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Abstract

Background: Molecular classification of tumour clonality is currently not evaluated in multiple invasive breast
carcinomas, despite evidence suggesting common clonal origins. There is no consensus about which type of data
(e.g. copy number, mutation, histology) and especially which statistical method is most suitable to distinguish
clonal recurrences from independent primary tumours.

Methods: Thirty-seven invasive breast tumour pairs were stratified according to laterality and time interval between
the diagnoses of the two tumours. In a multi-omics approach, tumour clonality was analysed by integrating clinical
characteristics (n = 37), DNA copy number (n = 37), DNA methylation (n = 8), gene expression microarray (n = 7),
RNA sequencing (n = 3), and SNP genotyping data (n = 3). Different statistical methods, e.g. the diagnostic similarity
index (SI), were used to classify the tumours as clonally related recurrences or independent primary tumours.

Results: The SI and hierarchical clustering showed similar tendencies and the highest concordance with the other
methods. Concordant evidence for tumour clonality was found in 46% (17/37) of patients. Notably, no association
was found between the current clinical guidelines and molecular tumour features.

Conclusions: A more accurate classification of clonal relatedness between multiple breast tumours may help to
mitigate treatment failure and relapse by integrating tumour-associated molecular features, clinical parameters, and
statistical methods. Guidelines need to be defined with exact thresholds to standardise clonality testing in a routine
diagnostic setting.

Keywords: Tumour clonality, Bilateral breast cancer, Ipsilateral breast cancer, Intertumour heterogeneity, Similarity
index, Multiple breast cancer

Background
Approximately 2–15% of women previously diagnosed
with breast cancer will develop a second primary carcin-
oma in the contralateral breast during their lifetime [1, 2].
Interestingly, the risk of developing a breast tumour in the
contralateral breast is 2–6-fold higher in breast cancer pa-
tients than the risk of developing a first primary breast
cancer in the general population [2]. These findings indi-
cate a clonal relationship between bilateral breast cancers
as well as a consequence of genetic predisposition and
treatment [2, 3]. However, discordance in histologic

patterns between bilateral tumours suggests that the ma-
jority of bilateral breast cancers have independent tumour
origins [4]. Clonality is defined as two tumours deriving
from the same progenitor cell that previously underwent
malignant changes and gave rise to both of the detected
tumours [5]. Consequently, in the early development of
the two clones the driver events of the progenitor cell (e.g.
copy number alteration (CNA), DNA methylation, muta-
tion, and gene expression profiles) need to have been
identical. Due to heterogeneity in subclonal drifts, the
variability between the two clones results from the accu-
mulation of diverse molecular changes associated with
tumour progression [6]. Nevertheless, similarities in cer-
tain tumour features might be due to genetic predispos-
ition and shared environment instead of indicating
metastatic spread.
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Ipsilateral (unilateral) secondary tumours occur in 10–
15% of patients undergoing breast-conserving surgery
and radiation therapy [7]. At present, the concordance
of hormone receptor status in tumour pairs is the main
factor when evaluating potential clonal relatedness of
two breast tumours. Clinical characteristics of breast tu-
mours with independent origin are the presence of an in
situ component in the second tumour, different degrees
of differentiation, different histological subtypes (e.g. in-
vasive carcinoma no special type (NST), invasive lobular
carcinoma, tubular, medullary, etc.), absence of locore-
gional or distant metastases, long time interval between
the two tumours, and differences in stage and anatomic
location [8, 9]. Determining the concordance of histo-
pathological characteristics between multiple breast car-
cinomas is insufficient for discerning whether multiple
tumours are true recurrences of the primary tumour
(clonal) or a new unrelated primary lesion (independent
tumour) [10]. Bilateral tumours are currently clinically
diagnosed as two different entities, while ipsilateral tu-
mours are classified as local recurrences [1]. Clonal re-
currences can represent treatment failure of the first
tumour, warranting a change of therapy for the second
tumour. Contrastingly, two independent tumours with
the same clinical features can be treated similarly since
the treatment was successful for the first tumour.
Different techniques in the field of molecular genetics

