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Abstract

Background: The lack of specificity and high degree of false positive and false negative rates when using
mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that
could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical
impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that
could identify the earliest stages of breast cancer and complement current mammographic screening approaches.

Methods: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-
abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female
control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those
obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and
colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers
were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples
specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls).
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Results: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these
proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast
cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-
1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93).

Conclusions: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and
sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and
inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor
microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel
improves the positive predictive value of mammography for breast cancer detection.

Keywords: Invasive ductal carcinoma, Mammography, Serum, Protein enrichment, Nanoparticles, Multiple reaction
monitoring

Background
Invasive ductal carcinoma (IDC) is the most common type
of breast cancer, accounting for 80% of all breast cancers
and affecting women at any age. For asymptomatic individ-
uals, annual or biennial mammographic screening is the
primary tool for prevention and early diagnosis of breast
cancers. However, several trials have called into question
the efficacy of mammographic screening to reduce mortal-
ity. False positives and false negatives represent a clear limi-
tation of mammography screening. The incidence of IDC,
and its associated mortality, has not decreased in the past
10 years despite large-scale mammographic screening
efforts [1]. Specifically, in current mammographic image-
based screening approaches, lack of sensitivity to detect
many early-stage breast cancer is concomitant with
increased frequency of unnecessary biopsies (biopsies of
benign lesions) [2], over-diagnosis, and over-treatment [1,
3, 4]. It has been proposed that the consequences of over-
treatment, such as complications from surgery, cardiotoxi-
city, and cardiovascular disease have offset the expected
reduction in mortality resulting from mammographic
screening efforts [3].
Despite technological advances in screening mammog-

raphy between 2005 and 2013 [5], breast cancer detection
rates only marginally increased (31.5 to 34.7%). Surprisingly,
an increase in abnormal interpretations was recorded during
the same time span (from 8 to 12.6%), alongside a decrease
in positive predictive values (PPV) of biopsy recommenda-
tions and performed biopsies (31.5% down to 27.5% and
39.5% down to 30.4%, respectively) [6]. Moreover, current
screening approaches reportedly have a low negative pre-
dictive value (NPV), missing approximately 20% of aggres-
sive subtypes of IDC [7]. In these subtypes specifically, high
breast density, a well-known risk factor for aggressive breast
cancer, can reduce the ability of screening methods to de-
tect cancer and lead to false negative results [8].
The availability of a robust, minimally invasive, and

clinically actionable blood-based test to support and
confirm mammography breast cancer screening results

would be of great utility to increase both PPV and NPV
especially for early-stage IDC detection. In particular,
identification of a robust blood-based molecular signa-
ture of breast cancer could complement imaging-based
screening approaches and would likely reduce false posi-
tive and false negative results when used together. So
far, however, no blood-based clinical assay based on a
single protein or panel of proteins has demonstrated suf-
ficient diagnostic specificity and sensitivity to detect
early-stage breast cancer in a clinical setting [9, 10].
Our study objectives aimed at identifying blood-based

low molecular weight (LMW) proteins and protein frag-
ments that show the potential to be used in parallel to
mammography screening as serum biomarkers for early-
stage breast cancer. Our final goal was to perform discov-
ery, qualification, and verification of a panel of breast can-
cer candidate biomarkers using two independent mass
spectrometry method and independent sample sets.
Blood levels of early-stage cancer biomarkers are ex-

pected to be low. In this study, we employed hydrogel
nanoparticles (HNs) as a cutting-edge sample preparation
technology, which we have specifically engineered to cap-
ture and enrich low abundance and LMW proteins in bio-
fluids such as blood [11–14]. Our biomarker discovery
efforts focus on the LMW portion of the proteome be-
cause any cancer biomarker that originates in the affected
organ must be able to effectively traverse the endothelial
cell wall barrier of the vasculature that provides a size se-
lection of biomarkers below the MW of albumin [11].
In order to demonstrate breast cancer specificity, in

addition to our breast cancer cohort, our discovery ef-
forts utilized blood samples taken from patient cohorts
with other solid cancers, including colon, ovarian, pros-
tate and lung cancer, and melanoma. Moreover, in order
to analyze the performance of the selected candidate
markers and minimize the evaluation of those that asso-
ciate with inflammation and benign pathologies, the
verification set included a series of benign and inflam-
matory controls. If further validated in the future, these
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markers could augment mammographic screening in a
clinical setting.

Materials and methods
Materials
N-isopropylacrylamide (NIPAm), N,N′ methylene bisa-
crylamide (BIS), allylamine (AA), potassium persulfate
(KPS), vinyl sulfonic acid (VSA), Cibacron Blue F3GA
(CB), dithiothreitol (DTT), iodoacetamide (IAA), urea,
tris-HCl, sodium thiocynate (NaSCN), tris-(2-carbox-
yethyl)phosphine (TCEP), and ammonium hydroxide
were procured from Sigma-Aldrich (St. Louis, MO). All
solvents (water, acetonitrile [ACN], formic acid) were
LC-MS grade and obtained from Fisher Scientific (Wal-
tham, MA). Red top glass vacutainer tubes for serum
separation were purchased from Becton, Dickinson and
Company (Franklin Lakes, NJ). Stromal cell-derived fac-
tor 1β (SDF-1β; MW 11 kDa) was from Antigenix Amer-
ica (Melville, NY), insulin-like growth factor 1 (IGF1;
MW 22 kDa) was from AbD Serotec (Raleigh, NC),
insulin-like growth factor-binding protein 7 (IGFBP7;
MW 29 kDa) was from PreproTech (Rocky Hill, NJ), and
chicken lysozyme was from Sigma-Aldrich. All synthetic
peptides were procured from Thermo Fisher.

Study cohorts and sample collection
Discovery set
Our discovery study set used serum samples obtained
from six cancer patient cohorts (breast, lung, colon, mel-
anoma, prostate, and ovary) maintained by the Italian
National Serum Bank hosted at Ospedale Maggiore Poli-
clinico of Milan (Fig. 1). Each cohort included 20 cancer

patients (cases) and 20 benign controls (total N = 240
samples). The controls were matched to each cancer co-
hort by median age and range, smoking habits, benign
pathologies including those that could confound imaging
results, and gender. The breast cancer cohort included
female patients with IDC at stage I, II, or III, according
to the TNM system. All patients in the cohort had suspi-
cious or highly suspicious abnormalities at mammog-
raphy (BI-RADS score 4–5). Moreover, all patients were
treatment-naïve at the time of collection with regard to
chemotherapy, radiation, and surgery. Whole blood (8
mL) was collected in red top glass vacutainer tubes, clot-
ted for at least 30 min at room temperature, and centri-
fuged at 1500 rcf for 10 min. The serum samples were
transferred to pre-labeled cryo-tubes and stored
promptly at − 80 °C. The samples were shipped on dry
ice to the Italian National Serum Bank. All procedures
were performed in accordance with the ethical standards
laid down in the 1964 Declaration of Helsinki and its
later amendments or comparable ethical standards. All
specimens and clinical data were collected under an
IRB-approved protocol between 2005 and 2007. Charac-
teristics of patients involved in the study are described
in Table 1 (breast cancer cohort) and Supplementary
Table S1 (other cancer cohorts).

