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Abstract

component of these conditions.

Background: The temporal coordination of biological processes into daily cycles is a common feature of most
living organisms. In humans, disruption of circadian rhythms is commonly observed in psychiatric diseases,
including schizophrenia, bipolar disorder, depression and autism. Light therapy is the most effective treatment for
seasonal affective disorder and circadian-related treatments sustain antidepressant response in bipolar disorder
patients. Day/night cycles represent a major circadian synchronizing signal and vary widely with latitude.

Results: We apply a geographically explicit model to show that out-of-Africa migration, which led humans to
occupy a wide latitudinal area, affected the evolutionary history of circadian regulatory genes. The SNPs we
identify using this model display consistent signals of natural selection using tests based on population genetic
differentiation and haplotype homozygosity. Signals of natural selection driven by annual photoperiod variation are
detected for schizophrenia, bipolar disorder, and restless leg syndrome risk variants, in line with the circadian

Conclusions: Our results suggest that human populations adapted to life at different latitudes by tuning their
circadian clock systems. This process also involves risk variants for neuropsychiatric conditions, suggesting possible
genetic modulators for chronotherapies and candidates for interaction analysis with photoperiod-related environmental
variables, such as season of birth, country of residence, shift-work or lifestyle habits.

Background

The temporal coordination of biological processes into
daily cycles is a common feature of most living organ-
isms. Although circadian cycles are determined by the
presence of an internal cell-autonomous clock, they are
synchronized (entrained) by environmental cues, most
importantly visible light and external temperature [1].

In mammals, the suprachiasmatic nucleus (SCN) repre-
sents the central circadian pacemaker. SCN neurons sustain
cell-autonomous cycles and, through the retinohypothala-
mic tract, receive inputs from melanopsin-expressing
photosensitive retinal ganglion cells (RGC). Thus, al-
though many peripheral tissues display autonomous cir-
cadian oscillations, the SCN hierarchically coordinates
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internal rhythms by providing a link with the external
environment [2].

At the molecular level, the mammalian core circadian cir-
cuit involves the CLOCK, ARNTL (also known as BMALI)
and NPAS2 transcription factors, which activate the
transcription of cryptochrome (CRY1 and CRY2), period
(PER1, PER2 and PER3) and other clock-controlled genes
[3]. CRY/PER heterodimers translocate back into the nu-
cleus and inhibit their own transcription by acting on the
CLOCK/ARNTL complex. The degradation of CRY and
PER relieves the inhibition and initiates a new cycle [3].

Detrimental effects for health and fitness accompany
alterations of circadian rhythms, due either to genetic
defects or to changes in external variables that function as
entrainment cues [4,5]. Notably, disruption of circadian
rhythms is a common feature of human psychiatric diseases
including schizophrenia (SCZ), bipolar disorder (BPD)
and autism, with seasonal affective disorder (SAD) being a
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common condition characterized by the occurrence of
depressive symptoms during short winter days [2]. Light
therapy is the most effective treatment for SAD [6] and
circadian-related treatments (sleep deprivation and bright
light) sustain antidepressant response in patients with
BPD [7].

These observations, together with the notion that all
species, from bacteria to plants and animals, have evolved
circadian timing systems [1], suggest that genetic adapta-
tions to seasonal variations in day length (photoperiod)
are widespread. In animals, signatures of latitude-driven
natural selection at circadian genes have been described
for Drosophila [8], birds [9,10] and fishes [11].

Anatomically modern humans appeared in East Africa
about 200,000 years ago, with archeological evidence
placing the origin of our species in the Awash Valley of
Ethiopia [12], a region immediately north of the equa-
tor. Equatorial regions are characterized by roughly 12 h/
12 h day/night cycles; thus, the annual minimum and
maximum photoperiod are almost identical (that is, day
length tends to be constant throughout the year). Out-of-
Africa migration led humans to occupy a wide latitu-
dinal area where seasonal variation in photoperiod can be
wide. We tested the hypothesis that seasonal photoperiod
variation (that is, the occurrence of day/night cycles that
deviate from the 12 h/12 h pattern) acted as a selective
pressure. We suggest that this process influenced adaptive
evolution at circadian regulatory loci and at risk variants
for psychiatric and neurologic diseases.

Results

Day-length variation acts as a selective pressure on genes
involved in circadian rhythms

Geographically explicit models are a powerful tool to study
adaptation to environmental pressures [13-20]. Thus, we
applied a previously developed approach that analyzes
spatial correlations between genetic variation and environ-
mental factors [15,16] to test the hypothesis that, during
out-of Africa migration, seasonal variation of annual day
length acted as a selective pressure on circadian clock
genes. Briefly, we analyzed genotype data from 52 human
populations distributed worldwide (Human Genome
Diversity Project-Centre d’Ftude du Polymorphisme Humain
Human Genome Diversity Cell Line Panel (HGDP-CEPH
panel) [21] and determined the annual minimum and
maximum photoperiod for the geographic region where
each population is located (Additional file 1, Figure 1A).
The difference between the maximum and minimum
photoperiod (hereafter referred to as Aphotoperiod) is a
measure of the deviation from the almost constant annual
day length observed at equatorial regions, and is hypothe-
sized to represent a selective pressure. For all single nu-
cleotide polymorphisms (SNPs) in the HGDP-CEPH panel
(n = 660,832) we calculated Kendall’s rank correlation
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between allele frequencies and Aphotoperiod. Because
genetic diversity in humans is affected by demographic
factors [22,23], each SNP was assigned a percentile rank
in the distribution of Kendall’s correlation coefficients (1)
calculated for all SNPs with a similar (in the 1% range)
minor allele frequency (MAF) calculated over all popula-
tions. This procedure was based on the assumption that
demography affects the whole genome (and will be
reflected in the distribution of T values), whereas selection
is a locus-specific force. Thus, SNPs that ranked high in
the distribution of T are more likely to have experienced a
selective force (in addition to the demographic effect).
The binning in MAF classes corrected for the fact that the
power of the correlation tests was also affected by the
overall SNP frequency in populations (because low MAF
values result in several similar frequency values among
populations - that is, several ties).

We first assessed whether 12 genes that compose the core
circadian pacemaker (CLOCK, PERI1, PER2, PER3, NPAS2,
ARNTL, CRYI, CRY2, CSNKIE, CSNKID, NRIDI and
ARNTL2) [3] carry SNPs that correlate with Aphotoperiod
(Additional file 2). Specifically, we considered a variant to
significantly correlate with this parameter if it displayed a
Kendall’s correlation P value <0.05 after Bonferroni cor-
rection for the number of SNPs being analyzed (175 in the
case of circadian core components) and a T percentile
rank >0.95. Seven circadian genes carried at least one vari-
ant significantly correlated with Aphotoperiod (Table 1,
Additional file 2). By performing 10,000 resamplings of 12
randomly selected human genes (see Methods for details),
we verified that the empirical probability of obtaining
seven or more genes with at least one significant SNP
amounts to 0.031, indicating that core circadian genes are
more likely than expected to carry variants correlated to
Aphotoperiod. Because these loci represent a small set, we
next analyzed 267 genes that have been identified in a
large-scale RNA interference (RNAi) screen as modifiers
of circadian rhythms in U20S cells, a human osteosar-
coma cell line (Additional file 2) [24]. After removing core
circadian genes (to make the two sets independent) and
genes that have no SNP genotyped in the HGDP-CEPH
panel, 223 RNAi hits remained; of these, 40 carried
variants that significantly correlated with Aphotoperiod
(Table 1, Additional file 2). Using a resampling approach
as described above, we calculated that the empirical prob-
ability of observing 40 or more significant genes is 0.043.

