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Abstract

Background: Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but
much of its genetic variation remains unexplained.

Methods: We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort

(n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense
volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index,
menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive
contributions from single-nucleotide polymorphisms (SNP-based heritability [h%se]) in 4948 participants of the cohort.

Results: In total, three novel MD loci were identified (at P < 5 x 10~ ): one for percent dense volume (HABP2) and two
for the absolute dense volume (INHBB, LINCO1483). INHBB is an established locus for ER-negative breast cancer, and
HABP2 and LINCO1483 represent putative new breast cancer susceptibility loci, because both loci were associated with

same cohort were 046, 0.72, and 041, respectively.

breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects
(P < 0.05). hzsz (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07),
and 0.25 (0.07), respectively. Corresponding ratios of h’p to previously observed narrow-sense h? estimates in the

Conclusions: These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD
to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is
explained by common genetic variation with h’s\e/h? ratios varying between dense and nondense MD components.
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Background

Mammographic density (MD) refers to the amount of
fibroglandular dense and fatty nondense tissues in the
breast, which appear white and black, respectively, on an
X-ray mammogram. Women with high MD (i.e., a high
amount of fibroglandular dense tissue) are at four to
sixfold increased risk of developing breast cancer com-
pared with women having nondense or fatty breasts [1].
Despite being an important determinant of breast cancer
risk, the biological mechanisms determining tumor de-
velopment in women with highly dense breasts are not
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well understood. Understanding the genetic basis of MD
and how its associated loci are related to breast cancer
risk may shed light on the processes that are responsible
for the transformation of mammographic dense tissue
into tumor tissue. Moreover, as a strong intermediate
phenotype for breast cancer [2], genetic association
studies of MD have the potential to identify new breast
cancer susceptibility loci.

Family-based studies have estimated that approxi-
mately 60-70% of the variance in MD is explained by
additive genetic effects, which is considerably higher
than the narrow-sense heritability estimate reported for
breast cancer (4* = 30-40%). To date, genome-wide
association studies (GWAS) [3-7] have identified MD-
associated single-nucleotide polymorphisms (SNPs) at
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13 loci (1q12.21, AREG, PRDM6, TAB2, CCDCI170/
ESR1, ESRI1, 8pl1.23, ZNF365, LSP1, IGFI, 12q24,
TMEM184B, and SGSM3/MKLI) across the genome,
most of which have also been associated with breast
cancer. However, additive effects of these genome-
wide significant SNPs explain only a small fraction of
the total MD variance (<5%). This discrepancy in
explained variance or “missing heritability” has been
attributed to various factors, including the presence
of large numbers of common variants with small ef-
fects, rare variants with large effects not tagged by
common SNPs on genotyping arrays and possible
inflation of narrow-sense /> estimates if family
resemblance is influenced by nonadditive effects,
shared environmental effects, and/or gene-environment
interactions. Although the exact contribution of each
of these possible explanations is difficult to determine,
the contribution of common genetic variation to MD
variance (SNP-based heritability or [#’syp]) can be
assessed rather easily in genome-wide association data
and can provide insights into the heritability fraction
that remains to be identified in future larger-scale
GWAS.

In the present study, we conducted a large-scale
genetic association analysis of volumetric MD to
identify novel MD loci. We further sought to unravel
the genetic basis of MD through estimating the pro-
portion of MD variance attributable to common
SNPs. Previous GWAS of MD have relied mainly on
area-based or 2D MD measures derived from film
mammograms using labor-intensive semiautomated
methods [8]. For this analysis, we used volumetric
MD measures derived from digital mammograms
using a fully automated method [9].

