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Abstract

between clades and transcripts.

positively correlated with Escherichia abundance.

regulatory interface during pouchitis.

Background: Pouchitis is common after ileal pouch-anal anastomosis (IPAA) surgery for ulcerative colitis (UC). Similar
to inflammatory bowel disease (IBD), both host genetics and the microbiota are implicated in its pathogenesis. We use
the IPAA model of IBD to associate mucosal host gene expression with mucosal microbiomes and clinical outcomes.
We analyze host transcriptomic data and 165 rRNA gene sequencing data from paired biopsies from IPAA patients with
UC and familial adenomatous polyposis. To achieve power for a genome-wide microbiome-transcriptome association
study, we use principal component analysis for transcript and clade reduction, and identify significant co-variation

Results: Host transcripts co-vary primarily with biopsy location and inflammation, while microbes co-vary primarily
with antibiotic use. Transcript-microbe associations are surprisingly modest, but the most strongly microbially-associated
host transcript pattern is enriched for complement cascade genes and for the interleukin-12 pathway. Activation of
these host processes is inversely correlated with Sutterella, Akkermansia, Bifidobacteria, and Roseburia abundance, and

Conclusions: This study quantifies the effects of inflammation, antibiotic use, and biopsy location upon the
microbiome and host transcriptome during pouchitis. Understanding these effects is essential for basic biological
insights as well as for well-designed and adequately-powered studies. Additionally, our study provides a method for
profiling host-microbe interactions with appropriate statistical power using high-throughput sequencing, and suggests
that cross-sectional changes in gut epithelial transcription are not a major component of the host-microbiome

Background

Between 10% and 35% of ulcerative colitis (UC) patients
ultimately undergo colectomy with subsequent ileal
pouch-anal anastomosis (IPAA) or ‘J-pouch’ construction
[1]. Approximately half of patients who undergo IPAA
due to UC will have at least one episode of pouchitis, or
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inflammation of the ileal pouch. In up to 20% of these
patients, pouchitis becomes chronic and can lead to
pouch failure [1,2]. IPAA is also performed for patients
with familial adenomatous polyposis (FAP), but pouchitis
is extremely rare in this group [3]. While FAP is associated
almost exclusively with defects in the adenomatous polyp-
osis coli gene, UC is associated with polymorphisms in
more than 160 IBD-associated genes, including 23 that
are UC-specific [4], indicating that complex host genetics
may play a crucial role in the onset of pouchitis. The gut
microbiome is also highly influential in both IBD and pou-
chitis [5-9]; most episodes of acute pouchitis can be
treated with a course of antibiotics and may be prevented
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by probiotic use [3] but antibiotics have shown somewhat
mixed results in their efficacy for treating Crohn’s disease
(CD) and UC [10,11]. This combination of physiological
similarities and genetic differences makes pouchitis
an appropriate model in which to examine the inter-
play of inflammatory disease, gut microbes, and host
gene activity [12].

While it is known that both host genetics and the
microbiome influence the development of pouchitis, pre-
cisely how they interact is less well-understood. Follow-
ing IPAA surgery, the mucosal structure of the J-pouch
becomes more colon-like; villous structures become
more shallow, mucin expression changes [13], and the
microbial community becomes functionally more similar
to a colonic community [14]. It is unclear, however,
whether pouchitis is a recurrence of UC that manifests
as the host postoperative ileum and microbiome collect-
ively become more colon-like, or a unique disease with
characteristics of both CD and UC. However, by simul-
taneously measuring the microbiome and host transcrip-
tome, we may begin to understand the relationships
between microbiota, host, and disease pathogenesis.

To gain insight into these host-microbe interactions in
the epithelial mucosa, we have collected paired host
transcriptome and microbial metagenome data from a
large J-pouch cohort, allowing us to measure whether el-
evated or depleted host epithelial transcripts are associ-
ated with specific microbial clades. While other studies
have applied sequencing to the IPAA microbiome, these
had small numbers of patients [14,15] or did not concur-
rently examine host gene expression [9,16]. Likewise,
few studies have comprehensively measured the IPAA
host microbiome and transcriptome [17,18]. To the best
of our knowledge, ours is the first study to examine
both. In this study we use the IPAA model to study the
relationship between the IPAA microbiome and host
gene expression. We have recruited a large population of
patients having undergone IPAA at Mount Sinai Hos-
pital, a large, tertiary care referral center in Toronto,
Canada. These subjects were identified as part of a wider
study investigating the etiology of pouch complications.
Thus, this cohort had a wide variety of both molecular
and clinical data available for analysis, including detailed
information regarding postsurgical outcomes.

The gut microbiome in this cohort was most affected
by inter-individual differences in antibiotic usage, while
epithelial transcription was more strongly influenced by
tissue location (pouch vs. pre-pouch ileum). A very small
proportion of microbial or transcriptional variation was
explained by host-microbe correspondences, in that asso-
ciations of the host transcriptome with the microbiome
were relatively modest in comparison to other effects. We
developed a dimensionality reduction process to ensure
appropriate statistical power for testing these associations,
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due to the large number of transcripts and operational
taxonomic units (OTUs) observed relative to number of
samples, comparable to the analysis methods necessary
for eQTL or similar studies [19-21]. After employing both
supervised and unsupervised data reduction methods, we
used multivariate linear modeling to identify significant
associations between microbes, transcripts, and environ-
ment, as described above, as well as between the overall
patterns of host transcription and microbial composition.
These were primarily related to level of host inflammation
as, for example, the most microbially-associated host tran-
script pattern (gPC9) was enriched for complement and
IL-12 components in GSEA analysis (Additional file 1C).
Finally, discriminant modeling of pouchitis outcome by
linear discriminant analysis proved to be ineffective using
either microbial composition, transcriptional activity, or
both, in antibiotic-free samples.

