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Abstract

reveal other significant driver events.

Background: 7P53 and BRCA1/2 mutations are the main drivers in high-grade serous ovarian carcinoma (HGSOC). We
hypothesise that combining tissue phenotypes from image analysis of tumour sections with genomic profiles could

Results: Automatic estimates of stromal content combined with genomic analysis of TCGA HGSOC tumours show
that stroma strongly biases estimates of PTEN expression. Tumour-specific PTEN expression was tested in two
independent cohorts using tissue microarrays containing 521 cases of HGSOC. PTEN loss or downregulation occurred
in 77% of the first cohort by immunofluorescence and 52% of the validation group by immunohistochemistry, and is
associated with worse survival in a multivariate Cox-regression model adjusted for study site, age, stage and grade.
Reanalysis of TCGA data shows that hemizygous loss of PTEN is common (36%) and expression of PTEN and expression
of androgen receptor are positively associated. Low androgen receptor expression was associated with reduced
survival in data from TCGA and immunohistochemical analysis of the first cohort.

Conclusion: PTEN loss is a common event in HGSOC and defines a subgroup with significantly worse prognosis,
suggesting the rational use of drugs to target PI3K and androgen receptor pathways for HGSOC. This work shows that
integrative approaches combining tissue phenotypes from images with genomic analysis can resolve confounding
effects of tissue heterogeneity and should be used to identify new drivers in other cancers.

Background

High-grade serous ovarian carcinoma (HGSOC) is the
most common type of ovarian cancer and accounts for
the majority of mortality from the disease. However,
overall survival has been virtually unchanged since the
introduction of platinum-based treatments [1]. HGSOC
is characterised by ubiquitous mutation of TP53 [2]
and high prevalence of BRCAI and BRCA2 germ-line
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mutations. With the exception of these genes, little is
known about other prevalent driver events, and BRCA1/2
and PR are the only robustly validated prognostic markers
[3,4]. HGSOC has genomic similarities with basal-like
breast tumours, which are also characterised by TP53
and BRCAI alterations but additionally have PTEN loss
[5-7]. Since PTEN loss is an important early initiating
event in BRCAI-associated basal-like breast tumours [8],
we hypothesised that it could also be a driver event in
HGSOC.

PTEN is a phosphatase that inhibits cell proliferation
induced by the PI3K pathway and acts as a tumour sup-
pressor gene [9]. Targeted deletion of PTEN has been used
to modulate the initiation of HGSOC and endometrioid
ovarian cancer (EOC) in mouse models [10-13], but it is
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unknown whether PTEN loss could initiate or drive the
progression of HGSOC in humans. The Cancer Genome
Atlas (TCGA) study on genetic and epigenetic alterations
in 489 cases of HGSOC confirmed TP53 mutation and
BRCA1 downregulation as the main driver events and
identified PTEN alterations in only 7% of tumours [4].
However, other immunohistochemistry-based studies in
smaller cohorts found much higher frequencies of PTEN
alterations, with loss of PTEN expression in 15% and
partial loss in 50% to 60% of cases [14-16].

HGSOC has previously been stratified into distinct
molecular subgroups based on gene-expression profiles:
proliferative, differentiated, immunoreactive and mes-
enchymal [4,17,18]. However, the clinical utility of these
classifiers is unclear, particularly as individual HGSOC
samples may express multiple subtype signatures and
the signatures show strong effects from stromal factors
[18]. These signatures are likely to be driven by cell-
autonomous effects such as BRCAI mutation (immunore-
active subtype) and the Let-7 pathway (mesenchymal
subtype) [19,20]. Identification of other dominant cell-
autonomous drivers therefore requires deconvolution of
stromal signatures from those of carcinoma cells. Joint
analysis of tissue images and genomic profiles has only
recently been introduced to study these effects, and
reveals information that cannot be attained from genomic
data alone [21].

We hypothesised that PTEN loss might be more fre-
quent than observed in the TCGA data set owing to con-
founding by samples with high stromal content. Here, we
have developed bioinformatic and image analysis meth-
ods to correct gene expression signatures in the TCGA
HGSOC data and tested these predictions in two indepen-
dent cohorts of HGSOC cases.

Results

Estimation of PTEN expression in high-grade serous ovarian
carcinoma is strongly influenced by stromal content

We evaluated the stromal content of 216 HGSOC samples
from TCGA in a total of 302 images using a computational
framework validated through scoring by an independent
observer (Jonckheere—Terpstra test for trend P = 0.001)
(Figure 1A and Additional file 1: Figure S1). The auto-
mated stromal scores were highly correlated with the
expression of genes from a published stromal gene sig-
nature (Figure 1B) [22]. ACTA2 ranked 17 in the top
correlated stromal genes and was therefore selected for
subsequent analysis on the basis of its known stromal-
specific expression (Figure 1C) [23].