Verification set
The verification cohort (N = 60) included blood samples
taken only from patients diagnosed with IDC at stage I
(T1N0M0) along with samples from control individuals
that included women who had positive mammograms
with benign pathology at biopsy and women with minor

Fig. 1 Workflow for biomarker discovery and verification based on nanoparticle enrichment and shotgun and targeted mass spectrometry
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pathologies such as hypertension and high cholesterol
(Table 1). We applied the following inclusion criteria to
determine study eligibility: available mammogram data

(suspicious or highly suspicious abnormalities at mam-
mography, BI-RADS score 4–5), age 33–89 years, and
available outcome data.

Table 1 Characteristics of female breast cancer patients in the discovery and validation sets

Baseline variable Discovery set Validation set

Cases Controls Cases Controls

(n = 20) (n = 20) (n = 19) (n = 41)

Sex (Female) 20 20 19 41

Mean age (years) 59.2 ± 11.4 60.1 ± 7.3 60 ± 15.4 51 ± 6.3

Suspicious mammography with negative cytology 4

Smoking status

Never 12 19 19

Former 3 7

Current 4 1 11

NA 1 4

Clinical stage

0 Tis N0 M0

I T1 N0 M0 10 19

IIA T1 N1 M0 5

IIB T2 N1 M0 2

IIIA T0 N2 M0 3

ER

Positive/negative/NA 9/−/11 10/4/5

PgR

Positive/negative/NA 8/−/12 9/5/5

Her2 Neu

Positive/negative/NA 10/7/3 10/4/5

Histologic grading

G1/G2/G3/NA 0/8/5/7 2/12/5/0

Molecular subtype

Luminal/Her2-enriched/triple-negative/NA 10/3/1/5

Comorbidities

None reported 17 22

Diabetes (type I or type II) 3

Allergy 1

Thyroid nodules 1

Hypothyroidism 1 3

Chronic gastritis 1

Depressive disorder 2

Hypertension 1 4

Hypotension 1

Osteoporosis 1

Hypocholesterolemia 1

Epilepsy 1

Arthrosis 2

Asthma 1
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HN synthesis
HNs functionalized with Cibacron Blue (CB) and coated
with a vinylsulfonic acid (VSA) containing shell were
synthetized as previously described by Tamburro et al.
[11]. Briefly, N-isopropylacrylamide (NIPAm)-allylamine
(AA) particles were synthesized by precipitation
polymerization and then covalently functionalized with
CB by nucleophilic substitution. NIPAm (Sigma-Aldrich
(0.89 g, 7.83 mmol, 7.83 mmol)) and N,N′ methylene
bisacrylamide (BIS; Sigma-Aldrich (0.042 g, 0.27 mmol))
were dissolved in water, and the solution was filtered
and purged with nitrogen at room temperature. AA was
then added (0.051 g, 0.90 mmol), followed by potassium
persulfate (KPS) (0.0070 g, 0.025 mmol) to activate
polymerization. The reaction was maintained at 75 °C
under nitrogen for 3 h. Poly (NIPAm-co-AA) particles
were washed by centrifugation to eliminate unreacted
monomer. CB dissolved in sodium carbonate was added
(0.76 g, 0.90 mmol) to the suspension and stirred at
room temperature under nitrogen for 48 h. The resulting
poly (NIPAm/CB) particles were first washed with water,
and then exposed to a new polymerization reaction. A
solution containing 20 ml of poly (NIPAm/CB) particles,
NIPAm (0.156 g, 1.38 mmol), BIS (0.013 g, 0.084 mmol),
and VSA (26 μl, 0.344 mmol) was purged with nitrogen
and then heated to 70 °C, and polymerization was in-
duced by adding KPS (0.092 g, 0.328 mmol). The reac-
tion was performed at 70 °C under nitrogen for 6 h.
Newly synthetized poly (NIPAm/CB) core–poly(NIPAm-
co-VSA) shell particles were washed in water by centri-
fugation (16,100 rcf, 50 min, 25 °C).

HN-mediated enrichment of low-abundance plasma
serum proteins
HNs offer several advantages over other methods used
to enrich low abundant serum proteins: (i) Low abun-
dance protein capture and enrichment is not based on
immunodepletion methods but on the use of high affin-
ity dye based selective capture in the core of the HN
particle with simultaneous size-based exclusion of abun-
dant proteins that often act as a carrier for low abundant
proteins that may be lost during the immunodepletion
process; (ii) HNs have been proven to protect proteins
from enzymatic degradation during sample preprocess-
ing [15]; (iii) HNs has shown to perform better in
enriching low molecular weight (LMW; MW ≤ 40 kDa)
when compared to methods based on peptide enrich-
ment, or ultrafiltration [16].
Serum samples from the six discovery cohorts were proc-

essed by incubation with HNs in a randomized order. The
serum samples (0.5mL) were thawed, centrifuged (7min,
4 °C, 16,100 rcf), and diluted with 1mL 50mM Tris-HCl,
pH 7.0. SDF-1β, IGF1, and IGFBP7 were spiked in each
sample as internal standards for quality and process control.

In the discovery set, both case and control samples
contained IGF1 at 2 μg/μL, whereas IGFBP7 was spiked
at 2 μg/μL in the case samples and 0.2 μg/μL in the con-
trol samples, and SDF-1β was spiked at 40 ng/μL in the
control samples and 4 ng/μL in the case samples. Each
sample was then incubated with 0.5 mL HNs (HN-CB/
VSA, 7 mg/mL dry weight) for 30 min at room
temperature. The samples were centrifuged (16,100 rcf,
25 °C, 20 min) and washed with 0.25M NaSCN followed
by two washes with water. The proteins were eluted by
incubating the particles for 15 min at room temperature
with 600 μL elution buffer (70% acetonitrile, 10%
NH4OH) followed by centrifugation (16,100 rcf, 25 °C,
10 min). The elution step was repeated twice, and the el-
uates were combined, dried in a vacuum concentrator,
and stored at − 20 °C until use.
For verification, chicken lysozyme was spiked at 0.2 μg/

mL and was used as internal standard. Three hundred mi-
croliters of serum was diluted with 600 μL of 50mM Tris-
HCl, pH 7.0, and incubated with 300 μL of HN-CB/VSA
particles (15min, 25 °C) on a shaker. The nanoparticles
were centrifuged at 16,100 rcf (30min, 25 °C) and rinsed
twice with 500 μL of 50mM Tris-HCl, pH 7.0. The super-
natant was discarded and the pelleted particles were incu-
bated in 500 μL elution buffer (500mM NaCl, 5 mM
EDTA, 2% sodium deoxycholate in 50mM Tris, pH 8.8)
on a rocking shaker (47 rcf, 30min, 60 °C). The samples
were spun down (16,100 rcf, 15min, 25 °C), and the super-
natants were collected and vacuum-dried.