Results

A multivariate model for co-analysis of host epithelial

tissue gene expression, gut tissue-associated microbiome
structure, and cohort characteristics and clinical phenotype
In order to better understand the relationships between
the host and microbiome after IPAA surgery, we mea-
sured host gene expression by microarray [17] and the
microbial community using the 16S rRNA gene [9] (re-
ferred to hereafter as 16S) in a large, metadata-rich,
cross-sectional cohort. The cohort consisted of 265 pa-
tients (51% women) aged between 18 and 78 years (me-
dian age, 48 years; Table 1). Patients who had surgical
management of UC or FAP were included, and all pa-
tients had IPAA surgery at least 1 year prior to biopsy
collection for this study. Patients were classified as FAP
(Familial Adenomatous Polyposis), No Pouchitis, Acute

Table 1 Demographic and clinical characteristics of IPAA
cohort

Patients cohort

(n=265)
Age at recruitment, years (mean, range) 47 (18-76)
Gender (% female) 135 (50.5)
Time since ileostomy closure (mean years, range) 12 (1-40)
Smoking (% at recruitment) 24 (9.2)
Antibiotic use previous month (%) 78 (29.4)
Distribution of patients in phenotypic outcome
groups, number (%)
FAP 32(12)
NP 72.(27)
CcpP 27 (10)
CDL 34(13)
AP 69 (26)

All recruited patients had IPAA surgery >1 year prior to recruitment except for
two, whose previous diagnoses were pouchitis and FAP, respectively.
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Pouchitis, Chronic Pouchitis, or Crohn’s Disease-Like
Inflammation (see Methods for criteria). Most patients
were biopsied in both the pouch (P) and in the pre-pouch
ileum (PPI). After quality control, there was host gene ex-
pression and microbiome data obtained by microarray
and 16S analysis from a total of 255 samples representing
204 individuals (Methods, Figure 1); these comprised 196
PPI samples and 59 pouch samples.

Between-tissue variation is high for host gene expression
but low for the microbiome

Previous studies in a subset of this cohort demonstrated
that there were few differences in the microbiome between
pouch and PPI samples [9], yet a great deal of variability
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was observed between these sites in the tissue transcrip-
tome [9,17]. As expected, we observed that the Bray-Curtis
distance for microbial profiles between locations was much
lower than between individuals, indicating that the micro-
bial profiles of pouch and PPI were similar (Additional file
2). In contrast, the within-site variation in gene expression
based on Pearson correlation was nearly as great as the
between-individual variation, indicating that tissue location
(pouch vs. PPI) was a large source of transcriptional variation.

Dimensionality reduction for well-powered multi-omic
data integration in a human cohort

In order to improve power to associate microbial com-
position with host transcriptional activity, we reduced
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Figure 1 Overview of data analysis. (A) Data were acquired from a cohort of 265 UC and FAP patients who had IPAA surgery at least 1 year

previously. Biopsies were collected from each patient from both the pre-pouch ileum and j-pouch. The host transcriptome was profiled using
cDNA microarrays, and the microbiome was profiled by sequencing the V4 region of the 16S gene. Data were then subjected to unsupervised
reduction and linear modeling (B), and to supervised reduction and linear discriminant analysis (C). (B) After quality control, data dimensionality
was reduced to maximize statistical power prior to linear modeling. After filtering low-variance transcripts, principal component analysis was used
to create nine gene principal components (gPCs) to account for 50% of the variance in the transcriptome data. OTUs were filtered for minimum
abundance and for presence in at least three samples. PCA was then used to create nine clade principal components (cPCs) explaining 50% of
the variance in OTU data. Multivariate association with linear modeling was then used to test for associations between clades and transcripts that
were significant after adjusting for metadata (inflammation, antibiotic use, and outcome). (C) In an alternative data reduction approach, a list of
449 genes was curated from IBD genome-wide association studies [4] and host genes that physically interact with bacteria [22]. The expression
profiles of these 449 genes were further reduced by k-medoid clustering into 75 medoids, each representing a cluster of genes with similar
expression profiles. Abundant microbial clades were hierarchically clustered, and one representative from each cluster was chosen. Linear
discriminant analysis was used to measure which genes and clades were most discriminant between clinical outcomes. (See also Additional file 1,
Additional file 2, and Additional file 3A to C).
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the dimensionality of both host and microbial features.
We first calculated that given a true covariance of 0.5 in
the data between microbial abundance and gene expres-
sion, it would be possible to perform a maximum of 10*
pairwise tests and retain 90% power and an alpha equal
to 0.05 using Bonferroni correction (Additional file 1A).
Thus, it was necessary to reduce 19,908 host transcripts
and 6,999 observed OTUs to 10* tests, or approximately
100 transcripts and 100 clades of interest.

We pursued several broad strategies to achieve this
goal. First, we limited our analysis of OTUs to only
those that were both present in multiple individuals and
abundant, with mean abundance >0.005 (see Methods).
Second, we employed both further unsupervised and
supervised strategies for data reduction prior to our
downstream analysis, which included multivariate linear
modeling (which aimed to associate microbes with host
transcripts) and linear discriminant analysis (which aimed
to determine which microbes and transcripts were most
discriminant of clinical outcome; Figure 1).

For unsupervised dimensionality reduction of micro-
bial data, after OTUs were abundance-filtered, we ap-
plied a variance-stabilizing arcsin-square transformation,
then used principal component analysis to reduce these
filtered, abundant clades to nine clade principal compo-
nents (cPCs) that explained 50% of observed variance
(Figure 1). The loadings of each cPC represent a pattern
of highly correlated microbial abundances (Additional
file 1D; Additional file 3A, B). For supervised clade re-
duction, we further reduced the filtered list of microbial
clades by hierarchically clustering it, then selecting the
lowest-mean-abundance representative from each clus-
ter. This had the practical effect of removing redundant
higher-order taxonomic clades from the list of taxa, and
it reduced the total number of microbial clades to 45
(Figure 1).

Supervised transcript reduction aimed to focus upon
host genes of particular prior interest, specifically those
that had been previously implicated in IBD, pouchitis, or
host-microbe interactions. Thus, we curated a set of 174
IBD-associated genes [4], 272 bacterially-interacting genes
[22], and 12 pouchitis-related genes from the literature
(Methods), and the expression profiles of these genes were
clustered into 75 gene medoids, each of which represented
one or several similarly-expressed genes (Additional file
3C). For unsupervised reduction of transcripts, we first fil-
tered all host transcripts to remove the two quantiles of
genes whose expression varied the least across all subjects.
Next, we used principal component analysis to reduce the
remaining 11,945 host transcripts to a collection of nine
transcript principal components (gPCs) explaining 50%
of all observed variance. Again, the loadings of each
principal component represent a pattern of highly cor-
related transcript abundances.
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Through these data reduction methods, we trans-
formed 19,908 host transcripts and 6,999 observed
OTUs into a total of 138 features. There were nine tran-
script principal components and nine clade principal
components, which had been chosen in an unsupervised
manner. In addition, there were 75 gene medoids and 45
clades, which had been selected in a more supervised
manner. These 138 features were used for subsequent
analysis.