High ACTA2 expression in the TCGA samples was
directly correlated with PTEN expression and was never
associated with low PTEN values, suggesting that in the
majority of samples it was stromal PTEN expression that
was being measured (Figure 1D).
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Differential gene analysis comparing the upper and the
lower quartiles of PTEN expression showed enrichment
for stromal genes in tumours with high PTEN (Gene Set
Enrichment Analysis (GSEA) Enrichment Score = 0.5).
However, performing the analysis on samples with low
ACTA?2 content (the first quartile) showed a more ran-
dom distribution of stromal genes (GSEAES = 0.1),
suggesting this subset is less influenced by stromal content
(Figure 1E,F). The wider distribution of PTEN expression
in quartile one of ACTA2 expression also supports the
hypothesis of tumour PTEN loss being more prevalent
than previously estimated (Figure 1D).

PTEN loss is prevalent and has prognostic value in
high-grade serous ovarian carcinoma

To test the predictions that reduced PTEN expres-
sion could be a frequent event, we developed meth-
ods to quantify tumour-specific PTEN expression using
a semi-quantitative immunofluorescence (IF) procedure.
We applied this to tissue microarrays constructed from
the population-based Study of Epidemiology and Risk Fac-
tors in Cancer Heredity (SEARCH) cohort (N = 245
HGSOCs from 516 ovarian cancer samples; Table 1) [3].
For HGSOC, PTEN expression was variable and showed
a range of intensities, from negative (23%; N = 49), weak
positive (32%; N = 68) to strongly positive fluorescence
(23%; N = 49). Heterogeneous fluorescence was also
observed in 48 samples, 22% of the cases (Figure 2A).

Reduced PTEN fluorescence (including negative, weak
or heterogeneous expression) was associated with signifi-
cantly worse survival for HGSOC compared with positive
fluorescence, independent of study site, age, stage and
grade (hazard ratio 1.8, 95% confidence interval (CI) 1.0 to
3.0, P = 0.03; Figure 2B, Additional file 2: Table S1).

Comparison of immunohistochemistry (IHC) for PTEN
to the immunofluorescent assay showed strong correla-
tion (P « 0.001; Additional file 3: Figure S2A). We
therefore used IHC to extend the initial analysis in an
independent validation cohort of incident ovarian can-
cer cases (N = 276 HGSOC cases from 507 ovarian
cancer samples; Table 2). Reduced PTEN expression was
associated with significantly worse survival for HGSOC
compared with positive expression, independent of study
site, age, stage and grade (hazard ratio 1.8, 95% CI 1.2 to
2.6, N = 228, P = 0.002) (Figure 2C, Additional file 2:
Table S2). Combined analysis of both data sets was asso-
ciated with a multivariate hazard ratio 1.5 (95% CI 1.1 to
2.0, N = 439, P = 0.006; Additional file 3: Figure S2B) for
reduced PTEN expression.

We examined for interactions between BRCAI and
PTEN loss of expression as PTEN loss is a frequent
initiating event in BRCAI-associated breast tumours
and is associated with basal-like breast cancer [8]. All
patients with a deleterious germ-line BRCAI mutation
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Figure 1 PTEN expression in TCGA samples correlates with ACTA2 expression, and thus stromal content. (A) Example of H&E stained
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sections from TCGA samples having low and high stromal content. The stromal content detected using the segmentation algorithm is shown in
green. (B) Average expression of combined stromal signature correlated well with automated quantification in (A) (r = 0.397, N = 216 patients). (C)
Univariate correlation testing of stromal genes from Yoshihara with image analysis showing that ACTA2 is highly correlated with stromal content

(r = 0.306) [22]. (D) Scatter plot showing the distribution of PTEN vs ACTA2 mRNA expression for each sample (Pearson correlation, r = 0.152;

P < 0.001) with corresponding box plots showing distribution of PTEN expression in different ACTA2 expression quartiles. There is higher PTEN

expression with high ACTA2 expression (Jonchkeere Terpsa test, P = 0.001). (E) Heat maps of top 50 differentially expressed genes between
PTENMSP and PTEN'" tumours in the TCGA data set before and after selecting for ACTA2 low samples. In each case, the top quartile of PTEN
expression was labelled PTENM9P, and the lowest quartile PTEN'®Y. Correction for ACTA2 content reveals AR as one of the top differentially
expressed genes. (F) Stromal gene set enrichment plots after differential expression analysis between high and low PTEN. Stromal-related genes
from the Yoshihara signature (141 genes, highlighted in red) are redistributed [22]. There is less enrichment for stromal-related genes after
correcting for stroma content (enrichment score 0.5 to 0.1). Dotted lines indicate adjusted P = 0.05.

had HGSOC tumours and were marginally more likely to
have negative or weak PTEN staining (Fisher’s exact test
P =0.06, N = 9/10 and Additional file 2: Table S1).

PTEN is frequently deleted in high-grade serous ovarian
carcinoma

TP53 is mutated in more than 95% of HGSOC cases [2,4]
and has been previously implicated in controlling PTEN
transcription [24]. We tested for TP53 effects on PTEN
expression by introducing a bacterial artificial chromo-
some transgene containing the entire human TP53 locus

into the TP53-null cell line SKOV3. PTEN expression was
independent of TP53 complementation for both wild-type
and mutated (R175H, R273H) transgenes (Figure 3A).
Comparison of promoter methylation and expression of
PTEN in the TCGA data set showed infrequent methyla-
tion of the PTEN promoter region in low-PTEN express-
ing cases (Figure 3B).