We next analyzed genes that, when mutated or over-
expressed, affect circadian rhythmicity in vivo. To this
aim, we searched the Mouse Genome Informatics (MGI)
resource for mutant strains showing circadian disturb-
ance. Because regulation of sleep/wake cycles is a major
physiological output of the circadian clock, genes that
determine abnormal sleep patterns in mice were also
included. After excluding core circadian genes and RNAi
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Figure 1 (See legend on next page.)
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Figure 1 Fsr (Fixation index) and allele frequency analysis. (A) HGDP-CEPH populations are shown on a world map and color coded according
to their Aphotoperiod (in topological color scale, minimum = orange, maximum = dark blue). Arrows denote populations included in Fsr pairwise
comparisons, with red and green indicating a significant excess of variants with an Fsr rank >0.95 or <0.05, respectively (among the 84
SNPs in circadian rhythm genes, see text). Gray arrows denote pairwise comparisons that showed non-significant excess of high Fsr variants.
Fisher's exact test P values (see text) for Fst comparisons are as follows: Orcadian-Biaka Pygmy, 0.02; Orcadian-Mbuti Pygmy, 0.05; Orcadian-Yoruba,
0.05; Russian-Biaka Pygmy, 0.03; Russian-Mbuti Pygmy, 0.03; Russian-Yoruba, 0.08; Papuan-Biaka Pygmy, <0.01; Papuan-Mbuti Pygmy, <0.01;
Papuan-Yoruba, <0.01; Papuan-Yakut, 0.12; Yakut-Maya, 0.03; Yakut-Karitiana, 0.02; Maya-Biaka Pygmy, <0.01; Maya-Mbuti Pygmy, <0.01;
Maya-Yoruba, <0.01; Karitiana-Biaka Pygmy, <0.01; Karitiana-Mbuti Pygmy, <0.01; Karitiana-Yoruba, <0.01. (B) Box-plot of normalized derived
allele frequencies for the 84 SNPs significantly correlated with Aphotoperiod (left) and for 840 minor allele frequency (MAF)-matched control
variants (right). Populations are color coded as in panel (A) and are grouped in six broad geographic areas; within these areas populations are ordered
according to increasing Aphotoperiod. (C) Pairwise Fsr for all HGPD-CEPH populations calculated for the 84 Aphotoperiod-selected variants (left) and
for 840 MAF-matched control SNPs (right). Pairwise Fsr percentile ranks are reported in gray scale (Fst rank increasing with gray shading). Populations

are ordered as in (A).

hits, we identified 107 loci (Additional file 2). Eighty-two
of these had been included in the HGDP-CEPH panel
and 23 carried variants that correlate with Aphotoperiod
(Table 1). Again, these genes are more like to carry sig-
nificant SNPs than expected if randomness alone were
responsible (empirical P = 0.025).

Likewise, we analyzed the Online Mendelian Inheritance
in Man (OMIM) and PhenomicDB databases to compile a
list of genes that have been associated with sleep pattern
disturbance in humans. Specifically, we included genes
only if the phenotype (either syndromic or not) resulted
from mutation and could be ascribed to a single gene. Al-
though sleep disturbances have been observed in patients
with neurodegenerative diseases (for example, Parkinson’s
and Huntington’s disease), the causal genes were not con-
sidered because sleep problems in these conditions
might be secondary to the general disruption of neural
circuitry [2]. Also, we excluded CSNK1D and PER2 (circa-
dian core set), whose mutations cause familial advanced
sleep phase syndrome, as well as RAI1, BHLHE41, UBE3A,
and HCRT (responsible for Smith-Magenis/Potocki-Lupski
syndromes, short sleep phenotype, Angelman syndrome
and narcolepsy, respectively), which had already been in-
cluded in the mouse strain gene set. Thus, we obtained a
list of 11 genes, seven of which carry SNPs that correlated
with Aphotoperiod (Table 1; Additional file 2). As above,
this number is significantly higher than expected from
random sampling (P = 0.0177).

Finally, we analyzed a small set of genes (n = 13) that
transduce photic inputs in melanopsin-expressing RGCs;
these cells sustain non-image-forming responses to light,
including circadian entrainment and light-induced mela-
tonin suppression. Again, these genes show more SNPs that
correlated with Aphotoperiod than expected by chance
(seven significant genes, empirical P = 0.0476) (Table 1,
Additional file 2). We next merged together all gene
sets mentioned above (core circadian, RNAi hit, mouse
circadian disturbance, human sleep disturbance and
melanopsin-signaling genes). Analysis of these 341 genes
confirmed that they are significantly more likely than

expected to carry variants that correlated with Aphotoper-
iod (empirical P =0.0335). To confirm that the results we
obtained were not influenced by the SNP content of the
gene sets (for example, large genes with many SNPs may
be more likely to carry at least one variant that correlates
with Aphotoperiod), we performed resampling analyses
using SNP-matched random gene sets (Additional files 3,
4 and 5). This approach largely confirmed the results
detailed above (Additional file 4).

As a further control, the same analyses were performed
using environmental factors different from photoperiod vari-
ation, namely annual minimum and maximum temperature,
Atemperature (the difference between the two previous mea-
sures), and annual short-wave (UV) radiation flux. These
variables are strongly correlated with Aphotoperiod, as
they all depend on latitude (Kendall’s correlation coefficients
with Aphotoperiod for annual minimum temperature = 0.75,
maximum temperature = -0.35, Atemperature = 0.68 and
radiation flux = -0.50; all P values <0.0001) and may con-
tribute to circadian entrainment [1]. In a total of 20 re-
sampling analyses (five genes sets and four variables), only
the core circadian gene set was found to display more
variants than expected that correlate with Atemperature
(Additional file 6), suggesting that Aphotoperiod exerted
the strongest pressure on the analyzed genes.

Thus, we analyzed five independent sets of genes
involved in circadian regulation or in sleep homoeostasis
and observed that they are more likely than expected by
chance to carry variants showing signals of Aphotoperiod-
driven selection. Notably, genes included in those five sets
do not represent a full inventory of genes with a known
role in circadian rhythm regulation; rather, they were se-
lected because they could be ascribed to specific categor-
ies through dedicated searches.

In total we analyzed 406 genes in the five independent
sets; 341 of these had at least one SNP in the HGDP-
CEPH panel and 84 displayed signals of Aphotoperiod-
driven selection. The majority (n = 273) of the full gene
set (n = 406) could be included in a protein-protein inter-
action network (Figure 2) that comprises all core circadian
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SNP

Gene

Kendall's correlation
P value®

T rank®

Fst rank®

LnRsb rank?

