as GC content) and read alignment (such as mappabil-
ity), and those that are specific to Hi-C (such as fre-
quency of restriction sites). Discovery of these biases led
to several normalization or correction methods for Hi-C
data [47, 54-59].

Before discussing these methods, it is necessary to
describe how the data are represented in matrix form. A
contact map is a matrix with rows and columns repre-
senting non-overlapping ‘bins’ across the genome. Each
entry in the matrix contains a count of read pairs that
connect the corresponding bin pair in a Hi-C experiment.
These bins can be either fixed-size genomic windows or
can correspond to a fixed number of consecutive restric-
tion fragments (Fig. 1d). The binning step consists of
determining the binning type (fixed-size or restriction-
fragment-based) and bin size that is appropriate given the
sequencing depth in hand, assigning each valid pair that
passed all filters to a specific bin pair, and incrementing
the count in the corresponding matrix entry. Determining
the appropriate bin size is an important task and involves
a tradeoff between resolution and statistical power. Sev-
eral published studies use multiple bin sizes to analyze a
single set of Hi-C data. Even though there are no clear
guidelines yet, a recent study suggests using a bin size that
results in at least 80 % of all possible bins having more than
1,000 contacts [18]. According to this criterion, approxi-
mately 300 million mapped reads are needed to achieve
10 kb resolution for the human genome, assuming that all
reads are uniformly distributed across the genome. How-
ever, this criterion suggests a linear relationship between
resolution and sequencing depth, which does not hold for
two-dimensional Hi-C data. An alternative would be to
use a similar cutoff-based measure on the density of either
the cis- or the trans-contact matrices instead of total con-
tact counts per locus. Once the bin size is determined
and the binning is done, the resulting raw contact map
Fig. 2a serves as the input for the normalization methods
described below.

Explicit-factor correction

Normalization methods of this type require a priori
knowledge of the factors that may cause bias in Hi-C
data. Yaffe and Tanay identify three such factors and
develop a joint correction procedure that models the
probability of observing a contact between two regions



Ay and Noble Genome Biology (2015) 16:183

Table 1 Software tools for Hi-C data analysis
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Short-read Mapping Read Read-pair o o Confidence  Implementation
Tool aligner(s) improvement  filtering  filtering Normalization Visualization  otimation language(s)
HICUP [46] Bowtie/Bowtie2  Pre-truncation v/ v - — — Perl, R
Hiclib [47] Bowtie2 [terative va v Matrix balancing v — Python
HiC-inspector [131]  Bowtie - v v - v — Perl, R
HIPPIE [132] STAR vb v v — — — Python, Perl, R
HiC-Box [133] Bowtie2 — v v Matrix balancing v - Python
HiCdat [122] Subread ¢ v v Three optionsd v — C++R
HiC-Pro [134] Bowtie2 Trimming v v Matrix balancing — - Python, R
TADbit [120] GEM [terative v v Matrix balancing v — Python
HOMER [62] — - v v Two options® v v Perl, R, Java
Hicpipe [54] — — - — Explicit-factor - — Perl, R, C++
HiBrowse [69] — — - - - v v Web-based
Hi-Corrector [57] - — - - Matrix balancing - — ANSIC
GOTHIC [135] - — v v - - v R
HITC [121] - - - - Two options’ v v R
chromoR [59] — - - - Variance stabilization — - R
HiFive [136] — — v v Three options? v — Python
Fit-Hi-C [20] - - - - - v v Python

@Hiclib keeps the reads with only one mapped end (single-sided reads) for use in coverage computations

PHIPPIE states that it rescues chimeric reads. No details are given

“HiCdat reports no substantial improvement in successfully aligned read pairs when iterative mapping in Hiclib is used for Arabidopsis thaliana Hi-C data

dHiCdat provides three options for normalization: coverage and distance correction, HICNorm and ICE

®HOMER provides two options for normalization: simpleNorm corrects for sequencing coverage only and norm corrects for coverage plus the genomic distance between loci
fHITC provides two options for normalization: normLGF implements HICNorm and normICE implements ICE algorithm from Hiclib

9HiFive provides three options - Probability, Express, and Binning - for normalization. The Express and Binning algorithms correspond to matrix balancing and explicit-factor

correction schemes, respectively

given their genomic features, such as GC content, map-
pability, and fragment length that are shown to affect
contact counts [54]. A later method, HiCNorm [55], pro-
vides a significantly faster explicit correction method
by using regression-based models (either negative bino-
mial or Poisson regression) while achieving similar nor-
malization accuracy to that of the Yaffe and Tanay
method.