By contrast, loss of a single PTEN allele was common
in HGSOC (36%; N = 174) in addition to the previ-
ously described homozygous deletion occurring in 6%
of tumours [4] (Figure 3C). PTEN gene expression was



Table 1 Summary of SEARCH cohort

HGSOC LGSOC MoC EOC ccoc Others
Number of patients 245 35 50 97 62 27
Age at diagnosis (years) 57(8.2) 539(11.8) 534 (12.4) 545 (94) 558 (74) 56.2 (9)
Entry time (months) 23518910 32.1) 264 (19.6 t0 33.5) 28(18.2t047.6) 28.7 (21.2t0464) 294 (194 10 59.6) 27.8(23.11t031.6)

Last follow-up time (months)

71.1 (45410 105.6)

1265 (85.7 t0 149.1)

123 (83.1t0 170.3)

1409 (86.5t0 171.2

144.8 (101.6 to 208.2)

97.8(73.7 10 139.7)

Data available 245 (100%) 35 (100%) 50 (100%) 97 (100%) 62 (100%) 27 (100%)
Vital status Alive 89 (36%) 27 (77%) 39 (78%) 69 (71%) 47 (76%) 6 (59%)
Died 156 (64%) 8 (23%) 1(22%) 28 (29%) 15 (24%) 1(41%)
Data available 238 (97%) 3 (94%) 47 (94%) 96 (99%) 62 (100%) 24 (89%)
| 46 (19%) 27 (82%) 42 (89%) 76 (79%) 50 (81%) 13 (54%)
Il 27 (11%) 2 (6%) 1(2%) 3(14%) 6 (10%) 5(21%)
stage Il 139 (58%) 4 (12%) 4 (9%) 6 (6%) 5 (8%) 5(21%)
% 26 (11%) 0 (0%) 0 (0%) 1(1%) 1(2%) 1 (4%)
Data available 201 (82%) 3(37%) 26 (52%) 78 (80%) 26 (42%) 1(41%)
| 1 (0%) 11 (85%) 10 (38%) 2 (28%) 2 (8%) 1 (9%)
Grade Il 56 (28%) 1 (8%) 14 (54%) 40 (51%) 11 (42%) 7 (64%)
Il 144 (72%) 1(8%) 2 (8%) 6 (21%) 13 (50%) 3(27%)
Data available 214(87%) 29 (83%) 41 (82%) 89 (92%) 59 (95%) 26 (96%)
Negative 9 (23%) 2 (7%) 12 (29%) 9 (44%) 34 (58%) 8 (31%)
Weak positive 68 (32%) 6 (21%) 11 (27%) 27 (30%) 18 (31%) 8 (31%)
PTEN status (IF Heterogeneous 8 (22%) 7 (24%) 2 (5%) 3 (3%) 1(2%) 3(12%)
Positive 9 (23%) 14 (48%) 16 (39%) 20 (22%) 6 (10%) 7 (27%)
Data available 211 (86%) 28 (80%) 44 (88%) 90 (93%) 56 (90%) 26 (96%)
Negative 3(25%) 3(11%) 9 (20%) 5 (39%) 22 (39%) 4 (15%)
Weak positive 73 (35%) 8 (29%) 5(11%) 8 (31%) 18 (32%) 5(19%)
PTEN status (IHC)
Heterogeneous 4 (16%) 3(11%) 6 (14%) 6 (7%) 3 (5%) 3(12%)
Positive 1 (24%) 14 (50%) 24 (55%) 21 (23%) 13 (23%) 14 (54%)

Data are mean (SD), median (OQR), n (%) or n.
CCOC, clear cell ovarian cancer; EOC, endometrial ovarian cancer; HGSOC, high-grade serous ovarian cancer; IF, immunofluorescence; IHC, immunohistochemistry; LGSOC, low-grade serous ovarian cancer; MOC, mucinous

ovarian cancer.
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Figure 2 PTEN loss is highly prevalent in HGSOC and is associated with poor prognosis. (A) Examples of immunofluorescence (IF) and
immunohistochemistry (IHC) staining in ovarian cancer samples for scoring of PTEN expression. (B) Kaplan-Meier survival curves for PTEN positive vs
PTEN negative, weak or heterogeneous staining for HGSOC from the SEARCH study (using IF) (multivariate hazard ratio 1.8,95% CI 1.0 to 3.0,

P = 0.03) and (C) Kaplan—Meier survival curves for PTEN positive vs PTEN negative, weak or heterogeneous stainings for HGSOC from the
Nottingham Ovarian Cancer Study (using IHC) (multivariate hazard ratio 1.8,95% Cl 1.2 to 2.6, N = 228, P = 0.002). Cl, confidence interval; IF,
immunofluorescence; IHC, immunohistochemistry.