have been used to elucidate tumour clonality, e.g. allelic
imbalances [11, 12], CGH (comparative genomic
hybridization) [13, 14], array comparative genomic
hybridization (aCGH) [15, 16], as well as whole exome
and whole genome sequencing [17–19]. In addition, sev-
eral analytical tools have been proposed to justify the
routine clinical use of determining tumour clonality [5,
13, 15, 20–22].
In the present study, 74 invasive breast tumours corre-

sponding to 37 patients were stratified by laterality (bi-
lateral vs. ipsilateral) and the time interval between the
diagnosis of the first and second tumour (synchronous
vs. metachronous). Both tumours from the same patient
were analysed using several genome-wide screening
methods and statistical approaches to assess tumour
clonality. The level of concordance among the different
statistical techniques and molecular data might help to
define clonality in multiple tumours and guide treatment
decisions for clinicians.

Methods
Patients and clinicopathological data
Fresh-frozen tumour specimens for 74 invasive breast
carcinomas, corresponding to 37 patients diagnosed in
Western Sweden between 1988 and 1998 with multiple
breast cancers, were selected from the tumour bank at
the Sahlgrenska University Hospital Oncology Lab

(Gothenburg, Sweden). The patients were stratified into
four groups based on the anatomic location of the mul-
tiple breast cancers (ipsilateral or bilateral) and time
interval between the diagnoses (synchronous or meta-
chronous). Ipsilateral was defined as tumours occurring
in the same breast while bilateral was defined as the oc-
currence of tumours in both breasts. Metachronicity was
defined as a time interval greater than 6 months be-
tween the diagnoses of the first and second tumours,
while synchronicity specified that the two tumours oc-
curred concurrently. Clinicopathological information
was obtained from Regional Cancer Centre West (Goth-
enburg, Sweden) and the Sympathy and Melior data-
bases (Sahlgrenska University Hospital). A part of the
dataset was stratified into the molecular breast cancer
subtypes (normal-like, basal-like, luminal subtype A, lu-
minal subtype B/human epidermal growth factor recep-
tor 2 (HER2)+, luminal subtype B/HER2-, and HER2/
oestrogen receptor (ER)-) as described elsewhere [23,
24]. Luminal subtype B was further stratified according
to HER2 status as determined by aCGH; HER2+ was set
to log2 ratio ≥ + 0.5 and HER2- was set to log2 ratio < +
0.5 [25]. Routine haematoxylin and eosin-stained slides
from formalin-fixed paraffin-embedded (FFPE) blocks
were revised by a board-certified breast pathologist.
Classification of the subtypes based on immunohisto-
chemistry was not possible due to the lack of informa-
tion on the Ki-67 status. The patients had an average
follow-up time of 7.2 years. None of the patients were
diagnosed with distant metastasis at the time of diagno-
sis of either the first or second tumours. The selection
criteria were to use samples from opposite quadrants for
ipsilateral cases and no nipple involvement. Representa-
tive imprints from each tumour specimen were stained
with May-Grünwald Giemsa (Chemicon, Temecula CA,
USA) and evaluated for neoplastic cells. Tumour speci-
mens with at least 70% neoplastic cell content were in-
cluded in downstream analyses.

Array comparative genomic hybridization (aCGH) analysis
aCGH and data pre-processing was performed as previ-
ously described [24] and summarised in the Additional
file 1: Supplementary Methods. Segmented data for seg-
ment analysis were generated using the “GLAD” package
[26] in R (v3.4.3) [27]. The “Clonality” package [28] was
used to define the likelihood ratio with individual com-
parisons (LR2) and LR2 p value and required copy num-
ber data procession with the “DNAcopy” package [29].

DNA methylation analysis
Sixteen samples were randomly selected to represent each
clinical group with four samples corresponding to two pa-
tients per group. Purified genomic DNA was processed at
the SNP&SEQ technology platform, Uppsala, Sweden,

Biermann et al. Breast Cancer Research  (2018) 20:96 Page 2 of 16



using Illumina Infinium MethylationEPIC BeadChips
(MethylationEPIC_v-1-0; mapped to UCSC Feb 2009
hg19: GRCh37). Raw data (IDAT files) were processed in
R using the “RnBeads” package [30]. The probes were nor-
malised with the BMIQ method (beta mixture quantile
dilation) [31]. Beta values were obtained with “RnBeads”.
The intensity values were extracted using the “ChAMP”
package to generate segmented copy number data for the
segment analysis [32, 33]. The “conumee” package was
used to extract unsegmented information of CNAs on the
probe level [34]. The unsegmented CNAs were used for
the similarity index (SI), the distance measure and the
clustering analysis.