Biaka-Orcadian Biaka-Maya

CEPH CHB +JPT

Functional annotation®

Core circadian

rs11048980
rs6811520

rs11038695

rs4789846
rs5995572
1517654772
rs4663868

ARNTL2
CLOCK

CRY2

CSNK1D
CSNKI1E
NPAS2
PER2

7167 x10°
1444 %107

1626%x 107

5546 x 107
1.053% 107
2549x 107
9462x 107

Circadian hits (RNAi screen)

rs2583836
rs12713670
rs12193789
rs11581556
rs5996513
rs8
rs2304593
rs2279103
rs657801
rs2354420
rs11792480
rs550897
rs1011814
rs17679400
rs1416995
rs12787863
1517422
rs11586100
rs1122821
rs2158622
rs9952025

rs955816

15566125
rs710080
rs1053000
rs578096
152020945
rs11617401
rs1204897
rs17682132
rs492786

ABL1
ANTXR1
ASCC3
ATF6
BCR
CDK6
CMTM7
CTDP1
DENND2D
EMP2
ENG
FAM55D
FGF10
FHIT
GPR158
GRM5
HCFC1
HNRNPR
HOMER3
JAZF1
LIPG

MARCH4

MMP3
MPG
PFKP
PTGER3
PWP2
RAB20
RCC2
RCVRN
SCARA3

3.071x 107
4331x10°
9351x10°
7326x107
8368x 10°
9581x 107
5239x10°
6.403x 10°®
9.280% 10°°
6.654 x 10°°
1281x 107
3670x 10°®
6.501x 107
1.3645x 107
2921%x 107
3597 x 107
1.623% 107
4271x10°
8660x 10°°
5810x 10°°
1.269% 107

1.735%x10°

1247 x10°
1.641x 107
9234%10°
1272%10°
5640% 10°®
5288 x 107
7331x10°
3.072x 107
7.034%10°

1.000
0.978

0.957

0.970
0.984
0.998
0.962

0.995
1.000
0.994
0.995
0.996
0.998
0.993
0.999
0.983
0.988
0.989
0.998
0.994
0.998
0.997
0.996
0.997
0.984
0.980
0.991
0.994

0.991

0.995
0.998
0.988
0.985
0.998
0.997
0.987
0.998
0.982

0.506
0.831

0.624

0.601
0.973
0615
0.286

0.936
0.108
0.371
0.845
0.932
0.800
0.370
0.745
0.797
0657
0.954
0.848
0.926
0.742
0.995
0.860
0.936
0.968
0479
0.716
0.764

0910

0.716
0.989
0.971
0.733
0.965
0.791
0.540
0943
0.197

0.000
0466

0.247

0.000
0.515
0.377
0.219

0311
0468
0.166
0615
0.626
0.299
0.000
0.276
0.352
0.167
0.041
0.308
0513
0.255
0.973
0.088
0.004
0.248
0.013
0.000
0.787

0.186

0.254
0.840
0.152
0.000
0.780
0.000
0496
0.000
0417

0.79
0.84

0.64

0.69
0.05
0.84
0.97

0.97
0.57
0.94
0.96
0.11
0.82
0.16
0.70
0.94
0.08
0.83
0.99
0.99
0.26
0.04
0.94
0.84
1.00
046
0.04
0.18

0.98
044
1.00
0.77
0.62
0.89
037
0.96
0.82

0.89
0.87

033

0.84
0.14
043
0.90

0.63
0.58
0.96
0.90
0.21
0.85
0.34
0.50
0.94
0.18
0.68
0.99
1.00
0.20
0.29
0.81
0.81
1.00
061
049
0.11

037

0.96
0.54
1.00
051
0.50
047
0.46
033
0.68

intronic
intronic

intronic; in LD (© =093 in CEPH)
with rs11038697 (within ARNTL
and CLOCK binding sites)

intronic
intronic
intronic

intronic

intronic
intronic
intronic
intronic
intronic
intronic
intronic
missense T340M
intronic
intronic
intronic
missense Y398H
intronic
intronic
intronic
intronic
intronic
intronic
intronic
intronic
intronic

intronic; in LD (= 0.80 in CHB + JPT)
with rs11691655 (within ARNTL and
CLOCK binding sites)

intronic

5" UTR variant
3" UTR variant
intronic
missense D25N
intronic
intronic
intronic

intronic
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Table 1 Single nucleotide polymorphisms that correlate with Aphotoperiod (Continued)

rs9812406  SCHIP1 1487 %107 0.998 0.989 0577 060 068 intronic
rs6695715  SECI16B 1.113x107 0.982 0.247 0.123 044 078 intronic
rs2224957  SH3GL2 2399107 099  0.89% 0.180 001 004 intronic
16081636  SLC24A3  5980x 10° 0.988 0612 0.246 016 047 intronic
rs830142 SLC8A2 7.264x10° 0.993 0.325 0.000 067 080 intronic
rs732611 TBCID9  4321x10° 0999 0943 0.000 078 087 intronic
rs1514685  TPO 5156 % 10® 0.998 0.720 0.199 023 017 intronic
rs11760463  WDRS6 1279107 0.975 0.854 0378 1.00 0.97 intronic
rs10227271  WNT2 6406 x 10°° 0.983 0.971 0.173 007 070 intronic
Mouse circadian/sleep disturbance

rs3753472  ADORAI 1.155% 10° 0.981 0.941 0445 080 021 intronic
152830044  APP 5206% 10°° 0.985 0833 0311 053 071 intronic
rs228188 BTBD9 3.149%10° 0.993 0.895 0.155 1.00 0.72 intronic
rs7801807 CADPS2  1465x 107 0993  0.891 0.000 090 090 intronic
rs17818083 EBF2 2924%10° 0992 0939 0.000 011 024 intronic
rs809192 FYN 1270%10° 0.987 0.804 0.061 082 063 intronic
rs2134294  HCRTR2 ~ 5923x10° 0986  0.741 0405 1.00 0.96 intronic
rs17187747 KCNB2 6.700% 107 0994 0652 0.349 033 054 intronic
1s12762512 KCNMAT 4857 x10°® 0.999 0.307 0494 029 033 intronic
151943620  NCAM1 9.774x 107 0.999 0.838 0410 018 0.9 intronic
rs10774910 NOST 1.693%10° 0990 0916 0.118 1.00 1.00 intronic
1s2294678  NOX3 1530107 0.980 0.950 0.172 018 087 intronic
1s12043436 OMAT 2192%10° 0.991 0.840 0.129 099 0.95 intronic
rs595146  PHLPP1 8637x10° 0999 0877 0.000 034 029 intronic
rs10508958 PRKGI 4490% 107 0.996 0.873 0.193 099 069 intronic
rs3733553  PRKG2 1212107 0.980 0.868 0.823 096 0.99 intronic
rs752579  RAI 1.023% 107 0.981 0.954 0473 1.00 0.96 intronic
152271733 RAX 1464%10° 0.984 0.688 0443 089 063 missense D44E
rs10519052 RORA 3667 % 10° 0.991 0448 0234 068 068 intronic
rs968357  RORB 2655% 10°° 0992 0755 0.560 063 083 intronic
rs2236409  TNC 9344 % 10° 0.985 0455 0.063 040  0.96 intronic
rs7300641  TPH2 1676x 107 0.975 0.827 0.400 001 002 intronic
154445877  UBE3A 1849107 0974 0939 0.607 090 0.99 intronic
Mendelian diseases causing sleep disturbance

in humans

rs5909187  CDKL5 6.275% 10°° 0987 0550 0.017 027 055 intronic
rs11603330 DHCR7 2848x 107 0.995 0.806 0479 075  0.98 intronic
rs13414769 HDAC4 3.134x10° 0969 0573 0.264 094 0.98 intronic
152239464  MECP2 3.189% 107 099 0663 0517 048 028 intronic
rs858953 NRXNT 1226 %107 1.000 0.780 0.254 083 049 intronic
rs8137951  SHANK3  3.148x10° 0989 0517 0.127 059 044 intronic
rs12406072 SLC2A1 2430%10° 0.980 0.952 0518 056 052 intronic