Table 2 Summary of Nottingham cohort

HGSOC LGSOC MocC EOC ccoc Others
Number of patients 276 40 54 62 50 24
Age at diagnosis (years) 62.6(10.7) 544 (16) 56.6(17.8) 60.8 (11.8) 594(12.2) 62(12.2)
Overall survival (months) 34 (17 to 60) 80 (50t0 107.2) 63 (16 to 108) 90 (59 to 120) 52.5(30.5t0 108.8) 44 (210 88.5)
Data available 272 (99%) 38 (95%) 53 (98%) 61 (98%) 48 (96%) 23 (96%)
Vital status Alive 69 (25%) 30 (79%) 26 (49%) 36 (59%) 19 (40%) 11 (48%)
Died 203 (75%) 8(21%) 27 (51%) 25 (41%) 29 (60%) 12 (52%)
Data available 270 (98%) 40 (100%) 52 (96%) 62 (100%) 48 (96%) 24 (100%)
I 41 (15%) 24 (60%) 42 (81%) 36 (58%) 28 (58%) 8 (33%)
Il 31 (11%) 3 (8%) 1(2%) 13 (21%) 8 (17%) 1 (4%)
tage I 168 (629%) 2 30%) 7(13%) 11(18%) 12 25%) 12 (50%)
v 30 (11%) 1 (2%) 2 (4%) 2 (3%) 0 (0%) 3(12%)
Data available 197 (71%) 21 (52%) 39 (72%) 60 (97%) 38 (76%) 10 (42%)
I 1(1%) 20 (95%) 18 (46%) 10 (17%) 0 (0%) 2 (20%)
Grade Il 4 (2%) 0 (0%) 15 (38%) 17 (28%) 0 (0%) 1(10%)
Il 192 (97%) 1(5%) 6 (15%) 33 (55%) 38 (100%) 7 (70%)
Data available 233 (84%) 34 (85%) 40 (74%) 55 (89%) 43 (86%) 23 (96%)
Negative 27 (12%) 1 (3%) 4 (10%) 18 (33%) 14 (33%) 5(22%)
Weak positive 65 (28%) 5(15%) 17 (42%) 13 (24%) 17 (40%) 6 (26%)
PTEN status (IHC)
Heterogeneous 29 (12%) 0 (0%) 3 (8%) 0 (0%) 1 (2%) 5(22%)
Positive 112 (48%) 28 (82%) 16 (40%) 24 (44%) 11 (26%) 7 (30%)

Data are mean (SD), median (OQR), n (%) or n.

CCOC, clear cell ovarian cancer; EOC, endometrial ovarian cancer; HGSOC, high-grade serous ovarian cancer; IF, immunofluorescence; IHC, immunohistochemistry; LGSOC, low-grade serous ovarian cancer; MOC, mucinous

ovarian cancer.
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Figure 3 PTEN loss in HGSOC mainly occurs through copy number alteration (CNA). (A) Western blot showing the quantification of PTEN,
TP53 and GAPDH (loading control) from extracts of the ovarian cancer SKOV3 cell line and complemented with wild-type and mutated TP53. (B)
Box plot showing distribution of methylation levels according to PTEN expression levels in TCGA samples. A small increase in DNA methylation is
observed in samples with lower PTEN expression (Wilcoxon test P < 0.001). (€) Pie chart showing distribution of PTEN ploidy within the TCGA data
set. (D) Box plot showing distribution of PTEN mRNA expression according to PTEN ploidy, suggesting that CNA influences mRNA expression (t-test,
diploid vs hetloss P <« 0.001). (E) Example of IHC staining for PTEN scored as positive in [14], but reclassified here as weak staining, as staining in
tumour cells is markedly reduced in comparison to stromal cells. (F) Table showing differences between scoring for PTEN IHC staining used [14] and
reclassified score. Of the original 36 positive samples, 21 have been reclassified as heterogeneous or weakly positive. (G) Box plot showing
distribution of PTEN mRNA expression within each scoring group for PTEN IHC staining, according to the Hanrahan score [14] and the reclassified
score. There is a significant difference between PTEN expression in tumours classified as weak positives and positives (t-test, P = 0.002). (H)
Contingency table showing significant correlation between scores for PTEN IHC staining and PTEN CNA (Fisher's exact test, P <« 0.001). CNA, copy
number alteration; IF, immunofluorescence; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; hetero, heterogeneous; IHC,
immunohistochemistry; TCGA, The Cancer Genome Atlas.




Martins et al. Genome Biology 2014, 15:526
http://genomebiology.com/2014/15/12/526

significantly lower when there was loss of at least one allele
(Figure 3D; t-test, P < 0.001). To assess whether protein
expression of PTEN was associated with copy number, we
applied our IHC staining classification to a subgroup of
51 samples from the TCGA cohort that has been recently
stained for PTEN [14]. A large number of positive sam-
ples were reclassified as weak positive (Figure 3E,F and
Additional file 2: Table S3). These tumours had simi-
lar levels of PTEN mRNA to those with heterogeneous
staining, and significantly lower levels than tumours with
positive staining (Wilcoxon test, P = 0.002; Figure 3G),
emphasising the importance of differentiating intensities
in PTEN staining. Negative staining was strongly corre-
lated with homozygous deletion, and weak or heteroge-
neous staining with hemizygous loss; positive staining was
associated with no chromosomal loss (Fisher’s exact test,
P = 0.001; Figure 3H).