Whole transcriptome RNA sequencing (RNA-seq)
Total RNA samples were processed at the Science for
Life Laboratory (National Genomics Infrastructure,
Stockholm, Sweden). Illumina TruSeq strand-specific
RNA libraries (Ribosomal depletion using RiboZero hu-
man) containing 125 bp paired-end reads were obtained
for each sample on a HiSeq2000 sequencer (Illumina,
San Diego, CA, USA). The computations were per-
formed on resources provided by SNIC through Uppsala
Multidisciplinary Center for Advanced Computational
Science (UPPMAX) [35], as described in the Additional
file 1: Supplementary Methods.

Genome-wide single nucleotide polymorphism (SNP)
genotyping analysis
Genome-wide SNP genotyping analysis was processed
with Illumina Infinium HumanOmni2.5–8 v1.3 Bead-
chips at the SCIBLU Genomics DNA Microarray Re-
source Center (SCIBLU), Sweden, as described in the
Additional file 1: Supplementary Methods.

Statistical analyses
A p value cut-off of 0.05 was applied in all statistical
tests.

Definition of tumour clonality
Tumours derived from a common precursor tumour cell
should share certain features, i.e. similar CNAs, genetic
variants, shared segments, DNA methylation and gene
expression patterns, in addition to non-matching fea-
tures that were acquired over time. We applied different
statistical methods on different types of molecular data
to identify similarities between the tumours that classify
a tumour pair as clonal and reject the null hypothesis
(different features due to independent development of
primary tumours).

Similarity index (SI)
The SI assesses whether two tumours identified in the
same patient are clonally related or two independent

entities by identifying genetic aberrations that are
patient-specific and non-recurrent aberrations frequently
identified in cancer [21]. In brief, DNA copy number
data were normalised and discretized (heterozygous loss
(<− 0.3); normal; low-level gain (> 0.3)) and unique (NU),
shared (NS), and opposite (NO) changes were calculated
for each tumour pair to obtain the SI:

SI ¼ NS

NS þ NU þ NO

The SI ranges between 0 (completely different) and 1
(identical genomic profiles). The permutation-based PSI
gives the percentage of similarities between two tumours
that are not due to recurrent chromosomal aberrations
or randomness.
The SI remained unchanged for the gene expression

microarray data. The normalised log2 ratios were discre-
tized using a 1.5 fold change cut-off (underexpressed
(log2 ratio < − 0.58); neutral; overexpressed (log2 ratio >
0.58)).
Calculation of the SI was modified for the methylation

data (SImet) because the SI for copy number data is
based on measuring the amount of alterations from the
biologically neutral state (two copies per allele). In DNA
methylation, neither methylated nor unmethylated can
be defined as the neutral state of a cytosine due to the
dynamic of methylation. The SImet uses beta values dis-
cretized according to thresholds defined by Du et al.
[36], where beta values > 0.8 are defined as methylated,
and beta values < 0.2 as unmethylated, while the range
from 0.2 to 0.8 is hemi-methylated. The SImet counts the
number of all common states between the first and the
second tumour per probe and divides it by the total
number of probes, giving the percentage of shared
methylation states. The main difference is that the SImet

uses all probe states while the SI is based on the changes
from the neutral state and therefore does not count two
tumours that are normal as a shared state.