Matrix balancing

Another approach to normalization is to correct for all
factors that may cause biases without explicitly modeling
them. Methods of this type rely on the important assump-
tion that if there were no bias then each locus in the
genome would be ‘equally visible’ or, in other words,
give rise to an equal number of reads in a Hi-C exper-
iment. This assumption, of which we will later discuss
the ramifications, transforms the normalization to a
matrix balancing problem where the aim is to find a
decomposition of the observed contact map O = pT'T
b such that b is a column vector of bias terms and T is
a normalized contact map in which all rows have equal

sums. This matrix balancing problem has been studied
for several decades in many different contexts (see the
Supplemental Information of [18] for a detailed discus-
sion). In the context of Hi-C, Imakaev et al. proposed an
iterative method abbreviated as ICE [47], which applies a
previously described algorithm [60] repeatedly to achieve
the desired decomposition. Cournac et al. also proposed
a very similar iterative correction method for Hi-C data,
which they named Sequential Component Normaliza-
tion. More recently, Rao et al. [18] used a much faster
matrix balancing algorithm by Knight and Ruiz [61] to
normalize their high-resolution Hi-C datasets sequenced
using billions of reads. Development of scalable and
memory-efficient tools for normalizing high-resolution
Hi-C contact maps using matrix balancing is still an
ongoing effort [57].

Joint correction

The strongest determinant of how many contacts are
observed between a pair of regions on the same chromo-
some is the genomic (one-dimensional) distance between
them. This is an unsurprising outcome of polymer
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looping, which dictates that regions adjacent to each other
in one dimension cannot be far away in three-dimensional
space. Although many methods consider this polymer
looping effect later in the Hi-C data analysis [18, 20, 62],
some others jointly ‘normalize’ for this one-dimensional
distance effect during the normalization for the above
mentioned biases. For instance, GDNorm extends the
Poisson regression framework of HiCNorm to include
spatial (three-dimensional) distances in normalization,
which the method achieves by restricting the space of
possible three-dimensional distances using genomic or
one-dimensional distance information [58]. In other work,
Jin et al. [42] adapt Yaffe and Tanay’s method [54] to cor-
rect for both the biases pointed out by the original method
and also for the genomic distance between two loci on the
same chromosome that are at most 2 Mb apart.

Overall, these studies show that normalization is essen-
tial for Hi-C data. Normalized contact maps are visually
smoother than their raw versions, making it easier to spot
potentially interesting contact patterns (Fig. 2a, b). Fur-
thermore, normalization significantly improves the repro-
ducibility between replicates of a Hi-C library created with
two different restriction enzymes [47, 54, 55, 59]. In gen-
eral, the raw and normalized contact counts are highly
correlated for low resolution data. However, this corre-
lation drops with increasing resolution, suggesting that
normalization is even more important for high-resolution
Hi-C datasets (Fig. 2c, d).

Even though several different normalization methods
produce highly similar outputs [47, 55], each normaliza-
tion method requires invoking some debatable assump-
tions. For instance, explicit-factor correction methods
assume that only a predetermined set of biases exist
in the data and that these biases can be corrected
using a single-step visibility correction [54, 55]. In con-
trast, matrix balancing methods aim to eliminate all
biases, known or unknown, through an iterative cor-
rection of visibility that leads to a uniform cover-
age of each fixed-size genomic window. However, the
assumption that ‘equal visibility equals no bias’ can
be problematic when certain regions have mappability
issues or are inherently limited in their ability to form
long-range contacts [63, 64]. To alleviate these issues, a
pre-filtering step for loci with very low visibility and a
post-normalization visual inspection is usually necessary
to avoid occasional artifacts from matrix balancing-based
methods [47, 50].