Protein digestion and LC-MS/MS analysis
Discovery set
All 240 samples analyzed from the discovery set were
analyzed by LC-MS/MS in a randomized order to
minimize batch effect and run bias. Dried protein eluates
were reconstituted in 8M urea, reduced in 10 mM di-
thiothreitol (DTT, Sigma), alkylated in 50mM iodoace-
tamide (IAA, Sigma), and digested overnight in trypsin
using an enzyme-to-protein ratio of 1:25 (v/v) (Promega
Corporation, Madison, WI) at 37 °C. Tryptic peptides
were further purified by C18 ZipTips (Millipore, Bur-
lington, MA) and separated on a C18 analytical column
(0.2 × 50mm, Michrom Bioresources, Inc., Auburn, CA)
using a HPLC Surveyor MS pump plus and Micro AS
autosampler (Thermo Fisher) coupled to an LTQ-
Orbitrap mass spectrometer (Thermo Fisher Scientific,
San Jose, CA). After sample injection, the column was
washed for 2 min with mobile phase A (0.1% formic
acid) and the peptides were eluted using a linear gradi-
ent of 0% mobile phase B (0.1% formic acid, 80% aceto-
nitrile) to 50% mobile phase B in 90min at 500 nL/min,
and then 100% mobile phase B for an additional 5 min.
The mass spectrometer was operated in data-dependent
mode where the top five most abundant molecular ions
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were dynamically selected for collision-induced dissoci-
ation (CID) using a normalized collision energy (CE) of
35%. Raw files were searched against the NCBI human
database with SEQUEST (Thermo Fisher Scientific). The
following settings were applied: two missing cleavages
allowed, methionine oxidation as a variable modification
and cysteine carbamidomethylation as a fixed modifica-
tion. High-confidence peptide identifications were ob-
tained by applying the following filter criteria to the
search results: Xcorr versus charge ≥ 1.9, 2.2, 3.5 for 1+,
2+, 3+ ions; ΔCn > 0.1; probability of randomized identifi-
cation ≤ 0.01. Downstream differential analysis was based
on spectral counts, as computed by Scaffold (Proteome
Software, Inc., Portland, OR). The scaffold settings were
protein and peptide probability threshold of 95%, 1 pep-
tide per protein, and 1% false discovery rate.

Verification set
Protein eluates were quantified for total protein yield and
normalization using reverse phase protein array analysis as
previously described [17], and then reduced (5mM TCEP,
40min, 60 °C) and alkylated (10mM IAA, 37 °C) in the
dark. The samples were then diluted 4-fold in 50mM Tris-
HCl (pH 7.0), and 250 ng/μL trypsin Gold (Promega) was
added at an enzyme-to-protein ratio of 1:50 (v/v). After 3 h
of incubation at 37 °C, fresh trypsin was added to a final
enzyme-to-protein ratio of 1:25 (v/v) and incubation was
continued overnight (8 h, 63 rcf, 37 °C). Heavy-labeled pep-
tides, GYSLGNWVCAA[13C6

15N2(K)] and FESNFNTQ
ATN[13C6

15N4(R)], corresponding to GYSLGNWVCAAK
and FESNFNTQATNR (Supplementary Table S2) for
chicken LYZ were spiked in to a final concentration of
1750 fmoles. The samples were acidified with 50% formic
acid to a final concentration of 1%, sieved through an Acro-
Prep 96-well plate (Pall Corporation, Port Washington, NY)
to remove precipitated deoxycholate, and desalted using 1
cc Sep-Pak C18 (Waters, Milford, MA) solid-phase extrac-
tion columns. Finally, the eluted peptides were vacuum-
dried and stored at − 20 °C until LC-MRM analysis.
The dried peptides were reconstituted in 0.1% formic

acid and analyzed using online liquid chromatography
on a nanoACQUITY UPLC (Waters) coupled to a Xevo
TQ-s triple quadrupole mass spectrometer (Waters)
with nano ESI in positive mode. Chromatography separ-
ation was performed on a BEH C18, 1.7 μm, 0.1 × 100
mm analytical column (Waters) using an 83.5 min gradi-
ent from 3 to 90% mobile phase B (acetonitrile, 0.1% for-
mic acid) and 97 to 10% mobile phase A (water, 0.1%
formic acid) at a flow rate 0.5 μL/min. The following
gradient conditions were used: 3 to 7% mobile phase B
for 1 min, 7 to 25% mobile phase B for 1 to 72 min, 25
to 45% mobile phase B for 10 min, 45 to 90% mobile
phase B for 0.5 min, 90% B for 0.5 min, and column

equilibration on 3% B for 10 min. Mobile phase A blanks
were injected alternatively after every sample to prevent
any carryover, column clogging, and rise in column pres-
sure during the data acquisition. The E. coli tryptic di-
gests (250 ng, Waters) bracketed every five patient sample
injections (Supplementary Table S3) to assess instrumen-
tal variance. The measured variance remained under 15%
coefficient of variation (CV) for the area under the curve
throughout the acquisition. Peaks were integrated, and
area-under-the-curve (AUC) values were calculated using
the Skyline 3.5.0.9319 software package [20].

LC-MRM optimization
Candidate peptides selected for LC-MRM verification
are listed in Table 3. They were selected based on ex-
perimental (highest number of peptide identifications
and intensities, with at least 3 highly abundant − y and −
b ions) and computational (highest ESP scores [18],
highest scored transitions using PeptideAtlas [19]) cri-
teria. Although most peptides presented unique se-
quences, our panel contains several candidates with
sequences shared by more than one protein or shared by
their isoforms (Table 3). For each candidate marker, if
available, several light and heavy peptides were synthe-
sized following common empirical rules, such as size tol-
erance (7–15 amino acids) and absence of methionine of
proline residues (Table 3, Supplementary Table S4). The
LC-MRM assay was created using Skyline 3.5.0.9319
[20]. MRM transitions were optimized for charge state,
cone voltage, and collision energy by direct infusion of
synthetic light peptides at 5 μL/min, five-at-a-time at
200 nmoles in 10% acetonitrile, 0.1% formic acid, and a
ramping collision energy from to 5 to 53 V. The most
abundant precursor charge state within the mass range
of m/z 400–1200 and − y type product ions were
screened for each peptide. Of those, the three most
abundant ions for each peptide with optimal cone volt-
age and collision energies were chosen (Supplementary
Table S4). An equimolar mixture of all the synthetic
peptides at 500 fmoles/peptide was subjected to un-
scheduled LC-MRM analysis (20 ms dwell time/transi-
tion) to identify optimal retention times with a window
of ± 7.5 min. Heavy peptides corresponding to chicken
LYZ were used for retention time alignment, determin-
ation of instrumental variance, and relative quantitation.
Of these, the chicken LYZ peptide FESNFNTQATNR
showed the least variation (CV = 18.07%) and was thus
selected for normalization. Based on a known spike-in
concentration and peak area ratio of light-to-heavy
forms of the LYZ peptide, a normalization factor (con-
centration ratio of light-to-heavy/peak area ratio of
light-to-heavy) was computed. This factor was applied
for peptide normalization, and the normalized area for
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each candidate peptide was used for downstream data
analysis.