Hierarchical clustering
Unsupervised hierarchical clustering was applied using
single linkage with Euclidean distance [37]. Clustering
was performed using the basic “stats” package [27] for
the aCGH-derived copy number data (imputed log2 ra-
tios), the DNA methylation data (beta values and inten-
sity values), the microarray-derived gene expression data
(normalised log2 ratios), and the SNP array data (B allele
frequency (BAF) and log R ratio (LRR) values). Two tu-
mours of the same patient were defined as similar
(clonal) if they clustered together in the terminal branch
of the dendrogram.
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Distance measure
The distance measure was used to compute the distance
matrix of the Euclidean distances between different
tumour samples to evaluate the similarity between two
samples. The Euclidean distance was computed using the
basic “stats” package [27] for the aCGH-derived copy
number data (imputed log2 ratios), the DNA methylation
data (beta values and intensity values), the microarray-
derived gene expression data (normalised log2 ratios),
and the SNP array data (LRR values). The distance
measure was calculated for true tumour pairs which de-
rive from the same patient and for all artificial combina-
tions of tumour pairs from different patients
(permutation). Tumour pairs that are more similar on the
probe level will show a shorter distance from each other.
Statistical significance for clonality was defined as the dis-
tance of a tumour pair of the same patient that is in the
lower fifth percentile of the distribution of distances.

Shared segment analysis
In segmented copy number data, the breakpoints and
the copy number of each segment was compared be-
tween the tumours. A shared segment was defined as an
overlap of the exact loci in both ends of the segment
where the change in status (loss or gain) occurred with
the same direction (increase or decrease in copy num-
bers). The segment analysis was performed on seg-
mented copy number data derived from aCGH (imputed
log2 ratios), DNA methylation array (intensity values),
and SNP array (LRR values). Shared segments were
counted for true tumour pairs and all artificial pairs of
the respective cohort. Clonality was defined as the num-
ber of shared segments above the 95th percentile.

Mutational changes (genetic variants) and fusion transcript
analysis
Mutational changes that were identical in both tumours
were counted for true tumour pairs and all artificial
pairs of the cohort. Clonality was defined as the number
of shared mutations above the 95th percentile of the per-
mutation distribution. Shared mutations were counted
for genomic and exonic RNA-seq data. In addition, a
panel of 254 breast cancer and DNA repair-specific mu-
tation spots proposed by Begg et al. was analysed [38].
The overlap of RNA-seq counts of the genomic and ex-
onic data with the 254-gene panel was used to count the
shared mutations of the true and artificial pairs of the
cohort. Clonality was defined as the number of shared
mutations above the 95th percentile. To test for clonality
using profiles of somatic mutations in the “Clonality”
package [28], loci-specific probabilities of observing a
mutation were obtained from the TCGA breast cancer
dataset [39]. Furthermore, fusion transcripts of all

tumours were compared and transcripts with identical
5′ and 3′ fusion partner breakpoints were counted.

Cohen’s kappa
Cohen’s kappa measures the chance-corrected agreement
for two observations [40]. Cohen’s kappa indices of agree-
ment between different methods applied to estimate
clonality were calculated using the R-package “rel” [41].

Results
Tumour synchronicity strongly associated with metastatic
spread to the axillary lymph nodes
The 37 breast cancer patients were stratified into four clin-
ical groups based on tumour laterality and the time interval
between the diagnoses of the first and second tumours
(BM: bilateral-metachronous; BS: bilateral-synchronous;
IM: ipsilateral-metachronous; IS: ipsilateral-synchronous).
The clinicopathological characteristics are shown in
Additional file 2: Table S1. Metastatic spread to the axillary
lymph nodes was more prevalent in the synchronous
groups (BS: 100%; IS: 85.7%) as compared to the metachro-
nous groups (BM: 61.5%; IM: 14.3%; P = 0.001).

Discordances in histopathological characteristics in 32%
of the tumour pairs
For the clinical classification of clonality, several histo-
pathological and molecular features were taken into con-
sideration, including histological subtype, the status of ER
and HER2, and the molecular subtype (Table 1). While
the receptor status was available for most samples, the
molecular subtype was only defined for about 40% of the
tumours. Thirty-two percent of the patients (12/37)
showed discordances between the first and the second
tumour, with one-fourth of the 12 patients showing two
discordant changes. Most changes were found in the
histological subtypes (35%; 6/17 patients), while the mo-
lecular subtype differed in 25% (2/8 patients), ER status in
11% (4/35 patients), and HER2 status in 8% (3/37 pa-
tients). In patients with metachronous cancer, changes in
receptor status from positive to negative were observed
for patients BM6 and BM7. The discordant changes were
equally distributed between the different clinical groups
and showed no significance when stratified by group.