Melanopsin signaling
rs308039  GNATIT 2387x 107 0972 0568 0.079 006 029 intronic
rs4745672  GNAQ 4391%10° 0.986 0.790 0.610 1.00 092 intronic
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Table 1 Single nucleotide polymorphisms that correlate with Aphotoperiod (Continued)

152476197  INADL 1834% 107 0998 0943
152224361  PLCB4 4222%10° 0991 0426
rs2138004  PRKCA 3.025x10° 0971  0.974
rs10910030 PRKCZ 1588% 10 0999 0771
151392171 TRPC7 2123%10° 0993 0371

0.252 092  0.96 intronic
0.000 032 037 intronic
0.708 024 033 intronic
0.234 018 027 intronic
0.000 048 070 intronic

2Kendall’s correlation P values for the correlation between allele frequency and Aphotoperiod; ®percentile rank in the distribution of Kendall's correlation
coefficients (1) calculated for minor allele frequency (MAF)-matched SNPs; “Fsr percentile rank in the distribution of SNPs showing a similar average MAF
(calculated over all populations); “InRsb percentile rank; Sinformation on ARNTL, CLOCK and CRY1 binding sites was obtained from [80]; significant values are
shown in bold. CEPH, 1000 Genomes Phase | data for Utah Residents with Northern and Western European ancestry; CHB + JPT, 1000 Genomes Phase | data for
Han Chinese in Beijing plus Japanese in Tokyo; RNAi, RNA interference; SNP, single nucleotide polymorphism, UTR, untranslated region.

and melanopsin-signaling components plus 56% of RNAi
hits, 85% of circadian disturbance genes identified in mice,
and 83% of human circadian phenotype loci. Two clusters
of highly connected nodes are evident in the network,
one that mainly includes components of the core cir-
cadian pacemaker and the other comprising neuropep-
tides such as hypocretin (HCTR), neuromedin (NMU),
oxytocin (OTX), pro-melanin-concentrating hormone
(PMCH) and their receptors. As expected, some hub
nodes in the network are represented by genes involved in
multiple cellular processes such as FOS, APB, MTOR,
PPARG and PTEN.

For each of the 84 genes, we selected the SNP showing
the strongest association with Aphotoperiod (based on
the percentile rank of 1), obtaining a list of 84 independ-
ent variants. Four of these (4.7%) were missense substitu-
tions (Table 1). An overview of SNP location relative to
ENCODE functional elements is available as Additional
file 7 for core circadian genes. Analysis of copy number
variant genotypes in HGDP-CEPH and 1000 Genomes
Phase I subjects [25,26] revealed no linkage disequilibrium
(LD) with variants reported in Table 1.

Natural selection signals at circadian rhythm regulatory
genes

To validate the results reported above, and to gain
further insight into the evolutionary history of the 84
Aphotoperiod-selected variants, we analyzed their nor-
malized derived allele frequency (DAF): a progressive in-
crease with Aphotoperiod was observed in most geographic
areas, suggesting that selection has operated on these
variants throughout human migration (Figure 1B). As ex-
pected, the normalized allele frequencies of 840 SNPs
randomly selected from the HGDP-CEPH panel for
having the same average MAF as selected variants
(control SNPs) showed no such Aphotoperiod-dependent
increase (Figure 1B).

We next reasoned that signatures of Aphotoperiod-
driven selection should translate into strong genetic dif-
ferentiation (fixation index, Fst) between population pairs
that live in regions with very different Aphotoperiod
(for example, Biaka Pygmies and Orcadians, Figure 1A);

conversely, Fsr is expected to be low for geographically
distant populations if they live in areas where annual vari-
ation in day length is similar (for example, Biaka Pygmies
and Maya, Figure 1A). To test this hypothesis we calcu-
lated Fgt for the 84 variants in several pairwise compari-
sons (Figure 1A). To account for demographic effects, the
same Fgr comparisons were calculated for all HGDP-
CEPH SNPs and each of the 84 variants was ascribed a
percentile rank in the distribution of SNPs showing a
similar average MAF (calculated over all populations). In
the Biaka Pygmy-Orcadian comparison, 13 SNPs showed
an Fgr percentile rank higher than 0.95 (Table 1); this
represents a three-fold enrichment over the expected
(expected = 4, Fisher’s exact test, P = 0.019). Conversely,
in the Biaka Pygmy-Maya comparison, 18 variants showed
an Fgr below the 0.05 percentile, representing a strong en-
richment over expectation (Fisher’s exact test, P = 0.0011,
Table 1). Similar results were obtained for most additional
pairwise comparisons (Figure 1A), with population pairs
living in areas with very different Aphotoperiod showing
an excess of SNPs with high Fg values and distant popu-
lations sharing similar Aphotoperiod displaying many
low-Fgr variants. Overall, these results confirm strong
spatial signatures of natural selection at the 84 selected
variants. Thus, calculation of the percentile rank of Fst
comparisons between all population pairs in the HGDP-
CEPH panel revealed a clear signal for the 84 variants,
with population differentiation increasing with Aphoto-
period across most geographic areas and low Fst observed
for population pairs living at similar latitudes (Figure 1C).
Although different selective regimes may underlie the
spatial distribution of Aphotoperiod-selected variants, it
is conceivable that at least some of the signals we
detected at the 84 variants are determined by selective
sweeps that ensued after out-of-Africa expansion. Therefore,
we tested the hypothesis that these variants are preferential
targets of positive selection in non-African populations by
two methods, the Derived Intra-allelic Nucleotide Diversity
(DIND) [27] and InRsb [28] tests, computed using the
1000 Genomes Phase I data for Yoruba (YRI), Utah
Residents with Northern and Western European ancestry
(CEPH), and Han Chinese in Beijing plus Japanese in
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Figure 2 Gene interaction network. Nodes represent genes and edges indicate interactions. Genes are coded as follows: green, at least one
single nucleotide polymorphism (SNP) in the HGDP-CEPH panel; gray, not covered in the panel; red, at least one SNP significantly correlated with
Aphotoperiod. Node shapes indicate the gene set: rectangle, core circadian; hexagon, RNAI hits; diamonds, mouse model genes; triangles,
melanopsin-signaling components; arrows, human phenotype genes.