Data analysis
Discovery set
For each discovery set (breast cancer and other solid tu-
mors), the relative difference (Diff [%]) between spectral
counts in cases and controls was determined as follows:

Diff %ð Þ ¼
Xi¼n

i¼1
spectral counts p

� �
−

X j¼z

j¼1
spectral counts p

� �h i
=

Xi¼n

i¼1
spectral counts p

� �
þ

X j¼z

j¼1
spectral counts p

� �h i 1
2
�100

where

spectral counts p ¼ spectral counts corresponding to protein pn

¼ number of casesz ¼ number of controls:

Proteins with Diff (%) ≥ 50% that were detected (≥ 1
spectral count) in at least 21% of cases or controls were
considered candidate biomarkers. Peptides attributed to
each biomarker were manually inspected to confirm raw
spectral matching by SEQUEST. Candidate biomarkers
found to be differentially abundant in other cancer co-
horts were considered non-specific to breast cancer and
removed from the candidate list. Internal spike-in process
controls were monitored to assess case: control stoichiom-
etry. Functional enrichment analysis comparing proteins
identified in control or stage I, II, or III breast cancer sam-
ples was performed using Ingenuity Pathway Analysis
(IPA) (QIAGEN, Redwood City, CA) using default IPA
settings. Enriched pathways were filtered for significance
(p < 0.05) and presence in > 50% of samples.

Verification set
We did not observe any batch effect in the verification
dataset. The data obtained by MRM in the verification
phase of the project were used to develop a statistical
model to predict breast cancer. An initial statistical model
(model 1) included all 41 candidate peptides corresponding
to the 25 proteins of interest (Table 3). The probability for
model entry was 0.05. A second logistic regression model
(model 2) was computed with significant predictors from
the first model entered simultaneously to obtain boot-
strapped standard errors using 1000 samples: model sensi-
tivity, specificity, PPV, NPV, and AUC. Data were analyzed
using SPSS and STATA. Peptide significance (p < 0.05) was
calculated by a Wilcoxon rank sum test and corrected for
multiple testing using the Benjamini-Hochberg method
(Supplementary Excel Table). Peptides were modeled in
raw format and not transformed or dichotomized. Logistic
regression models are reported using the observed coeffi-
cient and significance values with bootstrapped standard
errors and confidence intervals.

Results
Discovery of IDC candidate biomarkers
To define differences in levels of circulating proteins
predictive of organ-specific tumor growth, we analyzed
six sets of serum samples from cancer patients (n = 20)
and matched healthy controls (n = 20) using shotgun
mass spectrometry. Proteins identified in IDC breast
cancer patients (Table 1, Discovery set) were compared
to proteins identified in patients affected by cancers of
the colon, ovaries, lung, and prostate, as well as melan-
oma (Supplementary Table S1, Fig. 1).
For each organ-specific cancer cohort, we first evaluated

relative differences between cases and controls for three
spiked-in recombinant proteins—SDF-1β, IGF1, and
IGFBP7, each of which served as internal quality control
and was spiked in at a ratio case/control respectively of 1:
10, 1:1, and 10:1. In the breast cancer cohort, the Diff (%)
was − 124% for SDF-1β, 52% for IGF1, and 132% for
IGFBP7, respectively, confirming that the approach can de-
tect a 10-fold difference in protein levels, described by Diff
(%) > 120%. Candidate biomarkers were selected in each
discovery set based on a low stringency cut-off of 50%.
Fifty-six proteins showed a Diff (%) ≥ 50% between the

IDC cases and matched benign controls (Table 2). Those
proteins span a range of molecular weights from 10 to 532
kDa (median = 50 kDa). Proteins with a molecular weight
between 20 and 60 kDa were preponderant (Supplementary
Fig. 1A). The average absolute concentration in blood has
not been reported for most of the 56 candidate markers.
Therefore, we refer to their estimated abundance in parts
per million, as reported by the PaxDB database (H. sapiens
- Plasma (Integrated)) [21].Most have abundances in
plasma below 5 ppm (Supplementary Fig. 1B).
Table 2 contains annotations for each of the 56 pro-

teins. According to the gene ontology (GO) annotation,
37 (65%) of the 56 candidates are extracellular proteins
and 14 (18%) are membrane proteins. Half of the anno-
tations refer to roles in cell motility, such as cell-to-cell
junctions, focal adhesions, and reorganization of the
actin cytoskeleton (Supplementary Excel Table, “Gene
ontology (GO)”). Seventeen of 56 (~ 30%) are known se-
creted proteins (Supplementary Excel Table “Subcellular
location [CC]”). Two proteins, AKT3 and PITX2, were
not previously reported in blood using mass spectrom-
etry. Overall, 160 candidate serum biomarkers were
identified across all 6 cohorts. Of those, 33 proteins
were differentially abundant in IDC only (Fig. 2,
Table 2).
Functional enrichment analysis for proteins identified in

each disease subgroup in the breast cancer cohort (stages
I, II, III, and control; Table 1, Discovery Set) yielded 38,
46, 36, and 49 pathways respectively, with significant over-
lap between groups (Supplementary Fig. 2). Enrichment of
Breast Cancer Regulation by Stathmin1 in breast cancer
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Table 2 Breast cancer candidate serum biomarkers

# Accession
number

Uniprot
ID

Gene Description MW
(kDa)

Abundance
(ppm)

GO-
CC

Diff
(%)

Cases
(%)