Tissue location and antibiotic use induce the greatest
changes in host gene expression and microbiome
composition, respectively

After initial gene and clade reduction, in order to pro-
vide an initial visualization of the relationships between
gPCs, cPCs, medoids of interest, inflammation, antibiotic
use, and clinical outcome, we generated a biplot using
the Breadcrumbs package ([23], Figure 2). The strongest
data separation effect corresponded to antibiotic use,
which was highly correlated both with the chronic pou-
chitis phenotype and with abundant Enterococcus, which
is frequently resistant to both metronidazole and cipro-
floxacin [24,25]. In contrast, high expression of gPC8
was inversely correlated with antibiotic use (Figure 2).
Crohn’s disease-like inflammation was modestly associ-
ated with increased Enterobacteriaceae, while high ex-
pression of gPC9 was associated with more abundant
Sutterella and beneficial Clostridia, including Rumino-
coccus and Blautia. The transcript patterns gPC1, gPC9,
and gPC6 were most closely associated with FAP or no
pouchitis (Figure 2).

Next, we quantified the proportions of the microbiome
and total host transcriptome that were affected by tissue
location (pouch vs. PPI), clinical outcome, antibiotic use,
and inflammation, using univariate association tests of each
transcript and each clade with the metadata. The extent
of shift is summarized as the percentage of transcriptome
or microbiome features differentially expressed at FDR
<0.05 (Table 2; Additional file 3D to I). As previously
shown [17], host transcripts were most strongly associated
with location, followed by inflammation, with little or no
association with antibiotic use. When we subjected the
differentially-expressed transcripts between pouch and
PPI to gene ontology enrichment analysis by GOrilla [26],
the transcript category most significantly affected was
transporters (Additional file 4). The transcriptional differ-
ences between pouch and PPI and are described in detail
by Kabakchiev et al. [17]. In contrast, differential expres-
sion of microbial clades was strongly associated with anti-
biotics, but very few clades were differentially expressed in
association with inflammation or tissue type (Table 2;
Additional file 3D, E, I). Large differences in microbial sig-
nificance (for example, 41% of microbes in PPI signifi-
cantly affected by antibiotics vs. 2% in pouch) are likely
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Covariation among clades, genes, and metadata
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Figure 2 Biplot of clades, genes, and study metadata. Non-metric multidimensional scaling (NMDS) of clade abundances was used to position
samples and show samples relatively enriched in specific clades (purple). Arrows represent host transcripts (brown) and metadata (blue), which
include antibiotic use and clinical outcome. Arrow coordinates are determined by averaging the coordinates of each sample containing a specific
metadata, and show the central tendency of the metadata. Samples are color-coded according to inflammation, which ranges from none (green)
to high (red). This figure was created with PPl-only samples.

Table 2 The effects of inflammation, antibiotics, outcome,
and sample location on the transcriptome and
microbiome

Transcriptome Microbiome

PPI Pouch PPI Pouch
Inflammation score 19% 22% 0% 5%
Antibiotics 0% 0% 41% 2%
Outcome 0% 15% 3% 3%
Location 45% 1%

This table shows the percentages of the transcriptome and microbiome that
are differentially expressed (FDR <0.05) with respect to inflammation score
(continuous scale 0-12), antibiotics usage (yes/no), outcome (AP, NP, CP, CDL),
and sampling location (pouch or pre-pouch ileum). The microbiome is extensively
shifted by antibiotics usage with minor shifts by outcome and location,
whereas the host transcriptome is extensively shifted between locations
and by inflammation. See also (Additional file 4, Additional file 3D to I).

due to the large discrepancy in number of pouch vs. PPI
samples (59 vs. 196 samples) (Additional file 5B), resulting
in fewer pouch taxa reaching significance.

In order to further investigate the effects of antibiotics,
tissue location, clinical outcome, and inflammation upon
specific microbial clades, and to visualize the phylogen-
etic relationships of these affected clades, we conducted
an independent univariate analysis of with LEfSe [27],
which is shown in Figure 3. As antibiotic use was the lar-
gest effect, LDA effects for inflammation, tissue, and clin-
ical outcome were stratified by antibiotic use (Figure 3).
There was a broad decrease in the abundance of Bacter-
oides, Firmicutes, and Tenericutes that was associated
with antibiotic use. There was an antibiotic-associated
increase in the abundance of Bacilli and gammaproteo-
bacteria that was spurred primarily by Enterococcus and
Pasteurellaceae. Although Enterococcus was strongly as-
sociated (P <0.05) with the chronic pouchitis phenotype
in univariate analysis, it was not significant when strati-
fied by antibiotic use because it was not elevated in
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Figure 3 The relationship between clades and metadata in univariate analysis. The major metadata in the cohort were antibiotic use,

inflammation, tissue (pouch or PPI), and outcome (AP, NP, CP, FAP, or CDL). Univariate linear discriminant analysis effect size analysis was

performed on each of these variables. Antibiotic use was associated the greatest number of perturbations in the microbiome, causing broad

decreases in the Clostridia, Bacteroides, Tenericutes, and Betaproteobacteria, and increases in the Lactobacilliales, Actinobacteria, and

Gammaproteobacteria. Because the antibiotic effect size was very large and affected most clades, LDA effects for inflammation (ring 2), tissue

types (ring 3), and outcomes (rings 4, 5, and 6) were calculated after stratifying for antibiotic use. Color intensity of ring corresponds to the
taxonomic level at which the LDA effect is significant (P <0.05), from phylum (least intense) to genus (most intense).
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antibiotic-free samples (Additional file 5C). Escherichia
were positively associated with inflammation, while the
Actinobacteria were negatively associated. The genus
Sutterella and generally higher levels of Bacteroidetes
were strongly associated with the outcome FAP even
after accounting for antibiotic use. Actinomycetales and
Flavobacteria were weakly associated with the PPL
However, antibiotic effects on the microbiota were
much stronger and more widespread than effects due to
tissue, inflammation, or clinical outcome.