Tokyo (CHB + JPT). DIND is based on the ratio of intra- two populations (in this case CEPH versus YRI and
allelic diversity associated with the ancestral and derived CHB +JPT versus YRI) [28] (Figure 3). For both tests
alleles (ima/inp) analyzed against the frequency of the the significance cut-off was set at P <0.05. DIND was
derived allele [27] (Figure 3). The InRsb test evaluates calculated for CEPH and CHB + JPT for all variants with
the ratio of extended haplotype homozygosity between = DAF >0.12 (n = 66) and >0.08 (n = 68) among the 84 we
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Figure 3 Positive selection signatures for variants that correlate with Aphotoperiod. (A) DIND test results: the dashed line represents the
95" percentile of a distribution of 20,000 randomly selected HGDP-CEPH single nucleotide polymorphisms (SNPs). The gray shaded areas indicate
frequency ranges where the ratio could not be calculated (see Methods). SNPs above the 95" percentile are shown as black circles (open: top
variants from the five gene sets; solid: disease-associated SNPs). (B) Schematic representation of CEPH haplotypes in the region surrounding
15752579 (in RAIT), selected as an example. Each line represents a haplotype, columns indicate polymorphic positions. Dark gray, derived alleles;
light gray, ancestral alleles. (C) Extended haplotype homozygosity decay plot for rs752579. (D) Correlation between Aphotoperiod and allele
frequency for rs752579. Populations from different broad geographic areas are coded by different colors. CEPH, 1000 Genomes Phase | data for
Utah Residents with Northern and Western European ancestry; CHB + JPT, 1000 Genomes Phase | data for Han Chinese in Beijing plus Japanese in
Tokyo; DIND, Derived Intra-allelic Nucleotide Diversity; EHHS, extended haplotype homozygosity of an individual SNP site.

identified (see Methods). Ten SNPs had a significant
DIND test in CEPH, and nine in CHB + JPT (Figure 3). In
both populations the number of DIND-significant SNPs
was higher than expected (Fisher’s exact test P = 0.038 for
CEPH and P = 0.06 for CHB + JPT); although statistical
significance is borderline in CHB + JPT, it should be noted
that a three-fold excess is observed and that the sample
size for Fisher’s exact test was small. Likewise, results from
the InRsb tests (calculated for all 84 variants) indicated
that there are 18 significant SNPs in CEPH and 17 in
CHB +JPT (Table 1), representing a significant enrich-
ment (Fisher’s exact test, P = 0.0008 for CEPH and P =
0.0015 for CHB + JPT). Signals detected using the DIND
and InRsb tests only partially overlap: this is expected as
the two methods have different power to detect selection
depending on the frequency of the target variant [27,28]
and because the DIND can only capture selection at the
derived allele.

Overall, these data suggest that variants correlated to
Aphotoperiod in circadian rhythm regulatory genes rep-
resented preferential targets of positive selection during
the out-of-Africa expansion of human populations.

Genetic adaptation to photoperiod and disease
susceptibility

As mentioned above, disruption of circadian rhythms is
a common feature of affective disorders such as SCZ,
SAD, BPD, major depressive disorder (MDD) and autism
spectrum disorder (ASD). Indeed, mutations in several
genes that cause sleep/wake disturbances in humans or
mice (Table 1) determine a phenotype that includes
ASD features (for example, MECP2, SHANK3, NRXN1,
RAII, UBE3A). Likewise, mice with mutations in Clock
or Fbxl3 (included in the RNAI hit set but showing no
signatures of natural selection) display both circadian
disturbances and a behavioral profile reminiscent of
BPD [4]; these animals are considered models for mania
[4]. Notably, genes identified in the in vitro RNAi screen
have been implicated in susceptibility to SCZ (SECI16B
and CAECAMZ21), ASD (FHIT) and MDD (SHIPI and
FHIT) by genome-wide association studies (GWAS) in
humans; the same holds for ARNTL and RORA, which
are associated with SCZ.

Thus, we explored the possibility that risk variants for these
psychiatric conditions represent targets of Aphotoperiod-
driven selection. To this aim, we retrieved all GWAS
SNPs associated with any trait or disease from the
National Human Genome Research Institute (NHGRI)
Catalog of Published Genome-Wide Association Studies
[29]. We retained only variants that have been genotyped
in the HGDP-CEPH panel and collapsed SNPs in LD (+° >
0.4) into single loci, remaining with a list of 4,192 var-
iants. Because more than 100 SNPs have been identified
in meta-analyses of BPD and SCZ, the two diseases were
considered together. Overall, our set included 128 variants
associated with SCZ and/or BPD, 14 (11%) of these show-
ing significant correlation with Aphotoperiod. By perform-
ing 10,000 resamplings we calculated that this proportion
is significantly higher than that obtained for randomly
selected GWAS SNPs (empirical P = 0.0112) and MAF-
matched HGDP-CEPH variants (empirical P = 0.003).
Thus, SCZ and/or BPD risk variants are preferential tar-
gets of natural selection driven by annual photoperiod
variation. This was not the case for MDD or depression,
as only two out of 50 associated SNPs significantly corre-
lated with Aphotoperiod (Table 2). Finally, in the case of
ASD, few SNPs have been associated with this condition
in GWAS; thus, the LD-pruned set only contained 10
ASD variants, one of these significantly correlated with
Aphotoperiod (Table 2). As for SAD, no GWAS has been
performed; a variable number tandem repeat (VNTR) in
the serotonin transporter gene (SLC6A4) promoter, which
affects expression, is the only variant reproducibly associ-
ated with SAD and seasonality [30-32]. We used data from
a recent analysis [33] and obtained a significant correl-
ation between the frequency of the 14-repeat (short) allele,
which predisposes to SAD [30-32], and Aphotoperiod (t =
0.331, Kendall’s correlation P value = 0.00115).

Although not a psychiatric disease, restless leg syndrome
(RLS) is a human condition with a strong circadian compo-
nent. RLS symptoms worsen in the evening or night, and
include sleep fragmentation. GWAS have identified seven
unlinked SNPs, most of these mapping to four distinct
genes (MEIS1, BITBDY, PTPRD and MAP2K5/SKORI).
Four of these variants have been included in the HGDP-
CEPH panel and one of them significantly correlated



Table 2 Genome-wide association study single nucleotide polymorphisms that correlate with Aphotoperiod

SNP Gene(s)? Disease Risk Risk allele frequency Kendall’s trank® Fgr rank? InRsb rank® Gene functional connection
allele decreases with correlation to circadian rhythm
Aphotoperiod P value®
Biaka-Orcadian Biaka-Maya CEPH CHB +JPT

rs1930961  LRP5L, ADRBK2 BPD C Yes 1.182x107° 0993  0.996 0.942 0530 0.700 ADRBK?2 (aka GRK3) phosphorylates
melanopsin [34]