Androgen receptor expression is associated with PTEN
expression

We analysed PTEN differentially expressed genes for
TCGA samples with low ACTA2 content to mitigate the
effect of stromal contamination. AR was one of the top
differentially expressed genes (Figure 1E), and this was
confirmed using an orthogonal method, csSAM, which
takes into account stromal content from H&E images
(Additional file 4).

Protein—protein interaction data from TCGA available
through cBioPortal [25] showed that the highly ranked
phosphorylated proteins in the lower quartile of PTEN
expression (defined as PTEN RNA-sequencing expres-
sion, z score < —0.5) included AKT1, AKT2 and AKT3,
which reflects activation of the PI3K pathway. Addition-
ally, another highly ranked protein expressed in this sub-
group was AR. A direct link between AR and PTEN was
suggested by overlaying genomic information, including
copy number and gene expression, on a known protein
interaction network (Figure 4A). Moreover, AR expres-
sion has also been associated with PTEN expression in
prostate cancer [26]. Therefore, we hypothesised that
AR expression was prognostically significant. Using the
TCGA RNA-sequencing data, we found that low AR
expression was associated with shorter overall survival
(hazard ratio 1.5, 95% CI 1.1 to 2.1, P = 0.02; Figure 4B).

These results were validated experimentally in 216
samples from the SEARCH cohort. It was found that 43%,
25% and 32% of HGSOC expressed high levels of AR
(>50% of tumour cells), low levels of AR (<50% of tumour
cells) or no AR, respectively (Figure 4C). In a multivariate
analysis, we found a similar prognostic effect for expres-
sion in these samples (hazard ratio 1.7, 95% CI 1.1 to
2.4, P = 0.01), despite there being no strong associa-
tion between AR and PTEN (chi-squared test P = 0.63;
Figure 4D,E).
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Differentiated and proliferative expression subtypes are
associated with high and low PTEN expression

TCGA subdivided HGSOC into four subgroups based on
gene expression profiles, differentiated, proliferative, mes-
enchymal and immunoreactive, in which the latter two
were enriched for stromal cells and leukocytes (Figure 5A)
[4,18].

PTEN loss is associated with activation of the PI3K
pathway and consequently with proliferation. Therefore,
we hypothesised that PTEN expression could be associ-
ated with the remaining differentiated and proliferative
subgroups. By focusing on these two subgroups and cat-
egorising the raw AR and PTEN expression into tertiles,
higher PTEN expression was associated with the differen-
tiated subgroup (Figure 5B, chi-squared test P = 0.02),
whilst lower PTEN expression was associated with the
proliferative subgroup.

Discussion

In this work, we have developed and validated image anal-
ysis methods to score stromal components in tumour
images automatically. We used these methods to iden-
tify tissue samples with low stromal content from TCGA,
which allowed us to examine the range of PTEN RNA
expression accurately, confirming that PTEN expression
in HGSOC was highly variable. These observations sup-
ported our hypothesis that PTEN loss could be common
in HGSOC and was confirmed using a validated PTEN
antibody on tissue microarrays from two independent
clinical cohorts.

Extensive genomic analysis of HGSOC has revealed com-
mon involvement of tumour suppressor genes, including
TP53, BRCAI and BRCA2, but only rare involvement
of ‘actionable’ oncogenic mutations. The importance of
identifying driver mutations in cancer and using them
for therapeutic targets has been extensively demon-
strated and a robust molecular stratification of HGSOC
is required to predict prognosis accurately and to sup-
port rational drug development for this disease. Previous
genomic analysis of HGSOC has identified four molecu-
lar subtypes of HGSOC based on gene expression profiles:
differentiated, proliferative, mesenchymal and immunore-
active [4,17,18]. However, these profiles have only weak
prognostic value, are highly influenced by stromal contri-
bution and do not have direct therapeutic implications.
Cellular heterogeneity in tumour samples is a common
confounder for genomic analysis and it is important to
note that the spatial distribution and number of normal
and tumour cells can provide important phenotypes that
are not represented in genomic profiles [21,27].

In this work, by using image analysis to focus on
tumour-cell-specific PTEN expression, we have shown
that PTEN loss is a common event in HGSOC, supporting
previous IHC-based studies [14-16]. Although there is
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Figure 4 Androgen receptor is co-regulated with PTEN and is associated with good prognosis. (A) Protein—protein interaction network of
proteins associated with high PTEN expression shows co-expression of AR and PTEN (figure obtained from cBioPortal website using the provisional
TCGA data for ovarian serous cystadenocarcinoma). (B) Kaplan-Meier survival curves for AR expression show prognostic value, after dichotomising
AR RNA-sequencing expression levels at the median level (Nhigh = 126, Niow = 129; hazard ratio 1.5,95% Cl 1.1 to 2.1, P = 0.02). (C) Examples of
immunohistochemistry (IHC) AR staining of HGSOC samples. (D) Heat map shows no statistical association between AR and PTEN IHC expression in
HGSOC samples from the SEARCH cohort (chi-squared test, P = 0.63). (E) Kaplan-Meier survival curves for AR positive vs AR negative for HGSOC
from the SEARCH study (using IHC) (multivariate hazard ratio 1.7,95% Cl 1.1 to 2.4, P = 0.01). Cl, confidence interval; HGSOC, high-grade serous
ovarian carcinoma; HR, hazard ratio; IF, immunofluorescence; IHC, immunohistochemistry; SEARCH, Study of Epidemiology and Risk Factors in
Cancer Heredity.
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Figure 5 PTENN9h ARNigh and PTEN!OW AR tumours correlate with the differentiated and proliferative subgroups. (A) Heat maps
representing the association between HGSOC TCGA subtypes and expression of CD3, ACTA2, AR and PTEN in the TCGA data set. Mesenchymal and
immunoreactive subtypes show good correlation with ACTA2 and CD3 expression, respectively (left). The heat map on the right shows only the
proliferative and differentiated subtypes and suggests that high AR and PTEN expression is associated with the differentiated subtype. (B)
Categorisation of patients into high, medium and low expression for PTEN and AR shows an association between PTEN expression and the
differentiated and proliferative subtypes (chi-squared test, PTEN P = 0.02 and AR P = 0.38). DIF, differentiated; HGSOC, high-grade serous ovarian
carcinoma; med, medium; PRO, proliferative; TCGA, The Cancer Genome Atlas.