Methods

Study design and participants

A genetic association meta-analysis was conducted
within the Karolinska Mammography Project for Risk
Prediction of. Breast Cancer (Karma), a screening-based
cohort of women attending one of four mammography
units in the Swedish national screening program be-
tween 2011 and 2013 [10]. Participants responded to a
web-based questionnaire, donated blood, and gave per-
mission for storage of raw full-field digital mammo-
grams. Genotyping data passing quality control metrics
were available for two subcohorts of Karma participants
with MD measurements, including 5827 women geno-
typed with the OncoArray and 4021 women genotyped
with the Infinium iSelect genotyping array (Illumina, San
Diego, CA, USA) of the Collaborative Oncological
Gene-environment Study (iCOGS) (see details below).
All women were free of cancer at the time of blood
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sampling and had no history of breast enlargement, re-
duction, or surgery.

Volumetric MD assessment

MD in Karma was estimated from the mediolateral ob-
lique view of baseline screening mammograms using
Volpara™ version 1.5.0 (Matakina, Wellington, New
Zealand), which is a fully automated method for volu-
metric MD estimation approved by the U.S. Food and
Drug Administration. Volpara MD measures show good
agreement with breast magnetic resonance imaging data
[9] and have been validated as being predictive of breast
cancer risk [11, 12]. Technical details of the Volpara
software have been described in detail elsewhere [9]. In
brief, the algorithm computes the thickness of dense
tissue at each pixel using the X-ray attenuation of an
entirely fatty region as an internal reference. The
absolute dense volume (cm?) is measured by integrating
the dense thickness at each pixel over the whole
mammogram, and the total breast volume (cm®) is
derived by multiplying the breast area by the recorded
breast thickness, with an appropriate correction for the
breast edge. From these measures, the absolute
nondense volume (cm?®) and the percentage of the breast
covered by dense tissue (%) can be obtained. The mean
volumetric measurement of the left and right breast was
taken for all analyses. Distributions of the three MD
measures (percent dense volume, absolute dense
volume, and absolute nondense volume) in the
Karma-OncoArray and Karma-iCOGS genotyping co-
horts are presented in Additional file 1: Figure S1.

Covariates

The following covariates were extracted from the Karma
web-based questionnaire administered at baseline: age at
study entry, menstrual and reproductive factors, and
body mass index (BMI) as estimated from self-reported
height and weight. Menopausal status was defined ac-
cording to reported menstruation status, previous oo-
phorectomy, and age. Women were considered
postmenopausal if they had not menstruated during the
past year, had a history of oophorectomy, or were above
the age of 55 years.

Genotyping, quality control, and imputation

Whole-blood samples were genotyped using the OncoAr-
ray (see https://support.illumina.com/downloads/infini
um-oncoarray-500k-v1-0-product-files.html for detailed
information on array design), which covers more than
500,000 variants, or the iCOGS array (http://ccge.
medschl.cam.ac.uk/research/consortia/icogs/), with over
200,000 variants. Both arrays use custom bead chips with
markers of interest for breast and other cancers, fine-
mapping of known susceptibility loci, and markers
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associated with quantitative phenotypes that correlate
with common cancers. The OncoArray is the successor of
iCOGS and therefore denser, including additional variants
of sequencing studies and a more informative backbone of
approximately 260,000 SNPs that provides genome-wide
coverage of most common variants. More details on both
genotyping arrays can be found elsewhere [13, 14].

Samples were excluded from analysis for any of the
following reasons: gender discordance according to array
data, chromosomal anomalies (XXY or XO), extremely
low or high heterozygosity (4.89 SD from the mean for
the ethnicity), discordant duplicate pairs, first-degree rel-
atives, and low call rates (see Additional file 1: Table S1
for number of individuals excluded per criterion). Stand-
ard SNP quality control was performed in PLINK ver-
sion 1.9 [15], and SNPs with minor allele frequency
(MAF) <0.01 or deviation from Hardy-Weinberg equi-
librium at P < 1 x 10~ were excluded. To increase
resolution and coverage, nongenotyped SNPs were
imputed using the 1000 Genomes Project March 2012
release as the reference [16]. Data were imputed in a
two-stage procedure using SHAPEIT to derive phased
genotypes and IMPUTE version 2 to perform the imput-
ation on the phased data [17]. Postimputation quality
control was based on the IMPUTE info score, and SNPs
with a score < 0.80 or MAF < 0.01 were excluded, result-
ing in a total of 8.5 million SNPs for analyses.