Aside from these limitations, most current implemen-
tations of the normalization methods discussed here can-
not directly handle high-resolution human Hi-C data
below 10 or 50 kb resolution without using parallel com-
puting or graphics processing units (GPUs), which are
more powerful than standard central processing units
(CPUs) [18, 57].
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Extracting significant contacts

A unique aspect of chromatin conformation capture
data is that it enables us to search for long-range
contacts, either between locus pairs that are on the
same chromosome but far from each other (long-
range intra-chromosomal) or on different chromosomes
(inter-chromosomal). Identifying statistically significant
inter-chromosomal contacts is straightforward because,
once biases are eliminated by normalization, in the
absence of any prior information on the pairwise dis-
tances among chromosomes, all possible pairs of inter-
chromosomal loci are expected to interact equally under
the null hypothesis. However, the number of contacts
between two intra-chromosomal loci depends heavily on
the genomic distance between the loci. This dependence is
mainly due to random looping of the DNA rather than for-
mation of specific chromatin loops. Therefore, one needs
to control for this random polymer looping when assign-
ing statistical significance to the observed contact counts.
Below we outline several approaches to significance esti-
mation that take into account the distance dependence of
contact counts.

Observed/expected ratio

One way to account for the distance dependence of con-
tact counts is to bin together all pairs of loci with the same
or similar genomic distances. Earlier Hi-C and 5C pro-
cessing methods used this approach to compute a ratio
[7], a p-value [8] or a z-score [65] for each contact count
with respect to the average number of contacts within
a genomic distance bin. Using a similar approach, more
recent methods create background models of contact
counts that take into account the distance scaling, domain
organization and other biases corrected by the normaliza-
tion methods [30, 62]. These background models are then
used to compute observed/expected ratios that are either
subjected to ad hoc enrichment cutoffs or are transformed
to p-values or z-scores.

Parametric fits

Another approach is to assume that a specific distribution
captures the distance dependence of contact counts and
to perform parameter estimation to find the best fit to the
data. Previously used distributions include power-law [7],
double-exponential [31], and negative binomial [42]. Once
a parametric fit to the data is found, these methods com-
pute either an enrichment score or statistical significance
for each locus pair using their genomic distance and their
contact count.

Nonparametric fits

Instead of assuming a specific distribution, one can infer
the distance-dependence relationship using nonparamet-
ric methods, such as splines, directly from the observed
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contact counts. Compared with parametric fits, nonpara-
metric fits are more general in capturing the distance
dependence, which changes substantially with varying
resolution, genomic distance range, and sequencing depth
[20]. A recent method, Fit-Hi-C, uses smoothing splines
to find an initial fit, refines the initial fit to account for
bona fide (non-random) contacts, and computes con-
fidence estimates using the refined fit while incorpo-
rating biases computed by the matrix balancing-based
normalization methods [20]. The resulting p-values are
subsequently subjected to multiple testing correction.
Figure 3 displays examples of long-range chromatin loops
identified by Fit-Hi-C.

Peak detection

A more recent study approaches the problem of extracting
significant contacts as a two-dimensional peak detection
problem [18]. The method, called HiICCUPS, computes,
for each locus pair, the enrichment of its contact count
with respect to various neighboring regions. For high-
resolution contact maps, this enrichment calculation must
be carried out on the order of 10! times. To over-
come this computational challenge, in addition to the
CPU implementation, HICCUPS was also implemented
on GPUs. To overcome the statistical challenge of dealing
with such a large number of hypotheses, HICCUPS
segregates these hypotheses into families and carries
out multiple testing correction within each hypothesis
family [18].
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These methods attempt to distinguish between func-
tional contacts and contacts that are due to random
polymer looping or other confounding factors. Most of
these methods aim to find pairs that interact much more
than expected in the overall data. HICCUPS, on the other
end, is more stringent and finds only the contacts that
appear as peaks in the contact maps within the surround-
ing region. These contacts usually correspond to precise
anchoring points of highly stable chromatin loops. In
either case, accomplishing the task of confidence esti-
mation has important implications in identifying func-
tional interactions among enhancers and promoters, and
between pairs of CTCF binding sites that form chromatin
loops [11, 14, 18, 20, 65].