conflicting data on the prognostic value of PTEN [16,28],
in our analysis of 442 HGSOC cases from two separate
cohorts, we have demonstrated that PTEN loss or down-
regulation is prognostic and is strongly associated with
worse overall survival. Positive PTEN staining has com-
parable survival effects to those described for BRCA1/2
carriers [4]. TCGA previously demonstrated homozygous
deletion of PTEN in 6% of HGSOC cases [4], and our
reanalysis of this data set additionally shows that het-
erozygous loss is common in tumour cells (36%) and is
associated with reduced expression of PTEN RNA and
protein.

As methylation of PTEN was only infrequently observed
in the TCGA data, other post-transcriptional modifica-
tions may play an important role in regulating PTEN [29].
PTEN is regulated by a complex network of miRNAs and
mRNAs that share the same miRNA binding site — these
have been termed competing endogeneous RNA (ceRNA).
Also, the PTEN pseudogene PTENPI can indirectly regu-
late PTEN expression [30]. Further studies will be needed
to clarify whether the heterogeneous expression patterns
observed can be explained by these post-transcriptional
modifications, tumour heterogeneity or upstream genetic
changes.
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PTEN gene dosage is finely regulated and small expres-
sion changes may have important phenotypic effects [31].
In our analysis, weak expression of PTEN had similar
detrimental effects on survival as total loss of expression.
These survival effects are consistent with models sug-
gesting haploinsufficiency phenotypes for PTEN [8,32].
Previous analyses of early serous tubal carcinomas showed
that 33% (N = 4/12) of cases had complete loss of PTEN
expression and a further 33% had heterogeneous loss [15].
Together with our observations, these data strongly sup-
port the contention that PTEN is a prevalent early driver
event in HGSOC. This is further supported by data from
mouse models where the addition of PTEN deletion to
alteration of DICER, or TP53 and BRCA1, was critical for
initiation and progression of HGSOC [10,11].

In breast cancer, PTEN loss is more prevalent in asso-
ciation with BRCAI germ-line mutations, and tumour
analysis at the single-cell level has shown that it is
the most common initiating event in BRCAI-associated
breast tumours [7,8]. Owing to our small sample size, our
results suggest, but do not confirm, that PTEN loss is
more prevalent in BRCA I-associated HGSOC.

We also show that the PTENM™&" subgroup with
improved outcome was associated with the differenti-
ated expression signature, whereas the poor prognosis
PTEN'" subgroup was associated with the prolifera-
tive signature. The stratification of HGSOC patients into
PTENM8M and PTEN'Y subgroups may have important
therapeutic implications. Firstly, PTEN loss activates the
PI3K pathway and tumours that present reduced expres-
sion of PTEN may respond to PI3K inhibitors. Addition-
ally, PTEN loss has also been associated with response to
PARP inhibitors in endometrial cell lines [33] and a mech-
anistic basis for this has been suggested by recent findings
that implicate nuclear PTEN in the regulation of homol-
ogous recombination [34]. Recent data suggest strong
activity for compound PARP-PI3K inhibition in prostate
and breast cancers and these drugs may be effective for
the PTEN!Y HGSOC subgroup [35,36].

The important association between AR and PTEN has
previously been demonstrated for prostate cancer but not
tested for ovarian cancer [26]. By correcting gene signa-
tures from TCGA for stromal content, we showed that AR
is co-expressed with PTEN and higher levels of AR expres-
sion were associated with longer overall survival. This is
consistent with a recent meta-analysis that also suggested
a better overall survival for patients with breast tumours
with higher androgen receptor (AR) expression, indepen-
dent of Estrogen Receptor (ER), and new clinical trials
targeting AR in breast cancer have already been put in
place [37]. However, our tissue microarray data showed a
weaker correlation between PTEN and AR protein expres-
sion than observed in the genomic data. This may reflect
the possible role of post-transcriptional modifications on
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protein expression, and the large degree of intra-tumour
heterogeneity observed in IHC staining. Clinical trials
with AR antagonists in ovarian cancer performed over 20
years ago suggested that only a small subset of tumours
may respond to these drugs [38]. Our results suggest that
stratification based on AR expression may allow for the
identification of a potentially responsive high AR subset,
which is associated with better prognosis.