156746896  LMAN2L, CNNM4  BPD A Yes 8421107 0995 0550 0.350 0.780 0.790 CNNM4 is an RNAI hit (the gene does
not appear in Table 1 because the SNP
is non-genic)

rs8099939  GRIK5 BPD T Yes 6538x107° 0956  0.968 0615 0.960 0.980 -

1s2286492  FAMI126A BPD G No 8521x 107 0966 0811 0.000 0.160 0.260 -

157570682  TMEM18, POU3F3 BPD A Yes 2320 107" 0950 0455 0.004 0.160  0.090 -

rs4075511  KCNS3, RDH14 BPD A No 7345x 1077 0999 0797 0.156 0.720 0.730 -

157319311 COL4A2 BPD and SCZ A No 1083%x 107 0952 0474 0319 0400 0470 Clock-regulated in mouse cardiomyocytes [35]

151124376 KAT2B BPD and SCZ G Yes 3852x 107" 0950 0860 0.076 0880 0.150 Directly interacts with CLOCK and NPAS2 [36]

151605834  APOB, KLHL29 BPD and SCZ C Yes 2857x 107" 0950  0.966 0877 0350 0.240 -

1517002034 MKL1 BPD and SCZ G Yes 2322%107° 0978 0689 0.000 0.990 0.990 RNAI hit (gene does not appear among
selected hits because of heavier
Bonferroni correction)

15589249  CSF3R, GRIK3 SCz G Yes 4565% 107 0964  0.996 0.624 1.000 1.000 Grik3 expression is regulated by Clock in the
mouse ventral tegmental area [37]

rs7004633  MMP16, RIPK2 SCZ No 1433%10°° 0992 0.925 0538 0260 0.330 -

rs1009080  PTPRU, MATNT SCz Yes 2419x10°° 0988  0.987 0.708 0900 0.690 -

rs1572299  TLR4, DBCIT SCZ Yes 3.901 %107 0951 0.950 0.321 1.000 0.200 DBC1 regulates NR1D1 stability [38]

rs892055 RASGRP4 Asperger nr na 4268%107° 0.964 0.603 0.585 0610 0420 -

19601248  NDFIP2, SPRY?2 MDD C No 7198107 0958  0.896 0.085 0390 0330 SPRY2 is a direct target of ARNTL in mouse
liver [39]

rs8020095  GPHN Depression A Yes 1273x 107 0950 0944 0.504 0620 0.980 GPHN shows rhythmic expression in mouse
SCN [40]

rs12593813  MAP2K5 RLS A No 2066 %107 0971 0498 0.175 1.000 0.830 -

20ne gene is reported if the variant is genic, for intergenic SNPs the two flanking protein-coding genes are listed; PKendall’s P values for the correlation between allele frequency and Aphotoperiod; “percentile rank in
the distribution of Kendall’s correlation coefficients (1) calculated for minor allele frequency (MAF)-matched SNPs; “Fs percentile rank in the distribution of SNPs showing a similar average MAF (calculated
over all populations); “InRsb percentile rank; significant values are shown in bold. BPD, bipolar disorder; CEPH, 1000 Genomes Phase | data for Utah Residents with Northern and Western European ancestry;
CHB + JPT, 1000 Genomes Phase | data for Han Chinese in Beijing plus Japanese in Tokyo; MDD, major depressive disorder; na, not available; nr, not reported; RLS, restless leg syndrome; SCZ, schizophrenia;
SNP, single nucleotide polymorphism.
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with Aphotoperiod (rs12593813, at the MAP2K5/SKORI
locus) (Table 2).

As above, for all GWAS variants showing signals of
Aphotoperiod-driven selection we performed the DIND
and InRsb tests. Natural selection signatures at several of
these variants were detected (Table 2, Figure 3). Notably,
many risk variants showing signals of Aphotoperiod-driven
selection map within or close to genes with strong evi-
dence of involvement in circadian rhythm regulation
(Table 2). For example, ADRKB2 phosphorylates mel-
anopsin [34], KAT2B directly interacts with CLOCK
and NPAS2 [36], CNNM4 and MKLI1 have been identified
in the circadian RNAi screen, DBC1 regulates NR1D1
stability [38], and GPHN shows circadian oscillations in
the mouse SCN [40].

Discussion

We analyzed adaptation of human populations to
seasonal variations in day length determined by latitude
using a method based on the spatial correlation between
allele frequencies and environmental variables. Our work-
ing hypothesis builds on the previously reported suitability
of geographic-explicit models to study human evolution
[13-17,20]; the simple conundrum whereby genes that
play a role in circadian regulation should represent prefer-
ential targets of Aphotoperiod-driven selection; and the
expectation that a significant fraction of variants identified
using models of spatial variation in allele frequencies
should display natural selection signatures detectable with
different approaches. Thus, we analyzed five independent
gene sets selected on the basis of distinct evidence of in-
volvement in circadian regulation and show that they are
significantly more likely to carry SNPs that correlate with
Aphotoperiod than expected. Photoperiod is a function of
latitude, as is the case for other environmental variables
such as temperature and UV radiation flux. These other
climatic factors might contribute to the evolution of the
circadian genes we analyzed. Nonetheless, resampling ana-
lysis using temperature and UV radiation revealed no excess
of correlated variants, with the only exception of circadian
core genes with Atemperature. This might either depend
on the difficulty of disentangling the effects of corre-
lated environmental variables or on the fact that external
temperature also acts as a circadian entrainment cue [1].
Nonetheless, these analyses indicate that Aphotoperiod
exerted a stronger selective pressure on these genes than
temperature or UV radiation flux.

Several variants identified using geographic-explicit
model display signatures of natural selection when tests
based on population genetic differentiation or haplotype
homozygosity are applied, supporting their adaptive role.
Although these tests (in particular the DIND and InRsb)
likely detected signals that derive from so-called hard sweeps
(that is, sweeps of newly arisen mutations), adaptation to
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seasonal variation in photoperiod possibly also occurred
through balancing selection or selection on standing vari-
ation (soft sweeps), as previously suggested for other
environmental variables [41-43]. The signatures left by
soft sweeps are known to be more difficult to identify and
typically do not originate an extended LD pattern [44,45].

Finally, we should add that variants genotyped in the
HGDP-CEPH panel suffer from a moderate ascertainment
bias [21], which might potentially affect our results. None-
theless, the ascertainment scheme is common to all vari-
ants and we based most of our results on the drawing of
empirical distributions, which, at least partially, correct for
panel-wide biases. Also, we validated our results by the ap-
plication of haplotype-based tests with the use of unbiased
genotype data. Overall, the results reported here indicate
that, during out-of-Africa migration, human populations
adapted to life at different latitudes by tuning their circa-
dian clock systems. In line with this observation, the length
of the endogenous circadian period differs in people de-
pending on ethnicity, and Africans show shorter periods
than people with European or Asian ancestry [46].