Breast-
specific

Novel

1 124248516 P59665 DEFA1 Alpha-defensin 1 10 138 63 53

2 4759070 Q16627 CCL14 Chemokine (C-C motif) ligand
14 isoform 1 precursor

11 83 ES 164 32

3 4507065 P03973 SLPI Secretory leukocyte peptidase
inhibitor precursor

14 9.52 EM 50 21 SPECIFIC

4 4826898 P07737 PFN1 Profilin 1 15 207 EE 108 63 SPECIFIC

5 5031635 P23528 CFL1 Cofilin 1 (non-muscle) 19 115 EM 133 58

6 33946278 Q9Y281 CFL2 Cofilin 2 19 21.3 ES 80 37

7 34850061 P62834 RAP1A RAP1A, member of RAS
oncogene family*

21 0.35 M 100 26 SPECIFIC

8 4885375 P16403 HIST1H1C Histone cluster 1, H1c 21 6.45 N 59 21 SPECIFIC

9 4506413 P61224 RAP1B RAP1B, member of RAS
oncogene family-like

21 0.67 M 167 74 SPECIFIC

10 148227764 Q93045 STMN2 Superiorcervical ganglia,
neural specific 10

21 1.59 EE 120 53 SPECIFIC

11 33695095 P13224 GP1BB Glycoprotein Ib, beta
polypeptide precursor

22 0.13 EE 133 21

12 4504073 P61026 RAB10 Ras-related GTP-binding
protein RAB10

22 0.11 M 145 58 SPECIFIC

13 4507513 P35625 TIMP3 Tissue inhibitor of
metalloproteinase 3 precursor

24 N/A EM 53 47 NOVEL

14 4507651 P67936 TPM4 Tropomyosin 4 isoform 2 29 125 M 173 21 SPECIFIC

15 24234708 Q99697 PITX2 Paired-like homeodomain
transcription factor 2 isoform b

35 N/A N 50 26 NOVEL

16 37550464 A6NMN3 FAM170B PREDICTED:family with sequence
similarity 170,member B

36 3.16 M 67 21

17 209862875 Q7Z4I7 LIMS2 LIM and senescent cell
antigen-like domains 2 isoform 1

38 0.43 M 200 21 SPECIFIC

18 156523970 P02765 AHSG Alpha-2-HS-glycoprotein 39 8613 ES 50 63 SPECIFIC

19 156616273 P08567 PLEK Pleckstrin 40 49.4 ES 143 32

20 4501889 P63267 ACTG2 Actin, gamma 2 propeptide 42 25.6 ES 114 100

21 20127528 P63261 ACTG1 Actin, gamma 1 propeptide 42 0.78 M 120 32

22 4501887 Q9HBI1 PARVB Parvin, beta isoform b 42 147 EM 112 100 SPECIFIC

23 39725934 P36955 SERPINF1 Serine (or cysteine) proteinase
inhibitor, clade F

46 3589 EM 111 21

24 9966913 Q9P1U1 ACTR3B Actin-related protein 3-beta
isoform 1

48 0.08 EE 200 26 SPECIFIC

25 55770868 I0CMK4 TUBB4Q Tubulin, beta polypeptide 4,
member Q

48 0.32 164 26

26 17921989 Q6PEY2 TUBA3E Tubulin, alpha 3e 50 3.5 EE 94 47 SPECIFIC

27 46409270 Q9H4B7 TUBB1 Beta tubulin 1, class VI 50 1.63 N 98 63 SPECIFIC

28 4507729 Q9BQE3 TUBA1C Tubulin alpha 6 50 2.03 EE 57 21 SPECIFIC

29 14210536 P68366 TUBA4A Tubulin, alpha 4a 50 0.53 N 89 37 SPECIFIC

30 14389309 Q13885 TUBB2A Tubulin, beta 2 50 2.33 Mi 92 89 SPECIFIC

31 13562114 Q9BUF5 TUBB6 Tubulin, beta 6 50 2.56 EE 72 68 SPECIFIC

32 4503649 P00740 F9 Coagulation factor IX
preproprotein

52 685 ES 200 21

33 32483410 P38435 GC Vitamin D-binding protein
precursor

53 4435 M 200 26 SPECIFIC
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stages I and II was partly driven by 6 of the tubulin bio-
marker candidates. Estrogen-Dependent Breast Cancer Sig-
naling was enriched in the control and stage III. The Role
of Tissue Factor in Cancer was enriched in > 50% of sam-
ples only at stage I. Four of the seven proteins driving en-
richment of The Role of Tissue Factor in Cancer are also
candidate biomarkers: RAC-gamma serine/threonine-pro-
tein kinase (AKT3), Cofilin1 and 2 (CFL1, CFL2), and in-
tegrin beta 3 (ITGB3).

Independent verification of candidate biomarkers and
diagnostic models
Twenty-four proteins among the 56 found in the discov-
ery phase were selected for verification in an

independent cohort using LC-MRM. Of the 24 candi-
dates, 41 proteotypic peptides were selected for MRM
analysis (Table 3). The peptides were quantified in the
verification cohort of 19 breast cancer patients at stage I
(T1N0M0) and in 41 controls including serum samples
obtained from women with inflammatory diseases and
benign breast pathology findings (Table 1, Validation
Set). All 41 peptides were shown to be more abundant
in sera from breast cancer patients, and 11 were statisti-
cally significant (p value ≤ 0.01) (Supplementary Excel
Table, sheet: “Wilcoxon test”). We then performed logis-
tic regression analysis to determine if marker combina-
tions showed superior sensitivity and specificity
compared to single markers. Model 1 was built using

Table 2 Breast cancer candidate serum biomarkers (Continued)

# Accession
number

Uniprot
ID

Gene Description MW
(kDa)

Abundance
(ppm)

GO-
CC

Diff
(%)

Cases
(%)

Breast-
specific

Novel

34 21071030 Q9Y243 AKT3 AKT3 kinase isoform 2 54 8804 ES 150 32 SPECIFIC

35 32307163 P04217 A1BG Alpha 1B-glycoprotein precursor 54 N/A M 57 42

36 148746204 Q9Y251 HPSE Heparanase 61 0.02 ER 156 63

37 13540563 Q9BXR6 CFHR5 Complement factor H-related 5 64 62.4 ER 67 26

38 4504383 Q04756 HGFAC HGF activator preproprotein 71 534 ES 76 79

39 41281905 Q86UX7 FERMT3 Fermitin family homolog 3
long form

76 4.34 ER 123 89 SPECIFIC

40 54607120 P02788 LTF Lactotransferrin precursor 78 45.4 ES 51 63

41 205277383 P26927 MST1 Macrophage stimulating 1
(hepatocyte growth factor-like)