Host gene expression is not a major determinant of
pouch microbial community composition

Following data reduction, in order to measure gene-clade
associations, we used MaAsLin [5,28] to apply a multivari-
ate linear model which controlled for the effects of anti-
biotic use and inflammation (see Methods). Although
pouch and PPI microbiome profiles were highly similar
within the same individual, pouch-PPI transcriptomes were
not. Under these circumstances, we did not expect any gain
in power for detecting microbiome-transcriptome associa-
tions from the addition of PPI samples by inclusion of a
random effect for individual to the linear model. Thus, we
excluded the relatively small number of paired pouch
samples from association testing (Figure 1B). The super-
vised (curated gene) and unsupervised (gPC/cPC) gene
lists were run through MaAsLin independently; only the
unsupervised results were significant (Figure 4).
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The only gPCs significantly associated with cPCs were
gPC8 and gPC9 (q <0.25). The top loadings of gPC9
reflected reduced expression of the complement cascade
(CFL, C2, and CEFB), interferon regulatory factor 1,
interferon-induced guanylate binding protein, and the
leukocyte chemotaxis factor CCL2, indicating that high
expression of gPC9 may correspond to a lower overall
state of inflammation. Indeed, when samples were strati-
fied by clinical outcome, gPC9 was lowest-expressed in
patients with Crohn’s disease-like inflammation, and
highest-expressed in patients with FAP (Additional file
5A). The top loadings of gPC8 included reduced expres-
sion of the lipopolysaccharide-activated p38 MAP kinase
Map2K6 and of PLA2G10, which is involved in calcium
and fat-mediated inflammatory signaling and eicosanoid
release; thus, gPC8 may also be related to inflammation.
However, when stratified by antibiotic use or clinical
outcome, gPC8 was less differentially expressed than
gPC9 (Additional file 5A, Additional file 3B).

A total of four clade cPCs were associated with gPC8
and gPC9: ¢PC1, cPC3, cPC6, and cPC8. The loadings of
cPC1, which accounted for 15% of the observed vari-
ance, show several features apparently corresponding to
antibiotic use: increased Enterobacteriaceae abundance,
a broad decrease in Bacteroides and Firmicutes, and
among the highest abundance of Enterococcus (Figure 4).
Indeed, cPC1 was also more abundant in patients who
had been taking antibiotics (Additional file 5A). cPC3
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featured the lowest levels of Bifidobacterium. cPC1 and
cPC3 were negatively associated with gPC8 and gPC9;
thus, these patterns indicate that an antibiotic-signature
microbiome was associated with higher potentially in-
flammatory gene expression. However, in contrast to
cPC1, cPC3 was not differentially abundant when strati-
fied by outcome or antibiotic use (Additional file 5A).

The most remarkable feature of cPC6 loadings was its
high abundance of Akkermansia, a beneficial mucin-
utilizing microbe [29]; ¢cPC6 was also evenly distributed
among outcomes and antibiotic use (Additional file 5A).
cPC8 loadings were noteworthy for their high abun-
dance of the genus Sutterella, and lower abundance of
cPC8 was associated with chronic pouchitis and anti-
biotic use (Additional file 5A). While some studies have
associated Sutterella with autism [30,31], in our cohort,
it was associated with the healthy FAP outcome (Figure 3).
A recent study also found that Sutterella was decreased in
new-onset Crohn’s disease [32].

Together, the linear relationship between host tran-
scripts and microbes was generally modest, representing
approximately 25% of total variance, as variation is driven
primarily by location and by antibiotic use, respectively.
However, these data represent the strongest transcript-
microbe associations in the cohort after variation from
antibiotic and tissue has been factored out. The strongest
relationships we observed appear to be associated with
inflammation-associated loadings. Other potential rela-
tionships may be better explored with additional samples
for more statistical power.

Using a joint host-microbe model to segregate pouch
outcome

It is of great clinical interest to know whether host tran-
scripts, microbes, or some combination thereof can be
used to distinguish clinical outcomes. To explore this
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question, we used linear discriminant analysis (LDA) to
identify which combinations of genes and microbes were
most able to cross-sectionally segregate clinical outcome
in a training set, then assessed accuracy in cross-validation
(see Methods). Because antibiotic use was highly asym-
metrical across clinical outcomes (Additional file 5B) and
highly predictive of the chronic pouchitis outcome, we
limited this analysis to those samples without antibiotic
use (Additional file 6).

CDL and CP were best discriminated by this model,
particularly with respect to FAP (Figure 5). However,
accuracy was low upon cross-validation (mean AUC
0.57 across all outcomes and models, Additional file
6A), primarily due to the model’s lower discrimination
of AP and NP outcomes. These represent the extremes
of outcome phenotypes in several respects, particu-
larly with respect to inflammation. While this is also
true for antibiotic usage (highly prevalent in CDL and
rare in FAP), this analysis specifically excluded all
samples from antibiotic-treated patients, as these
proved to be very well-discriminated using microbial
profiles alone. Indeed, when antibiotic-treated samples
were included, discrimination accuracy for the CDL
(AUC 0.67), CP (AUC 0.88), and FAP (AUC 0.71) out-
comes was much higher based solely on models of
microbiome profiles (Additional file 6B). When we ex-
amined the separation ability of the LDs (Figure 5,
Additional file 6C), they were most discriminant be-
tween FAP and CDL.

Discussion

Although this study and many others have observed that
the mucosal microbiome is highly variable between any
two individuals [33,34], the host mucosal transcriptome
appears to be a surprisingly small correlate of this vari-
ation in microbial community composition. Here, the
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LD2. See also (Additional file 6).

Figure 5 Linear discriminant analysis for clinical outcome. Linear discriminant analysis was used to determine which genes and clades
were most discriminant between clinical outcomes after controlling for antibiotic use. All samples with antibiotic use were removed
prior to analysis, and an LDA fitting model with leave-one-out cross-validation was used. (A, B) The separation of clinical outcomes by LD1 and
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transcriptome showed large variation between the pre-
pouch ileum and the pouch within the same individual;
for example, there were significant differences in the ex-
pression of amino acid, heme, and metal ion transporters
(Additional file 4). Despite these large transcriptional
differences between tissue locations, the microbial com-
munity within each individual remained similar between
these two environments. It is important to note that our
methods would not resolve sub-genus-level differences
in the mucosal communities, and that mucosal commu-
nities are likely to show less homogeneity over greater
biogeographic distances in the GI tract [35]. However,
these findings suggest that the composition of an indi-
vidual’s microbiome in adulthood may not be shaped by
local transcriptional activity on a long-term basis, but ra-
ther by factors such as initial early life colonization
events [36-39] or diet [40] over time spans relevant for
disease development. Conversely, inter-individual differ-
ences in the microbiome appear not to drive corres-
pondingly large changes in gene expression.