SNP association analyses

All three mammographic phenotypes (percent dense vol-
ume, absolute dense volume, and absolute nondense
volume) were log-transformed to approximate the normal
distribution (Additional file 1: Figure S2). SNP association
analyses were performed in each genotyping cohort using
linear regression and assuming an additive genetic model.
Imputed SNPs were analyzed using a score test that em-
ploys allele dosages instead of hard genotype calls [18].
Population stratification was assessed using principal
component analysis (PCA) in PLINK version 1.9 [15], and
analyses were adjusted for age (years), BMI (kg/m?),
menopausal status (postmenopausal vs. premenopausal),
and six cohort-specific PCA scores to account for popula-
tion substructure. f-Coefficients of the two genotyping co-
horts were meta-analyzed using a fixed effects model as
implemented in METAL [19] with the Cochran’s Q statis-
tic used as a test for between-study heterogeneity.
Regional association plots of identified variants were gen-
erated using LocusZoom [20] with the 400-kb region
centered on the lead SNP.

Functional annotation and breast cancer association
analyses of newly identified variants

We used several web tools for the functional annotation
of the lead SNPs and their proxies (” > 0.80). We
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checked for potential regulatory functions using the
HaploReg [21] and Regulome [22] databases, based on
Encyclopedia of DNA Elements data [23] for the human
mammary epithelial cell (HMEC) and mammary tumor
cell (MCF-7) lines. We further searched the publicly
available Genotype-Tissue Expression Project database
(http://www.gtexportal.org/) for evidence of cis expres-
sion quantitative trait loci (eQTL) at each locus in mam-
mary tissue samples (n = 183).

Associations between newly identified MD variants
and breast cancer risk (overall and by estrogen receptor
[ER] status) were checked using data from the Breast
Cancer Association Consortium (BCAC), including
122,977 breast cancer cases and 105,974 control subjects
(http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/
gwas-icogs-and-oncoarray-summary-results/) [14]. Infor-
mation on ER status was available for 90,969 cases, of
which 69,501 were ER-positive and 21,468 were ER-ne-
gative. We also verified associations with MD loci identi-
fied by previous GWAS [3-7], with the threshold of
statistical significance set to P = 0.05/13 (number of loci)
=3.85x 10>

SNP-based heritability analyses
The heritability of a trait is defined as the proportion of
phenotypic variance explained by genetic factors, includ-
ing additive genetic effects, dominant effects, and epista-
sis. Narrow-sense heritability () refers to the variance
component corresponding to additive genetic effects and
can be estimated by exploring phenotypic similarities
between relatives in family or twin studies.
Genome-wide complex trait analysis (GCTA) software
[24, 25] was used to estimate the proportion of variance
explained by additive effects of all SNPs. The interpret-
ation of /’s\p estimated with GCTA is different from
the /4> obtained from traditional family-based studies,
because the latter captures variance due to additive ef-
fects of all causal variants in the genome (including rare
variants) and can be inflated if family resemblance is in-
fluenced by nonadditive genetic effects (dominance and
epistasis or gene-gene interactions), shared environmen-
tal effects, and/or gene-environment interactions. Our
GCTA analysis was conducted in the Karma-OncoArray
cohort only, because the iCOGS array has insufficient
coverage to obtain reliable genome-wide estimations of
SNP-based heritability. First, pairwise genetic relation-
ships between all individuals were calculated, followed
by estimation of the additive genetic variance explained
by all SNPs using restricted maximum likelihood ana-
lysis. We excluded one individual per pair whose esti-
mated coefficient of relatedness was >0.025 (which
corresponds to third- or fourth-degree cousins), in order
to prevent confounding by possible shared environmen-
tal effects and effects of causal variants that are not
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tagged by the SNPs. This resulted in a study population
of 4948 women for which #*sp could be estimated for
percent, absolute dense, and nondense MD. The
covariates included were the same as those for the
individual SNP analyses, and estimates of SNP-based
heritabilities were compared with corresponding />
estimates previously reported in a study of siblings in
Karma [26].