82 269 ES 111 21 SPECIFIC

42 119395709 P00488 F13A1 Coagulation factor XIII A1
subunit precursor

83 37.7 ER 63 21 SPECIFIC

43 4504165 P06396 GSN Gelsolin isoform a precursor 86 8905 ES 120 21 SPECIFIC

44 47078292 P05106 ITGB3 Integrin beta chain, beta 3
precursor

87 1.46 EE 160 63 SPECIFIC

45 4501891 P12814 ACTN1 Actinin, alpha 1 isoform b 103 6.5 ES 160 58

46 5453579 P13497 BMP1 Bone morphogenetic protein
1 isoform 3 precursor

111 1.38 EM 133 26 SPECIFIC

47 88758615 P08514 ITGA2B Integrin alpha 2b preproprotein * 113 3.1 M 144 100 SPECIFIC

48 7669550 P18206 VCL Vinculin isoform meta-VCL 124 94.5 M 153 21

49 40317626 P07996 THBS1 Thrombospondin 1 precursor 129 41.4 EM 94 100 SPECIFIC

50 12667788 P35579 MYH9 Myosin, heavy polypeptide 9, non-
muscle

227 2.67 EM 200 21 SPECIFIC

51 223029410 Q9Y490 TLN1 Talin 1 * 270 22.5 ER 131 89 SPECIFIC

52 156938343 Q9Y4G6 TLN2 Talin 2 272 0.32 M 114 42 SPECIFIC

53 105990514 O75369 FLNB Filamin B, beta (actin binding protein
278)

278 0.24 EM 86 32

54 116063573 P21333 FLNA Filamin A, alpha isoform 1 * 280 9.63 EM 154 89 SPECIFIC

55 15147337 O95071 UBR5 Ubiquitin protein ligase E3 component
n-recognin 5

309 0.03 M 59 42

56 33350932 Q14204 DYNC1H1 Cytoplasmic dynein 1 heavy chain 1 532 0.04 EM 67 21 SPECIFIC

Abundance (ppm): protein abundance in plasma according to the PaxDB integrated plasma database. GO-CC Gene Ontology category cellular component, ES
extracellular space, ER extracellular region, EM extracellular matrix, EE extracellular exosomes, M membrane, N nucleus, C cytoskeleton, Diff (%) relative difference
in abundance (percentage) between cases and controls, Cases (%) percentage of breast cancer cases in which the protein is present, Breast-specific increased
abundance in breast cancer patients sera only, Novel not yet reported in PaxDB (plasma, mass spectrometry)
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three proteins previously identified as potential bio-
markers of breast cancer in blood and/or tissue: Cofilin
1 (CFL1, LGGSAVISLEGKPL), Alpha-2-HS-glycoprotein
(AHSG, HTFMGVVSLGSPSGEVSHPR), and Filamin A
(FLNA, SPFSVAVSPSLDLSK). CFL1 was the only one
that showed a significant difference between IDC cases
and controls (Fig. 3). However, CFL1 was also differen-
tially abundant in our discovery set in lung cancer and
therefore not specific to IDC. Using all three proteins,
model 1 yielded a sensitivity of 89.47% and a specificity
of 80.49%. For these predictors, PPV and NPV was 68%
and 95.3%, respectively, with an AUC of 0.88 (Table 4,
Fig. 4a). Model 2 included four candidate predictors spe-
cific for breast cancer in this study: Ras-related protein
Rap-1A (RAP1A, LVVLGSGGVGK), Integrin alpha-IIb
(ITGA2B, VYLFLQPR), FLNA (ANLPQSFQVDTSK),
and Talin-1 (TLN1, LAQAAQSSVATITR). Using uni-
variate analysis, only TLN1 was significantly different be-
tween cases and controls. However, the combination of
the four markers in model 2 outperformed the single
marker, achieving a sensitivity of 100% and specificity of
85.37%. PPV and NPV were 76% and 100% (p < 0.05), re-
spectively, with an AUC of 0.93 (Table 4, Fig. 4b). In
both models, the combined markers outperformed
single markers (Supplementary Table S5). Two pep-
tides from FLNA (ANLPQSFQVDTSK, SPFSVAVSPS
LDLSK) were identified separately as predictors for
the two models, but the correlation between their
levels as measured by LC-MRM was low (Supplemen-
tary Fig. 3).

Discussion
The development of a minimally-invasive molecular
assay using blood-borne/circulating biomarkers to sup-
port mammography screening is highly desirable to in-
crease PPV for early-stage breast cancer detection while
limiting the number of unnecessary biopsy of benign

conditions that mammography cannot currently discrim-
inate from frank early malignancy.
In this study, we uncovered 56 candidate protein bio-

markers of IDC breast cancer (and/or protein fragments)
in serum. When we compared the 56 candidate proteins
with proteins increased in patient sera across the other
cancer cohorts, 32 were altered in IDC but not in pros-
tate, ovarian, colon or lung cancer, or melanoma or in
their matched benign/inflammatory control cohorts.
The strategy of protein enrichment by HNs showed to

be effective for the identification of rare/low abundance
serum proteins. Proteins known to circulate in blood
(plasma/serum) at low concentrations such as CCL14 (~
5 ng/mL [22]), BMP1 (~ 50 ng/mL [23]), and heparanase
(~ 100 pg/mL [24]) were identified.
Many of the proteins upregulated in the serum of breast

cancer patients had never been previously observed in
serum using LC-MS/MS, such as paired-like homeodomain
transcription factor 2 isoform b (PITX2), AKT3 kinase iso-
form 2 (AKT3), tissue inhibitor of metalloproteinase 3 pre-
cursor (TIMP3) [25, 26], and Tropomyosin alpha-4 chain
(TMP4). TIMP3 and TMP4 are relevant to breast cancer
biology and both were reported to be more abundant in
tumor interstitial fluid collected from triple negative breast
cancer patients compared to normal interstitial fluid [27].
Queries using ProteomicsDB (https://www.ProteomicsDB.
org) and The Human Protein Atlas (2020-07-27) showed
that none of the identified proteins were exclusive to breast
cancer cell lines or breast tissue (data not shown). However,
even if our discovery study across multiple cancers sug-
gested that the proteins are more abundant in blood of
individuals with breast cancer, as compared to cancers in
other organs, we did not expect them to be specific to
breast cancer tumors. Indeed, our study shows a high de-
gree of specificity of those markers as circulating proteins
in breast cancer patients.
According to the NCI-funded Breast Cancer Surveil-

lance Consortium (HHSN261201100031C, downloaded
on 2019/02/06), sensitivity and specificity calculated over
more than two million screening mammography exami-
nations are 85.6% and 90.5%, respectively.
Our model 1 discriminated cases and controls with a sen-

sitivity of 89.5% and a specificity of 80.5%, outperforming
the specificity of the single markers reported previously. In
particular, plasma levels of the Filamin-A (FLNA) 280 kDa
variant predict metastatic breast cancer with 96.7% sensitiv-
ity but only 67.8% specificity [28]. In model 2, the individual
markers achieved very high specificity (> 90%), but low
sensitivity. However, the combination of the four markers
dramatically increased the sensitivity (100%), while still
maintaining adequate specificity (85%).
Our study supports the results of previous breast can-

cer biomarker studies and highlights a significant pres-
ence in the serum of IDC patients of proteins derived