Stratification by laterality revealed differential copy
number imbalances
DNA copy number analysis using aCGH was performed
to identify recurrent regions of DNA copy number gain
(blue) and loss (red) in at least 25% of the tumours in
the patient cohort. Recurrent DNA gains were identified
on chromosomes 1q, 8q, 16p, 17q, and 20q, while DNA
loss was detected on 1p, 8p, 11q, 13q, and 16q (Fig. 1a).
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These results were in line with DNA gains and losses fre-
quently identified in breast cancer [42–44]. There was very
little difference in the DNA copy number profiles when
stratified by synchronicity (excluding copy number variations
(CNVs) and probes from sex chromosomes) with 59 signifi-
cantly different genomic regions displaying DNA copy num-
ber imbalances (Fig. 1b). Most noticeable were losses of the
entire chromosome 14 and the long arm of chromosome 11
in the metachronous subgroup. In contrast, stratification by
laterality yielded 134 statistically significant minimal com-
mon regions of copy number imbalances, including more
fractions of genome altered in the ipsilateral subgroup with
prominent losses on 8p and 11p (Fig. 1c).

DNA methylation showed higher variability in
synchronous tumours
The variability of the beta values was the highest in the bi-
lateral and synchronous groups and consequently in the BS
group, which was in line with patients BS7 and BS8 having
the highest variability in methylation patterns between the
two respective tumour pairs (Additional file 3: Table S2).

Principal component analysis of the methylation data
showed a statistically significant association with synchron-
icity (P = 0.007), while no further associations to other
variables were found. Kruskal’s non-metric multidi-
mensional scaling (MDS) demonstrated that most of
the synchronous samples were further away from
each other, while the metachronous samples formed
a distinct cluster, suggesting a higher variability of
beta values in synchronous samples (Fig. 2).
Strong consensus in clonality could be found for the tu-

mours of patients BM7, BS8, and IS1, while the tumour
pairs for patients BS7 and IS4 were determined to be inde-
pendent primary tumours (Table 2). In general, DNA
methylation intensity values were a more liberal method for
clonality classification, in particular the clustering analysis,
and frequently classified tumour pairs as similar in com-
parison with other types of molecular data.

Ipsilateral synchronous tumours showed similar gene
expression by microarray
The gene expression cohort consisted of seven patients
with ipsilateral tumours (three metachronous and four

A

B

C

Fig. 1 Genome-wide frequency plots of DNA copy number gains (blue) and losses (red) for the entire cohort (a), as well as cohorts stratified by the
time interval between the tumours (b; metachronous (n = 36) vs. synchronous (n = 38)) and the laterality (c; bilateral (n = 34) vs. ipsilateral (n = 40))
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synchronous). The clonality analyses based on gene ex-
pression microarray data showed strong concordance to
the clinical groups with all four synchronous cases being
similar for all analyses while 2/3 metachronous cases
were classified as different entities (Additional file 4:
Table S3). All analyses of the gene expression cohort
were in line with the aCGH results except for patient
IM4, whom was classified as independent in the gene
expression analysis and equivocal in the aCGH data set.
MDS demonstrated similar gene expression patterns be-
tween the tumour pairs of the patients IM3, IS3, and
IS10 (Additional file 5: Figure S1A).

Varying tendencies for clonality within RNA-seq and SNP
data
RNA-seq and SNP genotyping were performed for both
tumours of patients IM4, IS10, and IS11. A total of 64
fusion transcripts were detected in the two tumours of
patient IM4, with five fusion transcripts (7.8%) contain-
ing the same fusion breakpoints in the 5′- and 3′-gene
partners in both tumours (Additional file 6: Table S4).
For patients IS10 and IS11, 1/836 (0.1%) and 5/153
(3.3%) fusion transcripts were identical between the two
tumours, respectively. No other shared fusion transcripts
were found between different tumours. The RNA-seq
data was then evaluated to identify shared genetic vari-
ants in genomic and exonic (coding) regions. Shared
genomic variants (genome-wide and the 254-gene panel)
showed similar tendencies that were in line with the
aCGH distance measure and SNP shared segment (LRR)
data (Additional file 7: Table S5). The shared exonic var-
iants in the 254-gene panel only found two shared