Testing three-dimensional colocalization of
functionally associated loci

Another important benefit of having genome-wide
proximity information is that it allows the testing of
hypotheses related to the nuclear localizations of a given
set of loci. The most common scenario is when one
wants to test whether a set of loci (for example, cen-
tromeres, housekeeping genes, or DNA breakpoints)
colocalize beyond ‘expected’ in three dimensions. Early
methods to test whether the colocalization of a set is
statistically significant used the hypergeometric approach
that computes the probability of observing the number of
pairwise interactions within the set among all observed
pairwise interactions [8, 66]. However, Witten and Noble
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Fig. 3 Visualization of Hi-C data. An Epigenome Browser snapshot of a 4 Mb region of human chromosome 10. Top track shows Refseq genes. All
other tracks display data from the human lymphoblastoid cell line GM12878. From top to bottom these tracks are: smoothed CTCF signal from
ENCODE [130]; significant contact calls by Fit-Hi-C using 1 kb resolution Hi-C data (only the contacts >50 kb distance and — log(p-value)<25 are
shown) [20]; arrowhead domain calls at 5 kb resolution [18]; Armatus multiscale domain calls for three different values of the domain-length scaling
factor y [87]; DIHMM TAD calls at 50 kb resolution [15]; and the heatmap of 10 kb resolution normalized contact counts for GM12878 Hi-C data [18].
The color scale of the heatmap is truncated to the range 20 to 400, with higher contact counts corresponding to a darker color
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subsequently pointed out certain issues with the hyper-
geometric approach and proposed a resampling-based
approach that produces uniformly distributed significance
estimates when randomly generated sets of loci are used
for benchmarking the statistical accuracy [67]. Witten and
Noble revisited the claims made previously using hyper-
geometric tests and demonstrated that some of the sup-
posedly colocalized sets of loci, such as target gene sets
of certain transcription factors [66], are not colocalized
more than expected when the resampling-based approach
is used [67].

One limitation of all the tests described above is
their inability to handle intra-chromosomal contacts. To
address this shortcoming, Paulsen et al. propose a test
that handles intra- and inter-chromosomal interactions,
both separately and jointly [68]. This method relies on
randomly selecting sets of regions that share the same
structural properties as the query set. In addition to
controlling for one-dimensional distance (or lack of it
for inter-chromosomal contacts), Paulsen et al. develop
a stricter null model that also controls for compart-
mental structure and the domain organization along
the chromosomes. These statistical tests, together with
others, are made available through a web-based tool,
HiBrowse [69].

All of the hypergeometric and sampling-based
approaches we have discussed so far perform the sig-
nificance tests using contact counts, and, usually, by
dichotomizing the pairs as ‘close’ or ‘far’ depending
on the contact’s statistical significance. Capurso et al.
suggest discarding this dichotomy by using pairwise
distances from the three-dimensional reconstructions of
chromosomes instead of contact counts [70]. However,
this approach depends on the ability to generate accu-
rate three-dimensional models, which is itself a topic of
ongoing research as we elaborate below.

Whether it is the two-dimensional contact maps or the
three-dimensional reconstructions used for testing spa-
tial colocalization, it is an important task to reveal clus-
tered elements, some of which serve as the hallmarks of
genome organization such as telomeres and centromeres
in yeasts [8, 28, 29, 31], virulence genes in Plasmodium
[16], and heterochromatic islands in Arabidopsis [39]. Fur-
ther developments in this line of computational work may
allow de novo identification of significantly colocalized or
dispersed sets of regions.

Identifying domains in Hi-C contact maps

In the genomics literature many types of regulatory
domains have been identified on the basis of specific
epigenetic marks [12, 71-73], DNA replication timing
[19, 21, 74], lamina associations [75, 76], nucleolus asso-
ciations [77], or a joint analysis of some of these factors
[78-83]. All of these domains are defined by specific
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patterns of one-dimensional signal tracks. With the avail-
ability of genome-wide Hi-C data, several novel domain
types have been identified that appear as specific patterns
in contact maps. These include open/closed chromatin
compartments identified by eigenvalue decomposition
[7, 47], subcompartments of these open/closed compart-
ments identified by clustering [18], and topologically asso-
ciated domains (TADs) identified as densely interacting
squares on the diagonal of the contact map [15, 84]. TADs
are of particular interest recently, and a variety of methods
have been developed to identify and characterize these
domains. Below we briefly discuss these methods to iden-
tify TADs from Hi-C data. For further discussion of other
domain types, see [63, 85, 86].

Directionality Index Hidden Markov Model (DI HMM)

A TAD creates an imbalance between the upstream and
downstream contacts of a region. This imbalance is an
indicator of whether a region is in the inside, at the
boundary, or far away from a TAD. Dixon et al. quan-
tify this imbalance in a statistic named directionality index
(DI) and use an HMM to determine the underlying bias
state for each locus (upstream, downstream, none) [15].
They then use these HMM state calls to infer TADs
as continuous stretches of downstream bias states fol-
lowed by upstream bias states. A region in between
two TADs is either called a boundary or unorganized
chromatin depending on the region’s length. Other stud-
ies also use directionality bias-based statistics to deter-
mine domain presence and domain coordinates in mitotic
human cells [43] and in fission yeast [32].