Results

Table 1 summarizes the characteristics of the Karma-
OncoArray and Karma-iCOGS genotyping cohorts.
Karma-OncoArray women were older and more often
postmenopausal than women of the Karma-iCOGS co-
hort. Because of the older age distribution, mean MD
levels were lower in the Karma-OncoArray cohort (see
also Additional file 1: Figure S1 for the MD distributions
per genotyping cohort). No major differences in BMI or
family history of breast cancer were observed between
the two cohorts.

Quantile-quantile plots of the genome-wide meta-
analysis results for each MD measure are presented in
Additional file 1: Figure S3. Overall, genomic inflation fac-
tors showed little or no evidence for inflation (A for
percent dense volume, absolute dense volume, and abso-
lute nondense volume were 1.02, 1.03, and 1.02, respect-
ively). Additional file 1: Figure S4 shows the Manhattan
plots displaying the log;,-transformed P values for each
SNP. In total, we identified eight independent loci for any
MD measure (ZNF365, TAB2, HABP2, INHBB, AREG,
LINC01483, MKL1, and 8pl11.23) at P < 5 x 10°°
(Additional file 1: Table S2), three of which were novel
(HABP2, INHBB, and LINC01483) and the remaining five

Table 1 Characteristics of the Karma study population

Karma-OncoArray Karma-iCOGS
(n =5827) (n = 4021)
Age, years, mean (SD) 60.2 (9.2) 53.6 (94)
Body mass index, kg/m?, 255 (4.2) 253 (4.2)
mean (SD)
Menopausal status, % (n)
Premenopausal 228 (1327) 49.0 (1969)
Postmenopausal 77.2 (4500) 51.0 (2052)
Percent dense 6.7 (52) 84 (6.5)
volume (%), median (IQR)
Dense volume, cm?, 534 (31.1) 60.3 (36.9)
median (IQR)
Nondense volume, cm?, 744 (616) 676 (581)
median (IQR)
Family history of 13.7 (769) 12.0 (482)

breast cancer, % (n)

Karma Karolinska Mammography Project for Risk Prediction of. Breast Cancer
Descriptive statistics of the Karma-OncoArray and Karma-iCOGS genotyping cohorts
Abbreviations: SD standard deviation, /QR interquartile range
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(ZNF365, TAB2, AREG, 8pl1.23, and MKLI) of which
were previously reported to be associated with MD [3, 5,
7, 27] in the same directions as observed in the present
analysis. We further replicated five of eight MD loci
identified by previous GWAS (1q12.21, ESR1, CCDC170/
ESRI, IGFI, and SGSM3/MKLI) beyond the loci reaching
genome-wide significance in pooled analysis (Additional
file 1: Table S3). The association between PRDM6 and
percent dense volume was marginally significant (P < 0.
05), with direction of effect being consistent with that re-
ported for percent dense area [5]. No significant associa-
tions of TMEM184B and LSPI with volumetric MD were
observed. Altogether, the newly identified and established
MD loci explained only small fractions of the total vari-
ance in percent dense (1.6%), absolute dense (2.8%), and
absolute nondense (0.5%) volume.

The lead SNPs at the three newly identified MD loci
(HABP2, INHBB, and LINC0I483) are summarized in
Table 2 with corresponding regional association plots in
Fig. 1. SNP rs2089176 (10q25.3) associated with percent
dense volume lies 120 kb upstream of its closest gene,
HABP2. The two index SNPs associated with absolute
dense volume span noncoding parts of the genome. SNP
rs12468790 at 2ql4.2 is located 11 kb upstream of the
INHBB gene (Fig. 1) and rs9302903 at chromosome
17q24.3 falls within a long intergenic noncoding RNA
gene (long intergenic non-protein coding RNA 1483
[LINC01483]) in a region flanking the mitogen-activated
protein kinase 6 (MAP2K6) and the potassium voltage-
gated channel subfamily J, member 16 (KCNJ16) genes. Of
note, a variant (rs4849887) downstream of the INHBB
gene but not in linkage disequilibrium (LD) with
rs12468790 is an established breast cancer susceptibility
variant [28, 29]. The association of rs12468790 with abso-
lute dense volume remained significant in conditional ana-
lysis adjusting for rs4849887 (P = 1.5 x 10™ %), supporting
the presence of two independent signals at this locus.