Conclusions

PTEN loss, together with TP53 and BRCA1 alterations,
is a common event in HGSOC and, in combination with
AR, allows for a prognostic stratification of HGSOC sub-
groups, which may be amenable to targeted therapies.
We have demonstrated that important genomic events
that are confounded by stromal contribution in tumour
samples, such as PTEN loss, can be resolved by inte-
grating image analysis with protein and gene expression.
Such bioinformatic approaches are broadly applicable and
could lead to important discoveries in other diseases
where heterogeneity of the tissue may be a confounding
issue in genomic analyses.

Materials and methods
Overview of data sets used
Analyses were performed on three data sets:

1. The publicly available TCGA, from which H&E
images, mRNA expression, genomic data including
copy number variation and DNA methylation data,
and corresponding clinical information for 489
HGSOC patient samples were obtained. This was
downloaded from the TCGA data portal [4] and
cBioPortal [25]. A total of 51 IHC samples for PTEN
from this data set were obtained from Hanrahan
et al. [14] and used to correlate genomic information
with protein expression [14].

2. SEARCH data set with tissue samples and
corresponding clinical information for 245 HGSOC
samples (out of 516 ovarian cancer cases; Table 1).
Patients were recruited after a diagnosis of ovarian
cancer and if they were able to consent for
participation in the study [3]. Key demographical and
clinical data on the patients, including BRCA1
germ-line mutation status, were presented
anonymously.

3. Nottingham Ovarian Cancer Study (NOT) data set
with tissue samples and corresponding clinical data
from 276 HGSOC samples (out of 507 ovarian cancer
cases; Table 2). This is a retrospective study of ovarian
cancer cases diagnosed between 1991 and 2011 [3].
For this study, the institutional research ethics boards
(East Of England Cambridgeshire REC (for SEARCH)
and Derbyshire REC (for NOT)) waived the need to



Martins et al. Genome Biology 2014, 15:526
http://genomebiology.com/2014/15/12/526

obtain consent. Both local human research
investigation committees approved each study.

Correcting gene expression profiles using image analysis
Scoring by eye for overall image quality (based on dis-
colouration, folding over of the mounted section and
completeness of the section) was performed on 312 slides,
of which 46 were discarded owing to poor quality, leaving
266 slides from 194 patients. Based on quality, 302 H&E
slides from 216 patient samples in the TCGA database
were selected, of which an observer (FCM) manually
scored 266 for stromal content. Images were segmented
by first applying an entropy filter to remove the back-
ground from an image, followed by colour deconvolution
according to Ruifroks’ method (Additional file 5) [39].
The haematoxylin channel was subtracted from the eosin
channel, leaving a raw stromal signal. Otsu’s thresholding
and smoothing was then performed to estimate a stromal
fraction [40]. These values along with stromal gene scores
were used to predict the stromal content in the remain-
ing TCGA samples. Correlation between automated and
manual scoring was performed using the Jonckheere—
Terpstra test for trend. Gene-expression-based validation
of the method was performed by generating a stro-
mal gene list [22] and performing univariate Pearson’s
correlation testing between stromal quantification and
expression.

Differential gene expression analysis

PTEN expression was categorised into quartiles and the
top and bottom quartiles were used for differential expres-
sion analysis, which was performed using either the limma
package [41] or an orthogonal method, csSAM [42], on
the complete TCGA set (N = 489) and in the subset of
low ACTA2 tumours (N = 122). Differentially expressed
genes were selected after correction for the false discov-
ery rate for multiple testing and using a cut-off P < 0.05.
The top 50 differentially expressed genes were selected for
further unsupervised hierarchical clustering and visuali-
sation using the made4 library [43]. Unsupervised hier-
archical clustering was performed using the Euclidean
distance metric and Ward’s method.

Statistical tests and survival analysis

All statistical analysis were performed using R [44]. All the
R code necessary to replicate the data analysis is available
in Additional file 6. Survival analysis was performed using
a Cox proportional hazards model. Since some patients
died just after diagnosis and were not included in the
SEARCH study, left truncation was included in the analy-
sis of this cohort, which means that we took into account
both the time from diagnosis to entry into the study
and the time from entry into the study to censoring or
death.
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PTEN immunostaining, scanning and scoring of SEARCH
and NOT samples

IHC was carried out using tissue microarrays obtained
from Formalin Fixed, Paraffin-Embedded (FFPE) tissues
and primary antibodies for PTEN and AR (Cell Signal-
ing, Danvers, MA, USA; PTEN - Clone 138G6; AR —
Clone D6F11). The staining protocol for PTEN clone
138G6 was previously described by FCM [8] and validated
for specificity and sensitivity using Pten knockout mice
and xenograft tissue from PTEN-positive and -negative
human cancer cell lines (see Supplementary Figure 1 in
[8]). Heat-induced antigen retrieval was carried out in
10 mmol~! citric acid (pH 6.0) in a pressure cooker at
120°C for 10 min. Sections were incubated with PTEN or
AR antibodies overnight, diluted 1:100 in 5% goat serum,
followed by incubation with anti-rabbit biotinylated sec-
ondary antibody for 1 h and peroxidase-conjugated
avidin-biotin complexes (Elite ABC; Vector Laboratories,
Burlingame, CA, USA). Formed immunocomplexes were
visualised using diaminobenzidine (DAKO, Glostrup,
Denmark, EU) and slides were counterstained with
haematoxylin. Sections were rinsed in PBS between each
step.