The selective effect of photoperiod differences across
geographic areas has previously been demonstrated for
vertebrates and invertebrates, by studying latitudinal clines
in circadian gene polymorphisms [8-11], and by dissecting
rhythmic functions in animals living at extreme latitudes,
where loss of ultradian patterns may be observed during
periods of continuous light or darkness [1]. Indeed, the
synchronization of internal clocks with environmental cues
is thought to be essential for health and fitness [5]. As an
example, Clock-mutant mice display abnormal rhythmicity
of several physiological functions (for example, sleep/wake
cycles, food intake and basal metabolism), show behavioral
disturbances, are susceptible to diet-induced obesity, and
present frequent pregnancy failures [3]. Likewise, wild-type
rodents exposed to experimental jet lag show accelerated
tumor growth, spatial cognitive deficits, cardiovascular
problems, hastened mortality upon aging and increased
body mass [5]. Similar health problems are reported to
occur with high prevalence in humans who experience
frequent changes in daily rhythms as a result of rotating
shift work [5].

A large body of evidence suggests that circadian rhythm
abnormalities determine or exacerbate mood-related dis-
orders [4]. Alterations in sleep/wake cycles, activity, body
temperature and hormonal secretions have been described
in BPD, SCZ, MDD and ASD [4]. Reduced amplitude
and lower expression of core circadian components have
been described in fibroblasts from patients with BPD [47].
In parallel, studies in diurnal rodent species have demon-
strated that prolonged exposure to a very short photoperiod
results in a depression-like behavior [48,49], whereas in rats
prolonged dark phase conditions administered post-natally
result in increased anxiety and decreased social interaction
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in adult life [50]. These observations indicate a causal link
between psychiatric diseases and circadian disruption and
suggest that mood disorders in modern human popula-
tions might at least partially result from adaptation or
mis-adaptation to latitudinal photoperiod variations. We
thus tested whether risk variants for psychiatric disorders
represent preferential targets of Aphotoperiod-driven
selection. Results indicated that the proportion of risk
variants targeted by Aphotoperiod-driven selection is sig-
nificantly higher than expected for BPD and SCZ, but not
for MDD, although sleep and circadian rhythm dis-
ruption represent a common feature in depressive disor-
ders. Nonetheless, MDD differs from SCZ and BPD by
showing higher prevalence and substantially lower herit-
ability [51,52]. Fewer risk variants with smaller effect have
been identified for MDD compared with SCZ and BPD.
This is reflected in our study, whereby the sample size of
MDD SNPs is less than half that of SCZ or BPD variants.

Additionally, recent works have suggested that the con-
sequences of MDD on reproductive fitness might be much
less severe than those of other psychiatric disorders.
Large-scale studies based on historical registries have
indicated that patients with SCZ have strongly reduced fe-
cundity [53-55], whereas their siblings may have increased
or decreased reproductive success depending on gender
[53,54]. The overall effect calculated for affected patients
and their siblings indicated that these families contribute
fewer descendants to the new generation compared with
families with no members affected by SCZ [53,54]. Similar
results have been reported for BPD, although the decrease
in fecundity seems to be less marked than that observed
for SCZ [53,55]. Contrasting evidences have been reported
about the fertility effect of MDD; some authors [55] indi-
cated lower reproductive rates for patients with MDD
compared with controls (however reproductive success
was higher than in SCZ and BPD). Conversely, a recent
analysis revealed that no reduction in fecundity is ob-
served in patients with MDD [53]. Interestingly, siblings
of patients with MDD were shown to have significantly
more children.

These observations lead to a long-debated hypothesis
on the adaptive role of depression [56], including SAD
[57], and suggest that MDD variants are subject to select-
ive regimes different from other psychiatric disease. As
mentioned above, SAD is the best example of a mood
disorder directly triggered by photoperiod changes. The
observation whereby the short VNTR allele at SCL6A4
increases with Aphotoperiod, especially across Africa and
Europe [33], may not be directly supportive of the adap-
tive view, but at least indicates that a SAD-predisposing
variant is not counter-selected at high latitudes. As for the
psychiatric disease variants we identified as targets of
Aphotoperiod-driven selection, the two for MDD show
different patterns: the risk allele frequency increases with
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Aphotoperiod for GPHN and decreases for NDFIP2/
SPRY?2. Conversely, for the majority of SCZ or BPD risk
alleles (10 in 14), a lower frequency is observed in popula-
tions showing greater Aphotoperiod. Thus, as populations
expanded at higher latitudes, non-risk variants for SCZ
and/or BPD might have been favored by selection to
counterbalance the effects of photoperiod length varia-
tions, these latter possibly representing an environmental
stress for people at risk of mental illness.

Conclusions

Signatures of latitude-driven natural selection at circadian
genes have been described for vertebrates and inverte-
brates [8-11]. Herein we address this same issue in humans
by showing that humans adapted to seasonal variations in
photoperiod.

Also, we provide a link among circadian rhythm regula-
tors, human adaptation to latitude, and susceptibility to
affective disorders. Whereas the evolutionary scenarios
underlying the maintenance of affective disorder risk vari-
ants will require further exploration, the Aphotoperiod-
selected risk variants we identified represent excellent
candidates for interaction analysis with photoperiod-
related environmental variables (for example, season of
birth, country of residence, shift-work or lifestyle habits).
Also, these SNPs might modulate the effect of chronother-
apy, which is gaining increasing interest per se or in sup-
plementation to pharmacological approaches.

Methods

Environmental variables

Geographic coordinates for HGDP-CEPH populations
were obtained by the HGDP-CEPH website [58]. When
population locations were provided as latitude ranges,
the midpoint was used. For each population, the annual
maximum and minimum day lengths (photoperiods) were
calculated using the C++ code available as a part of the
Google Wide Open Smart Home framework [59]. The
annual minimum and maximum photoperiod, as well as
Aphotoperiod, are monotone functions of latitude (abso-
lute value). Thus, photoperiod variation is consistent
over latitude ranges. Because we applied a rank-based
correlation test, the results are robust to minor mis-
specification of latitudes.

The annual minimum and maximum temperatures as
well as short-wave radiation flux were retrieved from the
National Centers for Environmental Prediction/National
Center for Atmospheric Research database (Legates and
Willmott Average, re-gridded dataset).

HGDP-CEPH data and statistical analysis

Genotype data for the HGDP-CEPH panel derive from a
previous work [21]. Eighty-six SNPs were removed as
they were invariant (MAF = 0) or because they failed in
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all populations. Atypical or duplicated samples and pairs
of close relatives were removed [60]. An SNP was ascribed
to a specific gene if it was located within the transcribed
region or no farther than 500 base pairs upstream of the
transcription start site. MAF for any single SNP was calcu-
lated as the average over all populations. When necessary,
the derived or ancestral state was determined based on
the comparison with the chimpanzee, orangutan and
macaque reference genomes.