For all newly identified loci, no predicted functional
eQTL consequences were found in breast mammary tis-
sue, but several variants in strong LD with rs2089176
(HABP2) mapped to a region defined by DNase and en-
hancer histone marks in HMECs and MCF-7 cells. In
particular, one variant (rs1472751) was identified in a re-
gion binding CCCTC-binding factor (CTCF) in HMECs
and MCEF-7 cells, as well as GATA3 in MCEF-7 cells.
CTCF is a transcription factor that regulates a wide
range of genes involved in growth, proliferation, differ-
entiation, and apoptosis; GATA3 is the most abundant
transcription factor in luminal epithelial cells and plays a
key role in normal development of the mammary gland.
Two variants in LD with rs9302903 (LINC01483) also
mapped to DNase and enhancer histone marks in
HMECs. No evidence of regulatory function was found
for rs12468790 (INHBB) (Additional file 1: Table S4).
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Fig. 1 Regional association plots for newly identified mammographic density loci. Regional plots of single-nucleotide polymorphisms (SNPs) associated with
volumetric mammographic density measures. Lead SNPs are shown in purple: A = percent dense volume (rs2089176); B = absolute dense volume
(rs12468790); C = absolute dense volume (rs9302903). Circles denote imputed SNPs; squares denote genotyped SNPs. Colors indicate the extent of linkage
disequilibrium. Genetic recombination rates are estimated using 1000 Genomes EUR sample and are presented as the light blue line. Physical positions are
based on NCBI Genome Reference Consortium Human Build 37 (GRCh37). Plots were generated using LocusZoom [20]. LOC101928122 stands for LINCO1483
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Associations of the three MD loci with breast cancer
risk are summarized in Table 3. rs2089176 (HABP2) and
rs9302903 (LINC01483) were associated with breast can-
cer risk in BCAC meta-analysis data (rs2089176 OR
[95% CI] per minor allele increase = 0.98 [0.97-0.99], P
= 0.01; rs9302903 OR [95% CI] per minor allele increase
= 096 [0.94-0.99], P = 1.2 x 107%) in a direction
consistent with that observed in the pooled MD analysis
for percent dense volume [rs2089176 B [SE] per minor
allele increase = -0.07 (0.01)] and absolute dense
volume [rs9302903: B [SE] per minor allele increase = —
0.14 (0.02)]. rs12468790 (INHBB) was also associated
with breast cancer but in a direction opposite to its
effect on MD. Each minor allele increase at rs12468790
resulted in a larger absolute dense volume ( [SE] = - 0.
03 [0.01]) but a lower odds of breast cancer (OR [95%
CI] = 097 [0.96-0.98], P = 48 x 10 °). Stratified
analyses by breast cancer subtype revealed that the
association of rs12468790 (INHBB) with breast cancer
was stronger for ER-negative (OR [95% CI] per minor
allele increase = 0.93 [0.91-0.95], P = 1.5 x 10~ °) than

ER-positive tumors (OR [95% CI] = 0.98 [0.96-0.99],
P =38 x 107°).