Fig. 2 Venn diagram representing the number of specific and
common candidate biomarkers identified in the study cohorts
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Table 3 Peptide candidates selected for the MRM assay

Gene Peptide sequence Precursor m/z Precursor charge

FERMT3 VFVGEEDPEAESVTLR 888.93 2

VVLAGGVAPALFR 635.38 2

ACTG1 GYSFTTTAER 566.77 2

ACTG1/POTEF AGFAGDDAPR 488.73 2

AVFPSIVGRPR 599.86 2

ACTN (ACTN1/ACTN4) VGWEQLLTTIAR 693.89 2

LASDLLEWIR 608.34 2

GP1BB LSLTDPLVAER 607.34 2

RAP1 (RAP1A/RAP1B) LVVLGSGGVGK 493.31 2

SKINVNEIFYDLVR 570.65 3

SALTVQFVQGIFVEK 833.46 2

TUBA EIIDLVLDR 543.31 2

LISQIVSSITASLR 744.44 2

TUBA VGINYQPPTVVPGGDLAK 913.00 2

TUBB1 GASALQLER 472.76 2

EVDQQLLSVQTR 708.38 2

TUBB (TUBB1/TUBB3/TUBB6) FPGQLNADLR 565.80 2

ITGB3 SKVELEVR 480.28 2

PFN1 STGGAPTFNVTVTK 690.36 2

TFVNITPAEVGVLVGK 822.47 2

CFL1 LGGSAVISLEGKPL 670.89 2

BMP1 LNGSITSPGWPK 628.84 2

LTF DGAGDVAFIR 510.76 2

ITGA2B VAIVVGAPR 441.28 2

VYLFLQPR 518.30 2

THBS1 SITLFVQEDR 604.32 2

GFLLLASLR 495.31 2

FLNA; FLN1 ANLPQSFQVDTSK 717.86 2

YGGQPVPNFPSK 645.83 2

SPFSVAVSPSLDLSK 767.41 2

MYH9 ALELDSNLYR 597.31 2

HPSE FLILLGSPK 494.32 2

TDFLIFDPK 548.29 2

AHSG HTFMGVVSLGSPSGEVSHPR 699.68 3

TLN1 LAQAAQSSVATITR 708.89 2

ILAQATSDLVNAIK 728.92 2

GLAGAVSELLR 543.32 2

TLN2 VMVTNVTSLLK 610.85 2

SIAAATSALVK 516.31 2

MST1 VVGGHPGNSPWTVSLR 831.94 2

LIMS2 VIEGDVVSALNK 622.35 2

Peptides were selected using the following criteria: highest number of identified peptides and intensities from discovery dataset, presence of at least 3 high
abundant − b and/or − y product ions, highest ESP scores and scored transitions in the PeptideAtlas, no Met residues, and + 2 or + 3 charge state precursor ions.
The protein isoforms are described in parenthesis
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from the extracellular matrix and associated to cell pro-
liferation, migration, adhesion, and metastasis.
Using the “Analysis of protein sets” function of Pro-

teomics DB (Supplementary Fig. 4), revealed four pro-
teins included in model 2 (ITGA2B, FLNA, RAP1A,
and TLN1) are widely expressed across different type
of tissues. However, ITGA2B shows to be particularly
enriched in platelet, non-small cell lung cancer cells
(ProteomicsDB), and basophils (Human Protein Atlas).
The presence of circulating ITGA2B may indicate an
ongoing process of tumor cell-induced platelet aggre-
gation [29].

We observed increased levels of AHSG in serum of
breast cancer patients. In a previous study, anti-Alpha-2-
HS-glycoprotein (AHSG) antibodies were detected in 33
of 36 patients with breast cancer (91.7%) [30]. The two
studies support the hypothesis that changes at the level of
expression, but possibly also to location, PTMs or struc-
ture, occur to AHSG during breast cancer, such as to in-
duce the production of autoantibodies.
Cofilin 1 (CFL1) is an intracellular actin-modulating pro-

tein associated with EGF-stimulated chemotaxis [31] and
invadopodia localization in breast cancer cell invasion [32].
Although overexpression of CFL1 in breast cancer tissue
has been associated with poor prognosis and survival [33],
to our knowledge serum levels of CFL1 were never
assessed. Talin 1 (TLN1) is a cytoskeletal protein that func-
tions in extravasation and breast cancer cell migration [34,
35]. High levels of both TLN1 and CFL1 are reported in
the secretome of breast cancer cell lines (including, meta-
static, triple-negative, MCF7 ER-positive, and triple-
negative) [36], confirming their release into the ECM. In
addition to increased TLN1 abundance, we observed an in-
creased abundance of integrin and RAS oncogene family
members in IDC patients, suggesting that an ongoing dy-
namic remodeling of the cytoskeleton involving integrins
and active regulation of adhesion molecules by TLN1 is de-
tectable in serum due to an increase level of these proteins.
Integrin alpha-IIb (ITG2AB) plays a role in breast can-

cer metastasis through its role in matrix cross-linking
processes [37]. ITG2AB polymorphisms are associated
with increased breast cancer risk [38]. RAP1A, a mem-
ber of the RAS oncogene family, regulates signaling as-
sociated with proliferation, adhesion, and migration
mediated by beta1 integrin levels [34, 35, 39].
FLNA was found to be a predictor in both models, but

with two different peptides. Both cover a region common
to isoforms 1 and 2 and are found in the secreted form of
FLNA (280 kDa) N-terminal side to the calpain cleavage
site. Levels of both peptides showed relatively low correl-
ation with each other (Pearson correlation coefficient =
0.51) (Supplementary Fig. 3). In targeted mass spectrom-
etry experiments, this phenomenon is attributed to vari-
ability in digestion efficiency, the presence of missed
cleavages, protein modifications, different isoforms, or dif-
ferential enzymatic degradation. However, SPFSVAVSPS
LDLSK may be modified by phosphoserine (pS968) [36,
40] while no modifications likely occur in ANLPQSFQVD
TSK. Moreover, ANLPQSFQVDTSK levels correlate posi-
tively with a third peptide YGGQPVPNFPSK (Pearson
correlation coefficient = 0.96), which is likely unmodified
and was not a significant factor in any of our diagnostic
models (Supplementary Fig. 3). Interestingly, SPFSVAVS
PSLDLSK and ANLPQSFQVDTSK contribute to different
models: SPFSVAVSPSLDLSK participates in the first
model, which comprises proteins specific to both breast