As expected, the largest effect on the microbiome is
antibiotic use. Metronidazole, the antibiotic most com-
monly used to treat pouchitis, kills anaerobic bacteria by
damaging their DNA [41], thus profoundly decreasing
the populations of Bacteroidetes and Clostridiaceae. The
resistance of facultative anaerobes to metronidazole is
much more variable; Gardnerella is highly susceptible
[41], while Eikenella is highly resistant [42], and resist-
ance in Propionibacterium appears to correlate with the
presence of nim genes [43]. In our data from the pelvic
pouch, the Bacteroidetes and Clostridiaceae appeared to
be displaced by facultative anaerobes such as the Lactoba-
cilliales (for example, Enterococcus and Streptoccus) and
gammaproteobacteria (for example, Pasteurellaceae). En-
terococcus genomes are highly recombinant and remark-
able as a reservoir of antibiotic resistance, and thus a
public health concern [44]. Their metronidazole resistance
is well-known [45-47], and they are becoming increasingly
resistant to ciprofloxacin [48-50], which is an antibiotic of
choice for pouchitis. Although the antibiotic-resistance
profiles of human-associated Pasteurella have been much
less widely described, a study of swine-associated Pasteur-
ella strains found that they were highly resistant to metro-
nidazole (but not quinolones) [51], which is consistent
with our observations.

We found in univariate analysis that after accounting
for the effects of antibiotic use, pouch inflammation in-
fluenced relatively few taxa; specifically, it enriched for
Escherichia, while there were non-specific inflammation-
associated decreases in the class Actinobacteria and in
the phylum Bacteroidetes (Figure 3). This is consistent
with Escherichia’s role as a facultative anaerobe that is
frequently enriched in Crohn’s disease [5,52]. Inasmuch
as many microbial surveys of CD patients have found no
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species as consistently overrepresented in IBD as Escher-
ichia, and this overrepresentation appears to be a feature
of later IBD rather than early IBD [32], it is possible that
Escherichia is unique among the intestinal microbiota in
its ability to thrive in chronic redox stress. It has re-
cently been shown that nitrate respiration in the in-
flamed host gut is at least one of the mechanisms by
which Escherichia may gain an advantage [53]. Alterna-
tively, our ability to associate microbes with inflamma-
tion may be reduced by perturbations already induced in
the microbiome as, for example, by pouch surgery prior
to sampling.

The transcript pattern gPC9 demonstrated the broadest
range of associations identified between host transcription
and microbial community structure. Its individual gene
loading components (including complement cascade, im-
mune cell adhesion, p38 MAP kinase genes) were func-
tionally associated with inflammation, but expression of
gPC9 itself was not correlated with the clinical inflamma-
tory score (rs=0.02) (Additional file 5D). There was a
slightly greater negative correlation between gPC9 and
the abundance of Escherichia (rs=-0.29) (Additional
file 5E). gPC9 was positively associated with cPC6; the
most abundant clade in this ¢cPC was Akkermansia,
which has previously been associated with improvement
of metabolic syndrome and DSS colitis [29,54], as well
as increased susceptibility to Salmonella [55]. Taken to-
gether, sub-clinical inflammation may thus be inducing
a modest but detectable effect on the microbiome de-
tectable in these data and in a corresponding host tran-
scriptional response, even prior to being histologically
detectable.

Dimensionality reduction was a key component in mak-
ing this study possible; as with genome-wide association
studies or eQTL associations, naive testing of all possible
hypotheses would require an exceptionally large cohort.
As this is rarely possible in practice, we used principal
component analysis for unsupervised data reduction, and
k-medoids clustering of a curated gene list for supervised
data reduction. Other recent papers [40,56-58] have
employed similar clustering-based data reduction strat-
egies to find signal in relatively small datasets. These
results also underscore the importance of designing mi-
crobial association studies to include an explicit, up-front
power analysis and of having realistic expectations about
the effect sizes to be observed; they are likely to be modest
effects, similar to GWAS, rather than large effects. Here,
for example, the strongest microbe-transcript correlations
were approximately 0.2 to 0.3, and it would have been im-
possible for significant associations to survive correction
for multiple hypothesis testing if all genes and clades were
simultaneously analyzed. This must be anticipated when
planning studies to ensure they are designed with appro-
priate sample sizes.
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Finally, discriminating clinical outcome based on the
microbiome and transcriptome was a complex problem
intractable to LDA analysis. While chronic pouchitis
could be accurately distinguished after the fact based on
antibiotic use (Additional file 6), this is not clinically
useful. Cross-sectional data may particularly limit the
utility of LDA for exploring this problem, given the high
degree of between-individual variation in microbiota and
the temporal nature of pouchitis and antibiotic use.
While it is clearly not feasible to biopsy subjects repeat-
edly over short periods of time, it would be reasonable
to study the relationship between microbiota and onset
of chronic pouchitis with longitudinal stool collection.
More stable markers, such as SNPs and serum anti-
bodies may also have better utility in classifying postop-
erative pouch outcomes [2].

Conclusion

In conclusion, the primary influences upon host gene
expression and the microbiome appeared to be distinct
by several measures in this cohort. We observed modest
associations between groups of host transcripts involved
in inflammation and clades such as Sutterella, Akker-
mansia, and Bifidobacterium, but these were not among
the greatest sources of variation in community structure
or gene expression. Instead, the former was greatly influ-
enced by pharmaceutical treatments (specifically antibi-
otics), and the latter by tissue location. Thus, while
pouchitis clinical outcomes were well-differentiated by
naive linear discriminant analysis, this was due almost
exclusively to differences in antibiotic usage among out-
comes and may be a problem better-suited to longitu-
dinal data. Although we are able to observe significant
host-transcript associations, the effect sizes are modest,
indicating that other factors, such as initial host
colonization and diet, are also significant influencers of
microbial composition. To distinguish these effects, we
will need additional data from well-powered studies.