Domain borders as peaks of the distance-scaling factor
TADs also create unexpectedly low numbers of contacts
crossing the boundary regions. Sexton et al. use this
property to infer a distance-scaling factor for each restric-
tion fragment, which is high if the fragment insulates its
upstream regions from the downstream, effectively acting
as a much longer fragment than its actual size [30]. The
peaks in these distance-scaling factors then correspond
to boundaries of what they call physical domains for the
Drosophila melanogaster genome.

Multiscale and hierarchical domains

It is clear from visual inspection of contact heatmaps that
there are sub-structures within TADs that may also cor-
respond to hierarchical units of gene regulation or other
functions. Filippova et al. propose a dynamic program-
ming method called ‘Armatus’ to identify optimal and
near-optimal domains for a given resolution [87]. From
the resulting sets of resolution-specific domains, they
then identify a consensus set that consists of the domains
that are consistent across different resolutions. Both the
resolution-specific domains and the consensus domains
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are then used as TAD calls for downstream analysis.
Another dynamic programming method, HiCseg, com-
putes the optimal segmentation into TADs via a maximum
likelihood formulation [88]. However, HiCseg does not
readily allow identification of multiscale or hierarchical
domains.

Arrowhead algorithm

To make use of very high resolution contact maps, Rao
et al. propose a heuristic method to find the corners of
domains in the human and mouse genomes that are 4-5
times smaller than previously identified TADs [18]. This
method first transforms a contact map to an arrowhead
matrix in which each entry A;;;4 corresponds to the
directionality bias of locus i at only the exact distance d.
This matrix results in arrowhead shaped patterns at the
corners of domains. Rao et al. then heuristically search
for these arrowhead patterns using criteria derived from
known TADs.

Figure 3 plots the TAD calls from three of the above
methods for an approximately 1 Mb locus on chromo-
some 10 using Hi-C data for the human GM12878 cell
line. Some of these methods find substantially differ-
ent numbers of TADs with different length distributions
compared to the others. This difference is partly due to
the differences in the resolutions of the contact maps
used or the length of the flanking regions considered
in the algorithms (see [18] and [87] for comparisons of
Arrowhead algorithm and Armatus with DI HMM). How-
ever, these differences also indicate that using a single set
of non-overlapping domains may be a simplification, both
because of the potential heterogeneity of domain organi-
zation in the underlying cell population and because of
the hierarchical and dynamic organization of chromatin
that allows efficient folding and unfolding. For further
information on why TAD organization and its changes
are important in gene regulation and genome function,
see [89-91].

Three-dimensional modeling of chromatin
structure

In the absence of chromatin conformation capture data,
three-dimensional modeling of genome architecture can
be carried out using polymer physics simulations that rely
on a limited number of physical assumptions and param-
eters. Rosa et al. refer to such polymer models as ‘direct’
models of genome architecture, because they do not rely
on indirect measurements of chromatin structure such as
Hi-C [92]. These polymer approaches represent chromo-
somes as self-avoiding polymer chains that move within
the constrained nuclear space. Some of these approaches
use Hi-C data to validate their inferred structures for
well studied genomes such as budding yeast [93-97].
Detailed discussions of the various polymer models in
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the context of genome architecture, which is beyond the
scope of this review, can be found in several review
articles [90, 92, 98].

With the availability of genome-wide contact maps,
the reconstruction of the three-dimensional chromatin
structure that underlies the observed contacts became
a fundamental problem. These observed contact maps
made it possible to generate detailed three-dimensional
models using the contact counts as soft ‘restraints’ (in
contrast to hard constraints) on the relative locations of
loci with respect to each other. Fittingly, these models are
referred to as restraint-based models [90, 99]. Other terms
used for these models include probabilistic, statistical,
or ‘inverse’ models, in contrast to polymer-based direct
models [92]. These restraint-based models can be fur-
ther divided into two groups. The first group of methods
aim to find a consensus three-dimensional conformation
that best describes the observed Hi-C data. However, the
standard Hi-C protocol pools millions of cells for library
creation (bulk); therefore, the readout represents a mix-
ture of potentially different conformations. To account for
this cellular heterogeneity, the second group of methods,
instead infer an ensemble of structures from the bulk Hi-C
data. Both of these approaches, consensus and ensem-
ble, have given rise to reconstruction methods that have
been reviewed previously [50, 90, 92, 98—-102] and are also
briefly outlined below.