mutations in patient IM4, which contradicted most
other RNA-seq results. The shared segment and cluster-
ing analyses of the SNP array data classified patient IS10
as clonal, which was in line with the aCGH results but
contradicted the distance measure and MDS, which clas-
sified the LRRs of the tumour pair IM4 as most similar
(Additional file 5: Figure S1B). The “Clonality” package
applied on the exonic variants classified all tumour pairs
as clonal. A circos plot summarising the results of pa-
tient IM4 visualised the similarities in copy number pro-
files of both aCGH-derived log2 ratio and SNP
array-derived LRR and fusion transcripts (Fig. 3).

Tumour clonality defined in 46% of the patients
Calculation of Cohen’s kappa indices was applied to de-
tect the highest agreement between the different statis-
tical methods used to estimate clonality. For the aCGH
data, hierarchical clustering and the similarity index (SI)
were identified as the most appropriate (0.659 and 0.630,
respectively). Since the SI is easier to interpret as a
measure and independent of the cohort, it presented the
most reasonable definition of clonality and determined
46% (17/37) of the tumour pairs as clonal (Fig. 4). No
statistical significance was found to associate the tumour
clonality defined by the SI with the clinical classification
(Wilcoxon rank sum test: PLaterality = 0.247; PSynchronicity =
0.095; Analysis of variance (ANOVA): P

Clinical groups
= 0.229),

highlighting the alarming reality that there is very little
connection between current clinical guidelines and the
biology underlying tumour clonality.
The majority of the analyses conducted were in agree-

ment with the SI except for patients BM1, IM4, IM7,

Fig. 2 Kruskal’s non-metric multidimensional scaling (MDS) plot of beta values from the DNA methylation cohort (n = 16). The MDS plot visualised
similarities between the individual samples based on information from the distance matrix

Biermann et al. Breast Cancer Research  (2018) 20:96 Page 8 of 16
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A

B

Fig. 3 (See legend on next page.)
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IS1, and IS7 (Fig. 4). Interestingly, the histopathological
concordances often showed opposite tendencies com-
pared to the aCGH analysis. The different methods ap-
plied to the DNA methylation, gene expression and SNP
array data sets displayed strong homogeneity within
their type of data regardless of the method applied. The
results for the SI and hierarchical clustering were con-
sistent in most data sets. The distance measure also
overlapped with these results but seemed to be a more
conservative measure since fewer tumour pairs were
classified as clonal. The shared segment analysis with
the aCGH data clearly favoured the clonality hypothesis
with defining 21/37 tumour pairs as clonal along with 4/
8 cases in the methylation intensity data and 1/3 in the
LRR data. The shared segment analysis was in most
cases consistent between the different types of data.

Discussion
Here, we show that molecular and statistical analyses are
powerful tools for classifying clonal recurrences and in-
dependent primary tumours. This study provides valu-
able insight into which molecular technologies were
most informative for investigating clonal relatedness in
tumour pairs. Although tumour clonality should govern
the choice of treatment, bilateral breast tumours are
generally treated as different primary tumours and not
as potential failure of the previous treatment. Tumour
characteristics such as histological subtype, molecular
subtype, presence of ductal carcinoma in situ (DCIS),
and receptor status are currently used to choose treat-
ment strategies for patients with multiple breast tu-
mours. However, to fully comprehend the association
between multiple tumours, routine clinical and diagnostic

(See figure on previous page.)
Fig. 3 Circos plots depicting aCGH-derived DNA copy number profiles, genome-wide SNP genotyping, DNA methylation beta values, and RNA-seq data
in the first (a) and second (b) tumour of breast carcinoma patient IM4. Circos plot Track 1: Chromosome cytobands from pter to qter. The centromere is
shown as a red bar. Track 2: Mutations in exonic regions (exonic variants) identified with RNA-seq data are shown as dark grey bars. Track 3: Beta values of
DNA methylation data. Track 4: B allele frequency of SNP genotyping data. Track 5: Log R ratio of SNP genotyping data, where copy number gains and
losses are depicted in green and red, respectively. Track 6: Log2 ratio of aCGH data, where copy number gains and losses are depicted in green and red,
respectively. Track 7: Gene fusions identified with RNA-seq data. Intrachromosomal and interchromosomal gene fusions are shown in red and blue
lines, respectively