Methods

Patient cohort

Patients having undergone proctocolectomy with ileal
pouch-anal anastomosis (IPAA) for treatment of UC or
FAP at least 1 year prior to enrollment, were recruited at
Mount Sinai Hospital (Toronto, Canada). Individuals
with a diagnosis of CD were excluded. Patients under-
went pouch endoscopy with biopsy, and completed a
questionnaire encompassing demographic and clinical
elements. Physicians documented the appearance of the
pouch using specific evaluation criteria outlined in the
pouchitis activity score (PAS). Specifically, to numeric-
ally score inflammation, the severity of objective traits
was graded (erythema, friability, and ulceration at the
time of endoscopy, and polymorphonuclear leukocyte
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infiltration and ulceration by histology) according to the
numeric scale described by Tyler et al. [9], and the in-
flammation score was defined as the sum of these traits.
A total inflammation score of 14 was possible, but any
score over 3 was considered inflamed. Subjects were clas-
sified based on postsurgical phenotypic outcome using a
combination of long-term history following surgery and
inflammatory activity at the time of pouch endoscopy, as
has been previously described [9]: Familial Adenomatous
Polyposis (FAP) with no inflammatory complications
post-surgery; No Pouchitis (NP) with no previous docu-
mented episodes of pouchitis and no evidence of pouchitis
at the time of pouchoscopy; Acute Pouchitis (AP) based
on historical or current documentation of inflammation of
the pouch resolving after a single course of antibiotics;
Chronic Pouchitis (CP), including antibiotic-dependent
and antibiotic-refractory patients who required either pro-
longed (>1 month) antibiotic therapy, medical interven-
tion for pouchitis more than three times per year, or the
use of second- or third-line medications (5-ASA, steroids,
immunomodulators, biologics); or Crohn’s disease-like
phenotype (CDL) based on a patient developing an ab-
scess or fistula more than 1 year following ileostomy
closure, or inflammation in the afferent limb or prox-
imal small bowel. Subject recruitment and study proce-
dures were approved by and carried out in accordance
with the Research Ethics Board of Mount Sinai Hospital
(Toronto, Canada), with the following tracking informa-
tion: 08-0180-E: Genetic, Serologic and Microbial Fac-
tors Related to Patterns of Ileal Inflammation (IPAA).
Informed consent was obtained from all subjects imme-
diately prior to the initial sample collection in compli-
ance with our Research Ethics Board study approval. All
experimental methods are compliant with the Helsinki
Declaration.

For this cohort, antibiotic use was reported as ‘true’ if
patients had taken antibiotics in the 30 days prior to bi-
opsy collections. The vast majority of antibiotic use was
for pouchitis, and was either metronidazole, ciprofloxa-
cin, or a combination of both. A very small number of
pouch patients (two to three) were on vancomycin in-
stead of more standard antibiotics. Antibiotic use was
also reported as ‘true’ if the patient had taken antibiotic
for a non-IBD purpose in the past 30 days (for example,
amoxicillin for oral surgery).

Sample collection

Tissue biopsies were obtained from the mid-portion of
the pouch and the PPI during pouchoscopy. One biopsy
from each site was immediately placed into a sterile, empty
freezer vial and snap frozen in liquid nitrogen for subse-
quent microbial analysis. Two additional biopsies from
each site were placed into RNAlater (Qiagen) for host
transcriptomic analysis. Study samples were stored
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long-term at —-80°C. Two biopsies were also taken for
histological analysis as per standard clinical practice at
our institution. Inflammation was measured according
to the objective and location-specific components from
the pouchitis activity score (PAS) [59] as previously de-
scribed [9,17].

Host RNA extraction and microarray gene expression
analysis

The biopsy samples were immediately suspended in
RNAlater (QIAGEN) stabilizing reagent upon collection
to deter RNA degradation and were stored at —80°C.
Total RNA was extracted with the miRNeasy Mini Kit
(Qiagen) in two batches. A NanoDrop 1000 (Thermo
Fisher Scientific) and Bioanalyzer 2100 (Agilent) were
used to determine RNA concentration, quality and pur-
ity. Only samples with a RNA integrity number (RIN)
greater than or equal to 5.0 were considered for further
analysis [60].

From samples that passed quality control, 400 ng of
RNA was amplified with the Ambion WT Expression Kit
(Ambion). A total of 5.5 pg of cDNA per sample were
then labeled and hybridized to Human Gene 1.0 ST arrays
(Affymetrix) in a Fluidics Station 450 (Affymetrix), utiliz-
ing standard protocol FS450_0007 with the GeneChip
WT Terminal Labeling and Controls Kit (Affymetrix) and
GeneChip Hybridization, Wash, and Stain Kit (Affyme-
trix). The GeneChip Scanner 3000 (Affymetrix) was used
to scan the completed arrays. Summarized probe cell in-
tensity data were generated with an Affymetrix GeneChip
Command Console. Finally, probe-level summarization
files were produced, and the data were background-
adjusted, normalized, and log-transformed with the robust
multiarray average (RMA) algorithm in Affymetrix Ex-
pression Console [61].

The empirical Bayes (EB) method described by Johnson
et al. [62] was applied to the normalized data to correct
for batch effects which may have resulted from a non-
linear sample extraction and microarray processing sched-
ule. Finally, duplicate and ambiguous Affymetrix probesets
(Release 32) as well as those no longer mapping to a gene
in the current human genome build (GRCh37.p5) were re-
moved from further analysis. This filter retained 19,908
probesets from the original 33,297.

Microbial DNA extraction and sequencing

Community DNA extraction

Total microbial DNA was extracted from biopsies in two
batches using the DNeasy blood and tissue kit (Qiagen),
with an additional bead beating step to ensure adequate
cell lysis. Bead beating was performed using both 5 mm
stainless steel beads to disrupt tissue (Qiagen 69989)
and glass beads (Mo-Bio, Mississauga, ON, Canada) to
disrupt bacterial cells, in conjunction with the FastPrep
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tissue homogenizer (MP Biomedicals, Santa Ana, CA,
USA) set to speed 6 for 30 s. Additional enzymatic lysis
was conducted through the addition of proteinase K (as
per the Qiagen protocol) and incubation of samples at
95°C.

16S profiling and sequencing

The 16S gene dataset consists of [llumina MiSeq sequences
targeting the V4 variable region. Detailed protocols used
for 16S amplification and sequencing are as previously de-
scribed [63]. In brief, genomic DNA was subjected to 16S
amplifications using primers designed to incorporate both
the Illumina adapters and a sample barcode sequence,
allowing directional sequencing that covers variable region
V4 (Primers: 515 F [GTGCCAGCMGCCGCGGTAA]
and 806R [GGACTACHVGGGTWTCTAAT]). PCR mix-
tures contained 10 pL of diluted template (1:50), 10 uL of
HotMasterMix with the HotMaster Taqg DNA Polymerase
(5 Prime), and 5 pL of primer mix (2 uM of each primer).
The cycling conditions consisted of an initial denaturation
of 94°C for 3 min, followed by 30 cycles of denaturation at
94°C for 45 s, annealing at 50°C for 60 s, extension at 72°C
for 5 min, and a final extension at 72°C for 10 min.
Amplicons were quantified on the Caliper LabChipGX
(PerkinElmer, Waltham, MA, USA), pooled in equimo-
lar concentrations, and size selected (375-425 bp) on
the Pippin Prep (Sage Sciences, Beverly, MA, USA) to
reduce non-specific amplification products from host
DNA. Finally, an Agilent Bioanalyzer (2100 DNA 1000
chips) (Agilent Technologies, Santa Clara, CA, USA)
was used to determine the final concentration and size
distribution of the library. Sequencing was performed
on the Illumina MiSeq v2 platform, according to the
manufacturer’s specifications, with addition of 5% PhiX,
generating paired-end reads of 175 bp in length in each
direction.