IF was carried out by adding a tyramide signal amplifi-
cation step (Perkin-Elmer) after the secondary antibody,
followed by incubation with Alexa Fluor 647-conjugated
streptavidin (Invitrogen). Nuclei were counterstained with
4/, 6-diamidino-2-phenylindole (DAPI) (Invitrogen).

IF and IHC samples were stored at —20°C and room
temperature (RT), respectively, for at least 48 h before
image analysis. For IHC, an Ariol scanning system (Leica,
Wetzlar, Germany, EU) was used to obtain the digital
images. For IF, images were acquired with a SP5 Leica
Confocal Microscope, x40 plan objective, and analysed
by Leica software (Leica Application Suite, Advanced Flu-
orescence 2.2.0). Scoring was performed according to
intensity (using stromal cells as internal positive con-
trols) and percentage of stained cells by two independent
observers (FCM and MJL). We subdivided tumours as
negative (no staining in any tumour cell), weak posi-
tive (all tumour cells weakly stained compared to stro-
mal cells), positive (all tumour and stromal cells equally
stained) or heterogeneous (combination of positive and
negative/weak staining) staining.

Western-blot PTEN quantification in relation to TP53 status
Western blot analysis was performed for extracts from
SKOV3 ovarian cancer cell lines (ATCC; HTB-77) and
derivatives obtained by Bacterial artificial chromosome
(BAC) lipofectamine transfection. A BAC modifica-
tion kit (Gene Bridges, Heidelberg, Germany, EU; cat-
alogue number K002) was used to obtain the BAC
clones (empty control and with R175H or R273H muta-
tions) from the original BAC containing wild-type TP53
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(CTD-3049A20; Invitrogen, catalogue number 96012).
Whole-cell extracts were collected after scraping cells
in protein lysis buffer containing 50 mmoll~! Tris-HCl
(pH 7.4), 150mmoll~! NaCl, 5 mmoll™! ethylenedi-
aminetetraacetic acid (EDTA), 50 mmoll~! NaF, 0.5%
NP40, one Complete™ Mini and EDTA free tablet per
50ml. Protein concentrations were determined using
Bio-Rad protein assay kit (Hercules, CA, USA). Equal
concentrations were resolved by sodium dodecyl sul-
phate polyacrylamide gel electrophoresis (SDS-PAGE),
transferred to Immobilon-fluorescence PVDF membrane
(Millipore, Bedford, MA, USA), blocked and probed
with anti-human TP53 (clone DO-1, Santa Cruz, Dallas,
Texas, USA; 1:2,000; overnight incubation at 4°C), anti-
human PTEN (clone 138G6, Cell Signaling; 1:1,000;
overnight incubation at 4°C) and anti GAPDH (Cell Sig-
naling; 1:5,000; overnight incubation at 4°C) antibod-
ies. IRDye800-conjugated anti-rabbit immunoglobulin G
(IgGQ) and IRDye700-conjugated anti-mouse IgG (Li-Cor,
Lincoln, NE, USA; 1:5,000 and 1:10,000 dilutions; incu-
bated at RT for 1 h) were used as secondary antibodies.
Signal intensities were analysed by using the Odyssey
infrared image system (Li-Cor, Lincoln, NE, USA). Two
replicates of the experiment were performed and similar
results were obtained.

Additional files

Additional file 1: Figure S1. Automated quantification of stroma
correlates well with manual scoring. Good correlation was observed
between automated stromal scoring and by eye scoring (r = 0.593,
N = 266 images; Jonckheere-Terpstra test for trend P = 0.001).

Additional file 2: Supplementary Tables. Pathological and clinical data
from SEARCH, NOT and Hanrahan cohorts. NOT, Nottingham Ovarian
Cancer Study; SEARCH, Study of Epidemiology and Risk Factors in Cancer
Heredity.

Additional file 3: Figure S2. PTEN IHC staining correlates with PTEN IF
staining and shows prognostic value. (A) Contingency table showing
strong correlation between scores obtained from PTEN IF and IHC stainings
(chi-squared test, P <« 0.001). (B) Combined SEARCH and NOT studies
(using IHC) (multivariate hazard ratio 1.5, 95% Cl 1.1 to 2.0), P = 0.006. Cl,
confidence interval; IF, immunofluorescence; IHC, immunohistochemistry;
NOT, Nottingham Ovarian Cancer Study; SEARCH, Study of Epidemiology
and Risk Factors in Cancer Heredity.

Additional file 4: Supplementary Information. Supplementary
information includes all code for the generation of plots and statistical
analyses in R.

Additional file 5: Code for image Analysis. Code used to estimate
stromal content in TCGA histopathological images.

Additional file 6: R code used for data analysis and to obtain all the
results and figures in this publication. R code.
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