Finally, we estimated the MD variance attributable to
common genetic variants in the Karma-OncoArray cohort.
SNP-based heritability (hsnp) estimates for percent dense,
absolute dense, and absolute nonvolume were 0.29 (SE =
0.07), 0.31 (SE = 0.07), and 0.25 (SE = 0.07) respectively,
with evidence of a moderate genetic overlap between the
absolute dense and nondense volume (r, = 0.45, SE = 0.
14). Given the narrow-sense 4> estimates observed in
previous sibling analyses in Karma (#* = 0.63 [SE = 0.06],
0.43 [SE = 0.06], and 0.61 [SE = 0.06] for percent, absolute
dense, and absolute nondense, volume, respectively [26]),
the ratio of /#g\p to these narrow-sense /* estimates was
substantially higher for the absolute dense volume (0.72)
than for percent dense (0.46) and absolute nondense (0.
41) volume.

Discussion
In this study, we identified three novel MD loci at
genome-wide significance (percent dense volume
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[HABP2] and absolute dense volume [INHBB,
LINC01483]), of which two (HABP2, LINC01483) repre-
sent putative novel breast cancer susceptibility variants.
We further demonstrate that at least 25% of the variance
in volumetric MD is explained by common genetic vari-
ants, and that the ratio of SNP-based to narrow-sense her-
itability differs between the absolute dense and nondense
volume.

All identified MD loci map to noncoding areas of
the genome with nearby genes that have been linked
to breast cancer etiology and/or mammary develop-
ment. SNP rs2089176 upstream of the HABP2 gene
at 10q25.3 spans a region with CTCF and GATA3
transcription factor binding sites. The HABP2 gene
encodes for an extracellular serine protease that, upon
binding to its ligand hyaluronic acid (HA), activates
degradation of the extracellular matrix, including dis-
ruption of the endothelium, promoting tumor angio-
genesis and cancer metastasis. In patients with breast
cancer, a high HA content in malignant epithelial and
stromal cells [30, 31] and elevated circulating HA
levels [32, 33] have been associated with poor tumor
differentiation, unfavorable prognostic features, and a
reduction in MD. The protein encoded by INHBB, a
subunit of both inhibin and activin (two glycoproteins
belonging to the transforming growth factor-p super-
family), is critical in normal mammary development
because its loss is accompanied by retarded ductal
elongation and alveolar morphogenesis as well as fail-
ure of lactation [34]. Variants upstream of INHBB
have previously been associated with bra cup size in a
large European cohort of 16,000 women [35] but not
with mammographic dense tissue specifically. Inter-
pretation of the MD locus at 17q24.3 (LINC01483) is
more speculative, because long intergenic noncoding
RNAs are not well-characterized. Functional annota-
tion revealed several correlated variants mapping to
enhancer histone marks in HMECs, which may indi-
cate a role of this locus in the expression of nearby
genes (MAP2K6 and KCNJ16), of which MAP2K6 is
known to play a role in the malignant transformation
of breast epithelial cells [36, 37].

Finding genetic variants associated with both MD and
breast cancer increases the understanding of biological
pathways shared by both traits. Moreover, discovery of
new MD loci in genome-wide approaches may provide
information about putative novel susceptibility loci for
breast cancer and/or its subtypes. Of the newly identified
loci, two (HABP2 and LINC01483) showed associations
with MD that are consistent with the MD-breast cancer
risk association, suggesting that part of their effect on
breast cancer susceptibility is mediated through a direc-
tionally consistent change in MD. The association of
rs12468790 (INHBB) with the absolute dense volume,
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however, was not consistent with the MD-breast cancer
risk association. Although the exact nature of this con-
flicting direction of effect is unknown, it may represent
potential mediation by proxies closely related to MD
that exert differential effects on breast cancer risk.
INHBB, for instance, is highly expressed in adipose tis-
sue [38] and has previously been linked to total breast
size, a strong correlate of the absolute nondense volume
[35, 39]. Albeit not reaching statistical significance, the
INHBB variant was weakly associated with the absolute
nondense volume in our study (rs12468790: B [SE] per
minor allele increase = 0.03 [0.01], P = 0.01), and recent
data indicate that dense and nondense adipose tissues
are associated with breast cancer in opposite directions
[40, 41]. The stronger association of this variant with
ER-negative than ER-positive breast cancers may also
point to alternative mechanisms linking INHBB to breast
cancer than a causal path acting through mammographic
dense tissue.