Fig. 4 Overview of the different statistical methods applied sorted by the type of data. Red boxes indicate that the analysis defined the tumour
pair as clonal and blue boxes indicate independence of the tumours. BAF B allele frequency, BM bilateral-metachronous, BS bilateral-synchronous,
IM ipsilateral-metachronous, IS ipsilateral-synchronous, LRR log R ratio, SI similarity index, SImet modified SI for methylation data
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testing needs to be conducted in conjunction with mo-
lecular and bioinformatics methods.
In the majority of the analyses, the type of molecular

data analysed had a stronger impact on clonality deter-
mination than the analytical method used. This raises the
question of which biological phenomenon provides the
most stable evidence for clonality. DNA methylation and
gene expression are more dynamic than DNA mutations
and CNAs, and might therefore be more similar due to
environmental factors. CNAs are acquired at early stages
of tumourigenesis [45, 46] making them the most stable
type of biological data in this study. An overlap of tenden-
cies in clonality between the aCGH and DNA methylation
data was seen for only 50% of the cohort (BM7, BS7, BS8,
and IS4), giving a less optimistic view on using DNA
methylation as a clonality tool compared to results from
other reported studies [47, 48]. In the DNA methylation
data, synchronicity accounted for more variation than
metachronicity, providing further evidence that synchron-
ous tumours are more different from each other with re-
gard to DNA methylation patterns. However, the small
cohort size limited the conclusions that can be drawn.
The overlap of results between gene expression and copy
number data was surprisingly high since gene expression
is more unstable than DNA alterations. Gene expression-
based analyses defined all IS cases as clonal indicating that
gene expression patterns are very similar for tumour cells
arising in the same breast at the same time, possibly due
to their adjacent microenvironment.
Hierarchical clustering has been used, among other

methods, in several studies to define clonality [15, 47,
49]. Clustering is designed as an unsupervised classifica-
tion tool to discover underlying structures of a data set
under the assumption that the number of clusters and
their members are unknown. The disadvantage of clus-
tering is that clonality depends on the relationship be-
tween individual tumours and the linkage between
tumour clusters. Using Euclidean distance with single
linkage is the only way to circumvent these disadvan-
tages [37]. The results from the SI and hierarchical clus-
tering analyses exhibited a strong overlap in their
classification. Calculation of Cohen’s kappa showed the
highest agreement of the different analyses for the SI
and the clustering. Thus, the SI represented the most
suitable approach in defining clonality since it is a spe-
cialised technique specifically developed for this purpose
and provides easy interpretation.
In the DNA methylation cohort, clustering of the in-

tensity values classified 7/8 tumour pairs as clonal and
therefore did not provide a precise segregation between
clonally related tumours and independent tumours. The
aCGH, DNA methylation intensity and LRR data should
biologically refer to the same phenomenon (CNAs) and
consequently show the same tendencies for different

genomic loci. Therefore, it was unexpected that the re-
sults of the clustering and shared segment analysis for
those data sets did not show stronger concordance. Fur-
thermore, it was anticipated that the results from the
clustering and the distance measure were more in agree-
ment since the first step of clustering is the Euclidean
distance. In most cases, the distance measure seemed to
be a stricter method than the SI and clustering.
In comparison with genomic variants, mutation analyses