Bioinformatic processing of sequences

The overlapping paired-end reads were stitched together
(approximately 97 bp overlap), size selected to reduce
non-specific amplification products from host DNA
(225-275 bp), and further processed in a data curation
pipeline implemented in QIIME 1.5.0 as pick_referen-
ce_otus.py [64]. In brief, this pipeline picks OTUs using
a reference-based method and constructs an OTU table.
Taxonomy is assigned using the Greengenes predefined
taxonomy map of reference sequence OTUs to tax-
onomy [65]. The resulting OTU tables are checked for
mislabeling [66] and contamination [67], and further mi-
crobial community analysis and visualizations. A mean se-
quence depth of 29,914 sequences/sample was obtained,
and samples with less than 3,000 filtered sequences were
excluded from analysis.
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Power calculations and gene/microbial feature selection
Initial power calculation

Power estimation was performed by simulation of corre-
lated variable pairs with standard normal distribution and
a sample size of 196. The 90th percentile of raw P values
of the Spearman correlation test was calculated as a func-
tion of true covariance of the variables. The number of al-
lowable tests for 90% power and 5% type I error rate was
estimated by Bonferroni correction, 0.05 divided by the
90th percentile calculated as above. The number of allow-
able tests increases with the assumed true covariance of
the variable pair, but is approximately 100 for a true co-
variance of 0.35, and 10° for a true covariance of 0.45
(Additional file 1A). This analysis was performed by the
associated corpower.Rnw script.

Microbial feature reduction

The data were first filtered by removing OTUs without
at least three counts in at least three samples. Next,
OTUs were hierarchically summed at all taxonomic
levels, and these counts were normalized to relative
abundance. Features were then filtered again to require
a mean abundance across all samples of at least 0.005,
and an abundance of 0.05 in at least one sample. This
left 129 features, to which we applied unsupervised
(PCA) and supervised (hierarchical clustering) reduction.
For PCA, a variance-stabilizing arcsine square-root
transformation was applied. Next, standard Principal
Component Analysis of scaled features was used to cap-
ture major axes of variation, keeping enough compo-
nents to account for 50% of variance. The previously
documented ‘horseshoe effect’ in Principal Component
Analysis of compositional data [68] was present (Additional
file 1B) but was not so extreme as to overly diminish the
utility of Principal Component Analysis. Interpretation of
microbial principal components was guided by a loadings
plot (Figure 1B, Additional file 3A and B, Additional file
1E). PCA reduced the 129 clades to nine cPCs. For super-
vised feature reduction to allow pairwise comparison to
host transcriptome features, we performed hierarchical
clustering of clades with abundance of at least 10 to 4 in
10% of samples, 1 minus Pearson correlation dissimilarity
measure, and default options for the hclust R function,
then finally cutting the tree at height 0.5 and selecting the
feature with smallest mean. This approach was confirmed
visually to select reasonable microbial representatives (Fig-
ure 1C). This analysis was performed by the associated
preparePCLfiles. Rnw script. It reduced the total number
of features from 129 to 45.

Host transcriptome feature reduction
Supervised feature reduction: Targeted gene selection
was applied to the transcriptomic data in order to
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reduce its dimensionality. In a first wave of filtering,
174 genes prioritized as IBD-associated in the most re-
cent and largest genome wide association study of the
disease [4] were selected for further statistical analysis.
In addition, 272 genes which were previously shown to
physically interact with bacterial partners from Bacil-
lus anthracis, Francisella tularensis, and Yersinia pestis
based on yeast two-hybrid experiments [22] were also
chosen. Preselected genes were then aggregated into
75 clusters based on their co-expression pattern using
the Pearson metric and semi-supervised Ward cluster-
ing [69]. A representative gene was selected from each
cluster by the k-medoids algorithm [70]. Finally, due to
their importance to the pathogenesis of IBD, the fol-
lowing genes were manually curated and added to the
existing medoids: NOD2, IL23R, PTPN22, FUT2,
NFKBI1, MMELI, IFNG, IL10, ILIRN, CD14, IL8, TLR1,
TNF, and NOX3.

Unsupervised transcript reduction: Principal compo-
nent analysis of host transcriptome data was performed
on all PPI and pouch samples, keeping a sufficient num-
ber of components to account for 50% of variance. The
only filter applied to whole-transcriptome data for PCA
was to remove transcripts with variance below the me-
dian variance of all transcripts (for example, filtering
out the least-invariant two quantiles of transcripts). In-
terpretation of the principal component axes was
assisted by inspection of the top 25 genes by magnitude
of loadings, and by Enrichment Analysis using the wil-
coxGST function of the limma package with ‘C2.CP.bio-
carta’ v3.1 mSigDB pathways [71] (Additional file 1C).
This analysis was performed by the associated PCA.Rnw
script.

Major phenotypic associations of the microbiome and
host transcriptome

A linear model was fit for each microbial clade and for
each transcript separately, with respect to antibiotics
(yes/no), outcome (NP, P, CDL, AP, and FAP), inflam-
mation (0-13), and tissue location (pouch/PPI), using
the /m R function. Nominal statistical significance of
each feature was assessed by analysis of variance F-test
of the fit. For the effect of tissue location, all 255 pouch
and pre-pouch ileum (PPI) samples were used; for anti-
biotics, inflammation, outcome, and the PPI samples
from each of the 196 individuals were used. The latter
tests were repeated using all samples, with a random
intercept for individual, using the glmmPQL function
of the MASS R package. This analysis was performed
for whole transcriptome data, and for all microbial
clades passing the ‘3 counts in 3 samples’ filter de-
scribed above, by the associated sourcesOfVaria-
tion.Rnw script.
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Using biplots to visualize associations between
transcripts, clades, and metadata

We used the scriptBiplotTSV.R script from the Bread-
crumbs software package [23] to generate a biplot
showing the relationships between clades, metadata,
and transcripts of interest (Figure 2). This script plots
a tsv (transposed PCL) file as a biplot. The positioning
of sample markers and clade text is generated by non-
metric multidimensional scaling (R Vegan package).
The metadata are represented by arrows, labeled by
text at the head of the arrow. Arrow coordinates are
determined by the coordinates of the samples and
show the central tendency of the metadata.