Fig. 3 Serum protein levels measured by LC-MRM in the validation
set. Normalized AUC values are shown for proteins in models 1 and
2 (cases = 19, white; controls = 41, gray). Adjusted p values were
obtained using the Benjamini-Hochberg correction. ANLPQSFQVD
TSK (FLNA, adjusted p value = 0.67); HTFMGVVSLGSPSGEVSHPR
(AHSG, adjusted p value = 0.84); LAQAAQSSVATITR (TLN1, adjusted p
value = 0.0019); LGGSAVISLEGKPL (CFL1, adjusted p value = 8.29E−5);
LVVLGSGGVGK (RAP1A, p value = 0.34); SPFSVAVSPSLDLSK (FLNA, p
value = 0.58) and VYLFLQPR (ITGA2B, p value = 0.69)
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cancer sera and homeostatic response pathways, while
ANLPQSFQVDTSK participates in the second, which in-
cludes only breast specific proteins and favors a strong
motility component.
We postulate that the breast cancer protein signature de-

scribed here reflects the changing ECM and stromal com-
position of the breast cancer tissue microenvironment
during early tumorigenic processes. As observed in rodent
models, breast tissue is characterized by high stromal con-
tent and is particularly rich in fibrillar collagens and matri-
cellular proteins [25, 28] involved in the activation of
adhesion signals [37, 41] [42] and enhancing invasion and
metastasis [43]. ECM remodeling occurs during the early

stages of IDC and results in leakage of proteins and protein
fragments into the circulation. Shen et al. observed that
breast tumors shed cancer-specific peptides and products
of proteolytic activity into circulation [44]. Our data rein-
forces the hypothesis that this shedding of ECM compo-
nents into the circulation even at the earliest stages of
malignancy can be used to design a specific and sensitive
biomarker panel to improve detection of breast cancer.
Although this study uses an innovative nanoparticle-

based protein capture technique that focuses on the LMW
portion of the proteome to identify candidate protein/pro-
tein fragments and peptides as serum biomarkers of breast
cancer, as well as a unique collection of multi-tumor

Table 4 Summary of logistic regression values for biomarkers predicting group status

AUC (95% CI) Criterion Sensitivity Specificity

Model 1

LGGSAVISLEGKPL 0.86 (0.76–0.96) > 0.25 78.95 82.93

HTFMGVVSLGSPSGEVSHPR 0.57 (0.40–0.74) > 0.34 47.37 80.49

SPFSVAVSPSLDLSK 0.52 (0.36–0.68) > 0.32 26.32 87.80

Combined 0.88 (0.80–0.97) > 0.25 89.47 80.49

Model 2

LVVLGSGGVGK 0.62 (0.45–0.78) > 0.47 31.58 97.56

VYLFLQPR 0.56 (0.38–0.74) > 0.39 31.58 97.56

ANLPQSFQVDTSK 0.55 (0.38–0.73) > 0.35 31.58 87.80

LAQAAQSSVATITR 0.79 (0.64–0.93) > 0.37 63.16 92.68

Combined 0.93 (0.86–1.00) > 0.19 100 85.37

Model 1 was run on 41 potential peptide biomarkers with p < 0.05. Significant predictors from model 1 were tested using model 2. Logistic regression was used to
determine the sensitivity, specificity, and area-under-curve (AUC) of single markers and combined panels of peptide biomarkers, after bootstrapping 1000 samples
with 95% confidence intervals for each specified cutoff value of the criterion. CI confidence interval

Fig. 4 Receiver operator curve analysis of 19 cases and 41 controls by multivariate logistic regression of individual or combined peptides. Model
1 (a) includes peptides LGGSAVISLEGKPL (CFL1), HTFMGVVSLGSPSGEVSHPR (AHSG), and SPFSVAVSPSLDLSK (FLNA). Model 2 (b) includes peptides
LVVLGSGGVGK (RAP1A), VYLFLQPR (ITGA2B), ANLPQSFQVDTSK (FLNA), and LAQAAQSSVATITR (TLN1)

Fredolini et al. Breast Cancer Research          (2020) 22:135 Page 13 of 16



serum sets and matched benign conditions, a separate dis-
covery and verification set including semiquantitative
MRM-based verification of selected candidates, there are
some limitations to our study.
The use of spectral counting in our discovery cohort

may have limited the accuracy of the analysis of semi-
quantitative label-free data. Many other approaches for
spectral counting and ion intensity normalization [45,
46] have been explored. Although our candidates were
independently verified using an LC-MRM method, we
recognize that use of semi-quantitative label-free data
employed in the discovery phase may be a limitation of
the study. Other alternative nanoparticle-based sample
processing techniques provide broad proteomic coverage
of blood proteins [47]. Unlike our HN sample enrich-
ment method, these approaches do not specifically en-
rich the extra-vascular content contained in the LMW
low abundant blood proteome.
Relevant to FLNA peptides, we emphasize that the HN-

CB/VSA serum pre-processing is aimed at analysis of low
molecular weight proteins. Therefore, we cannot rule out
that circulating fragments belonging to FLN1 or other
high molecular weight proteins might be enriched by HN
and further digested to tryptic peptides after elution.
Moreover, while our discovery and verification sets were

carefully constructed to maximize chances of identification
of specific and sensitive markers for early breast cancer de-
tection, the study sets were inherently unbalanced and do
not reflect the frequency of occult/non-detected breast can-
cer in the general population. However, the number and
type of samples chosen for this study was consistent with
the objectives of discovery, qualification and verification of
potential breast cancer biomarkers. Additional validation
studies will require not only a larger population of individ-
uals comprised of different BI-RADS scores and molecular
subtypes [48], but also a thorough and stringent validation
of our MRM methods, following the Tier for validation
suggested by the National Institutes of Health, the National
Cancer Institute (CPTAC - Clinical Proteomic Tumor Ana-
lysis Consortium), and National Heart, Lung, and Blood In-
stitute (Proteomics Centers) [49].
In conclusion, these findings would require much more

intensive validation in blinded, independent study sets in
order to judge the potential for clinical impact. Our re-
sults, taken together, justify such further validation.

Conclusion
Our objective was to use a series of innovative sample
processing and proteomic approaches coupled to a
unique sample study set discover and validate a panel of
candidate serum proteins that could potentially be used
to detect early-stage breast cancer as an adjunct with
mammography. We developed a semi-quantitative MRM
assay that employs a simple method of protein

enrichment, representing a robust foundation suitable
for future validation studies. We also discovered a panel
of proteins, which were validated in an independent co-
hort from largely early-stage (T1a) breast cancers vs
serum taken from women with benign/inflammatory
conditions as a control set, with a sensitivity and spe-
cificity profile that could have clinical impact when
combined with mammography. Further studies on lar-
ger cohorts of individuals who were subjected to
mammography will be required to clarify if our pro-
posed protein panel can complement the diagnostic
performance of mammography.
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