based on exonic variants or gene panels represent a subset
of the full picture. The different tendencies between the
methods represent a drawback for potential applications
of sequencing panels in the clinic. The fusion transcript
analysis was the only method that did not show any over-
laps between patients. Moreover, unspliced fusion tran-
scripts provide the transcribed level of CNAs, which
highlights the functional consequences of CNAs and
makes them an important tool to assess tumour clonality.
Our RNA-seq-based mutation approach had several limi-
tations starting with the lack of matched normal samples
to exclude germline mutations and normal DNA nucleo-
tide variations. However, common genetic variants found
in the human population were removed. Furthermore, our
approach did not account for the frequency of mutations
in breast cancer since rare mutations give much stronger
evidence for clonality than common mutations [22]. In
the frequency-based approach of the “Clonality” package,
a further limitation was that RNA-seq data was compared
with whole exome sequencing data from TCGA. In
addition, the RNA-seq cohort was too small to perform
meaningful statistics regarding the 95th percentile, which
is a general limitation of using permutation-based ap-
proaches. Therefore, the results from this cohort have to
be viewed with caution and in context to the other results.
Tumours from patient IS10, for example were clonal re-
garding all other analyses except the RNA-seq and SNP
genotyping array.
Whole genome sequencing (WGS) is the more appro-

priate method to evaluate mutations in comparison with
RNA-seq, which does not give information on untran-
scribed DNA sequences. Hence, the lack of common
mutations cannot be considered as a guarantee that
tumour pairs are independent. However, intratumour
heterogeneity complicates clonality analyses due to bio-
logical differences in different parts of a tumour and
subclone evolution. In aCGH, contamination with nor-
mal cells could diminish the intensity of detected CNAs
and small cell populations might not be detected. How-
ever, by using only samples that showed a tumour cell
content of at least 70%, we ruled out that a lack of clonal
relatedness could be due to a lack of tumour cells.
Few studies based on molecular approaches have been

conducted to define clonality in multiple breast tumours
and there is no consensus on which type of data and
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analysis method provides the most stable definition of
clonality. A direct comparison of these studies to the
findings presented here might, however, not be justified
due to differences in the study set-up, methods and sta-
tistics. In a study on a contralateral cohort using
low-coverage WGS, Alkner et al. demonstrated clonal
relatedness in 10% (1/10) of the patients [19], which was
lower than the clonal relatedness of bilateral tumours in
our study (29%, 5/17 patients). Klevebring et al. found
12% (3/25) of their BM cohort to be clonally related
using whole exome sequencing (WES) [18], which was
also lower than the clonal relatedness of BM tumours in
our study (22%, 2/9 patients). Desmedt et al. studied IS
tumours and defined 67% (24/36) of the patients as
clonal using a targeted mutation screening and 100% (8/
8) of the patients as clonal using low-coverage WGS
[50]. Our IS cohort showed clonality in 64% (7/11) of
the patients, which is surprisingly closer to the muta-
tional approach than the copy number-based approach.
Our report is the first, to our knowledge, to compare
different approaches (type of molecular data and statis-
tical method) and clinical groups (BM, BS, IM, and IS)
between each other.

Conclusions
There are many studies published on tumour clonality
using different types of data and statistical methods.
Most studies defined their own methods and
cohort-specific cut-offs. Currently, there is no consensus
about which type of data and especially which statistical
analysis is the most suitable and there are surprisingly
few studies that compare and evaluate the feasibility of
these different approaches. Nonetheless, extremely simi-
lar or different tumour pairs (BM7, BS7, IM3, IS4, and
IS5) showed consistent results regardless of the statis-
tical analysis or biological data used, but clinic guidelines
need to be defined with exact thresholds in order to
standardise clonality testing in a routine diagnostic set-
ting. In metachronous cancer, clonality between the first
and second tumour may indicate an insufficient effect of
the treatment for the first tumour and the patient could
benefit from a change in treatment. An independent
new primary tumour would indicate a more favourable
prognosis than a recurrence. Hence, the discrimination
between a clonal and independent origin of the second
tumour is of high importance for the patient. In our
study, the distance measure proved to be the most con-
servative method for defining clonality and the shared
segment analysis the most liberal. Gene expression data
classified all ipsilateral-synchronous cases as clonal,
demonstrating that gene expression strongly depends on
the nearby tumour microenvironment. The SI using
aCGH data was found to be the most suitable method to
classify tumour clonality, as it had the highest concordance

with all results and can be easily integrated into clinic rou-
tine using FFPE samples to obtain copy number data. But
most importantly, the definition of tumour clonality based
on the current clinicopathological markers needs to be re-
vised due to the limited intersects between current clinical
guidelines and the underlying biology of tumour clonality.
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