Using multivariate analysis with linear modeling to model
host/microbe metadata associations

MaAsLin (multivariate analysis with linear modeling)
[5,28] was used to find associations between microbes,
transcripts, and metadata. As many of the strongest uni-
variate associations in this dataset (for example, chronic
pouchitis and abundant Enterococcus) would be obviously
due to either antibiotic use or inflammation, and thus of
less interest than associations which were not directly at-
tributable to either, we used a multivariate linear model to
correct for antibiotic use, FAP/nonFAP outcome, and in-
flammation score. The model used was gene ~ clade +
antibiotic + ISCORE + OutcomeFAP/nonFAP, with arcsin-
square root variance stabilizing transformation of clade.
Bonferroni false discovery correction was used with a
threshold of q <0.25. Input files used for MaAsLin are
available from [72].

Discriminant assessment of host/microbe interactions in
pouchitis outcomes
Linear discriminant analysis (LDA) was used to discrim-
inate clinical outcome (AP, CP, NP, FAP, CDL) based on
expression patterns of 75 gene medoids and 45 clades.
As there were many more PPI samples (196) than pouch
samples (59), to ensure all samples were equally repre-
sented, only PPI samples were used. Because antibiotic
use was not uniformly distributed across outcomes, we
removed all samples with recent antibiotic use for dis-
crimination of clinical outcome. This left 55 AP samples,
18 CDL samples, five CP samples, 20 FAP samples, and
46 NP samples for LDA analysis. Discrimination models
were fit with three different sets of covariates: transcripts
only, clades only, and transcripts plus clades together.
Model fitting and assessment of discrimination by 10-
fold cross validation were performed using the R pack-
age ‘caret, within the script ldaprediction.Rnw from [73].
Ten-fold cross-validation was used to calculate accur-
acy of discrimination. For each clinical outcome and
each model (transcripts only, clades only, and clades +
transcripts), a ROC plot was constructed using the roc

Page 13 of 15

function from the pROC library, using the 10-fold cross-
validated posterior probabilities from the lda function of
the MASS library. Ninety-five percent confidence inter-
vals were estimated using the ci function from the pROC
package (Additional file 6).

Data availability

16S sequence data for this project have been filtered to
remove human sequences and are publicly available as
Bioproject PRJINA269954; dbGaP accession number:
phs000659.v1.pl contains a subset of these data.
Microarray data are available from GEO as GSE65270;
GSE40292 contains a subset of these data. Metadata
are available at [74].

Additional files

Additional file 1: Figure S1. Data reduction. (A) (Top) 90th percentile
of raw P values of Spearman correlation test, as a function of true
covariance between the variables. Variables are standard normal
distributed, so covariance equals Pearson product moment. (Bottom)
Number of tests possible to retain 90% power and alpha equal to 0.05,
using Bonferroni correction. Variables are standard normal distributed, so
covariance equals Pearson product moment. (B) Principal component
analysis for cPC1 and cPC2. The documented ‘horseshoe effect’ is
noticeable, but not extreme. (C) Gene set enrichment analysis (GSEA) was
used to detect categories for which the gPCs were enriched and assist in
interpretation (see Methods). Only gPCs and gene sets with at least one
significant P value after Bonferroni correction (g <0.1) are shown. (D) The
top 25 loading values for each clade principal component. The blue/
orange scale bar corresponds to a decrease or increase in the relative
abundance of the clade in the principal component.

Additional file 2: Figure S2. The transcriptome and microbiome in
paired samples. The Pearson correlation was calculated for host
transcripts in all paired pouch-PPI samples, and the Bray-Curtis distance
was calculated for all microbiome samples. Ordinations were calculated
for Bray-Curtis and for (1-Pearson correlation). Paired samples are
connected with a line on ordinations. Plots show the difference between
samples between locations for genes (top) and for microbes (bottom).

Additional file 3 Supplementary data tables. A: The top 25 loadings
for each clade principal component (cPC). B: The top 25 loadings for
each gene (host transcript) principal component (gPC). C: The list of 75
gene medoids, each of which represents a cluster of genes with a similar
expression profile. D: List of P values of differential expression in pouch
for all metadata for all clades. E: List of P values of differential expression
in pre-pouch ileum for all metadata for all clades. F: List of P values of
differential expression in pouch for all metadata for all genes. G: List of
P values of differential expression in pre-pouch ileum for all metadata for
all genes. H: List of P values of differential expression in all samples for all
metadata for all genes, calculated using random intercept of individual. I:
List of P values of differential expression in all samples for all metadata
for all clades, calculated using random intercept of individual.

Additional file 4: Figure S3. GOrilla analysis. GOrilla was used to
measure for functional enrichment between genes differentially
expressed in pouch and pre-pouch ileum (Additional file 3). There was a
major difference in transporter expression between the two sites.

Additional file 5 Figure S4. Data stratification. (A) cPC1, cPC3, cPC6,
cPC8, gPC8, and gPC9 were the principal components that significantly
associated with one another in multivariate linear analysis. This figure
shows the expression of each of these components in PPl samples when
stratified by antibiotic use and by clinical outcome. (B) This figure shows
the distribution of antibiotic use in the cohort, stratified by sample type
(pouch vs. PPI) and clinical outcome. (C) The distribution of Enterococcacaeae

in samples, stratified by clinical outcome and antibiotic use. It is abundant
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almost exclusively in chronic pouchitis patients with recent antibiotic use.
(D) gPCY, plotted relative to patient histological inflammation score. (E)
Escherichia abundance, plotted relative to gPCo.

Additional file 6: Figure S5. Linear discriminant analysis for
discrimination of clinical outcome. (A) Summary of LDA prediction for
samples without antibiotics. Top: Areas under the curve for LDA
discrimination models. A single model was fit with 5-level response.
Ten-fold cross-validated class probabilities for each level (AP, CDL, CP, NP,
FAP) were used to construct ROC plots for that outcome. Ninety-five
percent confidence intervals were estimated using the ci function from
the pROC package. Bottom: Individual ROC plots for each possible outcome,
using genes only, clades only, and genes + clades. For each model, the ROC
plot was constructed using the roc function from the pROC library, from
10-fold cross-validated posterior probabilities from the Ida function of the
MASS library. (B) Summary of LDA prediction using all samples (with and
without antibiotics). These were calculated as described in (A). (C) LDA score
scatterplots for the phenotypes show which LDAs discriminate for which
phenotypes. Only the scatterplots for antibiotic-free samples are shown.
Scatterplots for genes (left) and for clades (right) are shown. Scatterplots are
colored for visualization. (D) Linear discriminant loadings plots show which
genes and microbes are most elevated or decreased in LDs 1 to 4 (and are
thus most discriminant).
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