Consensus methods

One of the most commonly used methods to infer
consensus three-dimensional models from conforma-
tion capture data is multi-dimensional scaling (MDS)
[8, 16, 31, 101, 103-106]. MDS is a classical statistical
method that, given all pairwise distances between a set of
objects, aims to find an N-dimensional embedding such
that the pairwise distances are preserved as well as possi-
ble [107]. In this context, objects are beads that represent
chunks of DNA, and pairwise distances are computed
by applying a transfer function on contact counts.
Several studies use metric MDS augmented with addi-
tional constraints on the polymer characteristics, hence
intersecting with polymer models, or on the genome
organization (such as clustering of centromeres) to find
a consensus structure [8, 16, 31]. With or without these
additional constraints, the MDS formulation gives rise to
a non-convex optimization problem requiring heuristic
optimization methods such as gradient descent, conju-
gate gradient, and simulated annealing. A recent method
applies a semidefinite programming (SDP) approach to
three-dimensional genome reconstruction [103]. This
method uses a relaxation of the solution space of each
bead from R? to R”, where # is the number of beads,
to transform certain MDS formulations into convex
semidefinite programs. The SDP approach guarantees
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perfect three-dimensional reconstruction if the input
pairwise distances are noise-free. However, a major draw-
back of SDP, as opposed to classical MDS-based solutions,
is computational expense on datasets with realistic res-
olutions. Furthermore, all MDS-based methods depend
on a transfer function that converts contact counts to
pairwise spatial distances, and the methods are very sen-
sitive to the selection of this transfer function [101, 103].
Several methods use non-metric MDS that avoids any
assumptions about the transfer function and calculates
the count-to-distance relationship through isotonic
regression [101, 104]

Ensemble methods

For inference of an ensemble of three-dimensional mod-
els, several probabilistic methods have been proposed
that produce a set of structures representative of the
observed contact data. These methods can be further
divided into two depending on whether they aim to find
multiple solutions, each of which fits the bulk Hi-C data,
or to find a ‘true’ ensemble that, in aggregate, optimally
describes the bulk data. The first case is similar to the
consensus approach, but instead of inferring one locally
optimal model, the optimization is run with multiple ini-
tializations resulting in multiple different models [105].
The variability among these models depends heavily on
the problem structure and on the random initializations,
making it difficult to link the resulting models to the
cellular variability of chromatin structure in the bulk
sample. Rousseau et al. develop a similar method that
uses Markov Chain Monte Carlo (MCMC) sampling to
approximate the posterior probability of each model given
the data from a large number of models that are inde-
pendent of random initialization [108]. Giorgetti et al.
use a very similar MCMC-based approach for ensem-
ble modeling of mouse chromosomes [109]. The second
case is more challenging because it requires coordinated
inference of a large number of models. Hu et al. use
MCMC with a mixture model component to determine
whether a mixture of structures better explain the confor-
mation of a locus than a single consensus structure [110].
Kalhor et al., on the other hand, develop a method that
truly mimics the bulk nature of the Hi-C experiment [9].
They simultaneously infer, in a single optimization, thou-
sands of structures, each of which are fully consistent with
the constraints derived from the bulk data and which,
in aggregate, best explain the bulk contact counts. Many
other ensemble methods have been developed in the past
3 years [102, 111, 112] to characterize the cell-to-cell
variability of chromatin structure in the bulk Hi-C data.
Furthermore, Nagano et al. demonstrate the feasibility of
generating single-cell Hi-C data, leading to a more direct
characterization and modeling of the cellular variation of
chromosome structure [24].
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Visualization of Hi-C data

Visualization of genomics data is crucial for both hypothe-
sis generation and detection of potential artifacts. Several
genome and epigenome browsers are used heavily for
visualizing thousands of data tracks for human, mouse
and other organisms [113-116]. However, these browsers
are mainly designed for visualization of one-dimensional
signals and are not easily extensible to visualizing
two-dimensional Hi-C or any conformation capture data.
Furthermore, as we discussed above, Hi-C data can be
used for three-dimensional modeling, which requires
tools not only for two-dimensional but also for three-
dimensional visualization.