Apart from identifying novel MD loci, the present
study replicates many loci identified by previous GWAS
of area-based MD measures, except for TMEMI184B,
LSP1I, 8p11.23, and 12q24 [4, 5]. Because our study con-
cerns the volume of dense tissue in the breast rather
than its projection, some inconsistency with previous
GWAS is anticipated because volumetric and area-based
measures reflect slightly different aspects of MD [7, 11,
26, 42]. Area-based and volumetric measures show good
levels of agreement for percent MD (r = 0.9), but less so
for absolute MD (r = 0.5) [11, 12]. Nevertheless, both
percent and absolute MD measures show equivalent
associations with breast cancer risk [11, 43, 44], re-
gardless of measurement type. Lack of association in
the Karma-iCOGS cohort, which included larger
numbers of premenopausal women, may also reflect
differential SNP effects over the life course. Previous
GWAS were based largely on postmenopausal women,
and some of the loci identified by these efforts and in
the Karma-OncoArray cohort may not generalize to
younger women. Differences in study design may fur-
ther account for some of the differences observed. In
contrast to previous GWAS, our study population did
not include breast cancer cases with prediagnostic
MD measurements. This reduces the likelihood of
spurious associations due to confounding by breast
cancer but may also have resulted in limited power to
identify MD loci because of less extreme MD vari-
ation in cancer-free women.

Altogether, the newly identified and established MD
loci explained only small fractions of the total variance
in volumetric MD. More information about the genetic
architecture of MD can be obtained by comparing
SNP-based (h’snp) to family-based (4?) heritability
estimates, with the missing heritability gap representing
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the contribution of rarer genetic variants (to be
discovered by whole-genome sequencing), gene-gene or
gene-environment interactions, and/or possible inflation
of family-based estimates when shared environmental ef-
fects are not specified in the model, such as is the case
in sibling-based designs for /> estimation. Like other
complex traits, the H2qp estimates for percent dense
and absolute nondense volume were approximately half
of the h* estimates reported in our sibling study [26]
(ratio Hqp to K% = 046 and 0.41, respectively).
Interestingly, the heritability gap was much smaller for
the absolute dense volume (ratio #’snp to 4> = 0.76).
Because percent dense and absolute nondense volume
are highly correlated with measures of adiposity [12, 26],
this finding may suggest that sibling-based 4* estimates
of percent and absolute nondense volume are more
likely to be confounded by shared environmental
influences such as body fatness than sibling-based />
estimates of the absolute dense volume.

To our knowledge, this is the largest genetic associ-
ation study of volumetric MD to date. All mammograms
were derived from the same view and analyzed using
fully automated software, reducing the likelihood of ran-
dom measurement error. Genotyping data were comple-
mented with imputed variants using 1000 Genomes
Project data, resulting in high genome-wide coverage.
We further reproduced associations with several estab-
lished MD loci. Although a fully automated method such
as Volpara has clear benefits in terms of a standardized
and objective MD measurement, the underlying physics
model tends to underestimate MD in very dense breasts
[45-47]. Together with the narrower distribution of
volumetric MD compared with area-based MD, this
error could have resulted in reduced statistical power to
identify novel MD loci and potential lack of association
in the Karma-iCOGS cohort including women with
more dense breasts. Furthermore, because our study
population was restricted to cancer-free women, we
were unable to address the role of volumetric MD in the
mediation of SNP effects on breast cancer risk.

Conclusions

In summary, we report three novel MD loci at genome-
wide significance, of which HABP2 and LINC01483 may
represent putative new breast cancer susceptibility loci.
We further demonstrate that 25% of the variance in
volumetric MD is attributable to common genetic
variation and that the ratio of SNP-based to narrow-
sense heritability estimates varies between mammo-
graphic dense and nondense tissue components.
Altogether, these findings provide more insight into the
genetic basis of MD and mechanisms through which
MD influences breast cancer risk.
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