Genes that determine circadian or sleep pattern distur-
bances in mouse were identified though the MGI website
[61]. Specifically, we searched the Mammalian Phenotype
Ontology using the term “circadian” and the MGI pheno-
types using “circadian” and “abnormal sleep pattern” as
keywords. Entries were manually inspected so that only
known protein-coding genes were included (the MGI
search also retrieved “heritable phenotypic markers”, with
undefined genomic location); and phenotypes resulting
from double gene knock-outs were not considered (as the
effect cannot be unequivocally attributed to one gene).
The MGI search method was preferred over conventional
literature analysis to obtain an unbiased set of genes in-
volved in mouse circadian phenotypes. Genes responsible
for sleep disturbance phenotypes in humans were identi-
fied through search of the OMIM [62] and PhenomicDB
[63] databases using “circadian” or “sleep disturbances” as
keywords. Entries were manually inspected and genes
were included only if the phenotype can be ascribed to the
mutation of a single gene (for example, contiguous gene
syndromes were not included); and the phenotype results
from mutation. Specifically, we decided not to include
polymorphism-phenotype associations, because they have
been show to often lack robustness and fail to replicate in
independent analyses [64]; as an example, variants in the
MAOA gene have been associated with poor sleep quality
and insomnia in two studies that analyzed few subjects
and obtained partially contrasting results [65,66]). Thus,
MAOA was not included in the study gene set.

Genes involved in melanopsin signaling were derived
from a previous work [67], with the inclusion of TRPCE,
TRPC7 and PLCB4 from Xue et al. [68].

Correlations between allele frequencies and environ-
mental variables were calculated by Kendall’s rank correl-
ation coefficient (1), a non-parametric statistic used to
measure the degree of correspondence between two rank-
ings. Specifically, because all SNPs in the HGDP-CEPH
panel are bi-allelic, the frequency of one allele (randomly
selected) was used in the correlation test (using the other
allele would simply change the sign of the correlation co-
efficient). To account for demographic events, each SNP
is then assigned a percentile rank in the distribution of t
absolute values calculated for all SNPs having a MAF
(averaged over all populations) similar (in the 1% range) to
that of the SNP being analyzed [15,16].
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To estimate the probability of obtaining # genes carry-
ing at least one significant SNP out of a group of m
genes, we applied a resampling approach: samples of m
genes were randomly extracted from a list of all genes
covered by at least one SNP in the HGDP-CEPH panel
(number of genes =15,280) and for each sample the num-
ber of genes with at least one significant SNP was counted
(Bonferroni correction was applied to each sampled SNP
set). The empirical probability of obtaining # genes was
then calculated from the distribution of counts deriving
from 10,000 random samples of m genes. A similar resam-
pling strategy was used for SNP sets, as mentioned in
the text.

Pairwise Fst was calculated using the R package hierf-
stat [69]. Because Fgr values are not independent from
allele frequencies, we binned variants based on their
MAF (50 classes) and calculated the 95" percentile for
each MAF class, as detailed in the text. The populations
used for the pairwise comparisons were selected on the
basis of their Aphotoperiod and for having a sufficiently
large sample of individuals genotyped in the HGDP-CEPH
panel (at least 13, Additional file 1). The Yakut-Orcadian,
Yakut-Russian and Russian-Orcadian comparisons are not
reported because Fgr is generally low between these popu-
lations and the 0.05 percentile could not be unequivocally
determined.

1000 Genomes data and positive selection tests

1000 Genomes Project Phase I data were retrieved from
the dedicated website [26,70]. Data refer to the following
populations: CEPH (Utah residents with Northern and
Western European ancestry), population code = CEU, num-
ber of individuals = 85; YRI (Yoruba in Ibadan, Nigeria),
population code = YRI, number of individuals = 88; CHB
(Han Chinese in Beijing, China), population code = CHB,
number of individuals = 97; JPT (Japanese in Tokyo, Japan),
population code =JPT, number of individuals = 89. Data
for CHB and JPT were combined.

SNP genotypes were organized in a MySQL database. A
set of programs was developed to retrieve genotypes from
the database and to analyze them according to selected
regions or populations. These programs were developed
in C++ using the GeCo++ [71] and the libsequence
[72] libraries.

The DIND test [27,73] was calculated for all 84 SNPs in
Table 1 and for disease risk variants (Table 2); the statis-
tical significance was derived from an empirical distribu-
tion of DIND-DAF value pairs for 20,000 SNPs randomly
selected among those genotyped in the HGDP-CEPH
panel. Specifically, DIND values were calculated for all
SNPs using a constant number of 40 flanking variants (20
up- and downstream). The distributions of DIND-DAF
pairs for CEPH and CHB + JPT were binned in DAF inter-
vals (100 classes) and for each class the 950 percentile
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was calculated [74]. As suggested previously [27], for
values of irtp = 0 we set the DIND value to the maximum
obtained over the whole dataset plus 20. For low DAF
values most inp were equal to O (that is, the 95th percent-
ile could not be calculated); thus, we could not calculate
the DIND test for SNPs with DAF <0.12 in CEPH and
0.08 in CHB + JPT.

The InRsb tests and the extended haplotype homozy-
gosity of an individual SNP site (EHHS) were calculated
as previously described [28] for the 84 SNPs in Table 1
and for disease risk variant in Table 2. Specifically, InRsb
was calculated for all SNPs surrounding the selected vari-
ant in a 200 kilobase region; the statistical significance was
derived from an empirical distribution of values from all
SNPs in these regions. The EHHS test was calculated for
the selected SNP as the marker and until it reached 0.05
in the surrounding region. The analysis was performed
using the rehh R package [75].

Analysis of disease-associated variants

A list of GWAS SNPs was obtained from the NHGRI
Catalog of Published Genome-Wide Association Studies
[29,76]. Among these variants we retained those that
had been genotyped in the HGDP-CEPH; these were
collapsed on the basis of LD, originating a set of 4,192
variants. In particular, LD between SNP pairs was calcu-
lated using SNP Annotation and Proxy Search [77] with
data for Europeans (CEU); SNPs showing 7 >0.4 were
collapsed in a single locus by randomly selecting one of
the two polymorphisms. Thus, all analyzed variants,
including those associated with affective disorders and
RLS, show < 0.4.

Frequency data for the SLC446 VNTR were kindly
provided by Dr ] Murdoch as per a recent worldwide
analysis [33]. Data for African Americans and European
Americans were not included in the analysis as a these
groups cannot be located in a specific geographic area
(or are admixed).

Gene interaction network and functional annotation

To visualize gene interactions, we used the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING)
utility [78]. STRING queries different interaction data-
bases and we limited our search to the human species.
The resulting interaction file was used as an input for
Cytoscape 2.8.3 [79].

Information on ARNTL, CLOCK and CRY1 binding
sites was obtained from previous work [80]. Data derive
from chromatin immunoprecipitation sequencing exper-
iments in U20S cells.

Data accession
All data used in this manuscript are publicly accessible
through the HGDP-CEPH panel database (HGDP-CEPH
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Genome Diversity Panel Database Version 3.0, http://www.
cephb.fr/hgdp/index.php) and the 1000 Genomes Project
website (http://www.1000genomes.org/; 1000 Genomes
Project Phase I data).

Additional files

Additional file 1: Populations in the HGDP-CEPH panel with
Aphotoperiod.

Additional file 2: List of analyzed genes, significant SNPs and
phenotype descriptions.

Additional file 3: Resampling analysis with SNP number-matched
gene sets.

Additional file 4: Resampling results with SNP-matched random
gene sets.

Additional file 5: Distribution of SNP content.

Additional file 6: Resampling analysis with different environmental
variables.

Additional file 7: Functional annotation for core circadian genes.
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