To address this need, several existing tools, such as
the WashU Epigenome Browser, now allow browsing of
long-range contact data [117]. Figure 3 shows a snapshot
from this browser in which one-dimensional data tracks
are overlaid with contact information from Hi-C data as
either long-range arcs or rotated heatmaps. Certain one-
dimensional aspects of Hi-C data, such as the total contact
count per locus, principal components, directionality of
contact preference, and topological domain boundaries,
can also be overlaid with other data. Another visualiza-
tion tool, the Hi-C Data Browser [118], uses the UCSC
Genome Browser [113] to allow simultaneous viewing
of rotated Hi-C heatmaps and UCSC tracks. A more
recent desktop application, Juicebox, allows users to view
heatmaps of multiple human and mouse Hi-C datasets
together with other features such as domain calls, peak
calls from HiCCUPS, and CTCF binding sites [18]. Several
tools are currently under development for visualiza-
tion of three-dimensional models of chromatin, including
Genome3D [119] and TADKkit [120].

Outlook
We have discussed here the major steps in analyzing Hi-
C datasets and outlined currently available computational
tools and methods to perform each step. Although the
diversity of available methods provides alternative ways
to explore Hi-C data, it is becoming clear that converg-
ing to a common set of tools will be useful to compare
and consolidate results from the increasing number of
publications. We also believe that reaching a similar con-
sensus on the quality control metrics and the terminol-
ogy used for Hi-C data will be beneficial for the field.
For instance, the term ‘normalization’ may refer to the
correction of sequencing-related factors in Hi-C contact
counts [18, 47] or to the correction of genomic distance
effect [62, 121]. Similarly, multiple different terms, such as
TADs [15, 84], physical domains [30], and loop domains
[18], may refer to a single type of pattern observed in
contact maps.

On the other hand, this diverse set of computational
methods falls short of fully exploiting the power of
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Hi-C data. For instance, very few tools perform
comparative analysis, visually or statistically, of two
Hi-C contact maps [59, 62, 69, 122], and none of these
tools allow joint analysis of more than two datasets
that come from multiple time points, conditions, or cell
types. Also, many of the existing methods, specifically
the three-dimensional reconstruction algorithms, do not
scale to high-resolution Hi-C data from large genomes
such as human and mouse. Deconvolution of Hi-C
data from a large number of cells into subpopulations
with similar chromatin organizations and estimation
of the density of each subpopulation is still largely
unexplored [123, 124]. Similarly, integration of two-
dimensional Hi-C data or three-dimensional chromatin
models with the vast quantity of available one-
dimensional datasets, such as replication timing, histone
modifications, protein binding and gene expression, is
also understudied. One study that integrates Hi-C data
with many types of genomics and epigenomics data tracks
uses a technique called graph-based regularization (GBR)
to perform semi-automated genome annotation [86]. This
study encouragingly shows that the integration of Hi-C
data improves the annotation quality and allows identi-
fication of novel domain types. However, GBR assumes
that regions that are close in three dimensions should
be assigned the same annotation label, which may only
makes sense for large-scale domain annotations (greater
than approximately 100 kb). Another method integrates
low resolution Hi-C data (1 Mb) with transcription-factor
binding, histone modification and DNase hypersensi-
tivity information and identifies 12 different clusters of
interacting loci that fall into two distinct chromatin link-
ages (co-active and co-repressive) [125]. Most recently,
Chen et al. present a unified four-dimensional analysis
framework (three space plus one time dimension) that
uses adaptive resolution contact maps to perform gene-
level analysis [44]. They use this framework to interrogate
the dynamic relationship between genome architecture
and gene expression of primary human fibroblasts over
a 56-hour time course. Concurrent advances in such
computational integration efforts and in experimental
data generation have the potential to transform our
understanding of the structure-function relationship and
help translational biomedical research. Several intriguing
studies suggest that alterations in chromatin conforma-
tion and in gene regulation are tightly linked in cancer
[22, 23, 126, 127], cellular differentiation [128], and
development [129].

Other challenges in the field that require partly
computational and partly experimental advances are:
(i) characterizing the cell-to-cell variability of chromatin
structure using large numbers of single cells, (ii) inferring
haplotype-specific contact maps and three-dimensional
chromosome structures, and (iii) distinguishing direct
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DNA-DNA contacts between two loci from indirect,
bystander, or protein-mediated interactions. Recent
advances in technology development suggest that we
are not far away from overcoming the experimental
bottlenecks surrounding the above-mentioned challenges
[17, 18, 24]. Therefore, it is essential to forge ahead with
the development of computational methods that are both
theoretically sound and practically scalable, in preparation
data.
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