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Abstract

Background: Post-traumatic cerebral infarction (PTCI) is common after traumatic brain injury (TBI). It is unclear what
the occurrence of a PTCI is, how it impacts the long-term outcome, and whether it adds incremental prognostic
value to established outcome predictors.

Methods: This was a prospective multicenter cohort study of moderate and severe TBI patients. The primary objective
was to evaluate if PTCI was an independent risk factor for the 6-month outcome assessed with the Glasgow Outcome
Scale (GOS). We also assessed the PTCI occurrence and if it adds incremental value to the International Mission for
Prognosis and Clinical Trial design in TBI (IMPACT) core and extended models.

Results: We enrolled 143 patients, of whom 47 (32.9%) developed a PTCI. In the multiple ordered logistic regression, PTCI
was retained in both the core and extended IMPACT models as an independent predictor of the GOS. The predictive
performances increased significantly when PTCI was added to the IMPACT core model (AUC = 0.73, 95% C.I. 0.66–0.82;
increased to AUC = 0.79, 95% CI 0.71–0.83, p = 0.0007) and extended model (AUC = 0.74, 95% C.I. 0.65–0.81 increased to
AUC = 0.80, 95% C.I. 0.69–0.85; p = 0.00008). Patients with PTCI showed higher ICU mortality and 6-month mortality,
whereas hospital mortality did not differ between the two groups.

Conclusions: PTCI is a common complication in patients suffering from a moderate or severe TBI and is an independent
risk factor for long-term disability. The addition of PTCI to the IMPACT core and extended predictive models significantly
increased their performance in predicting the GOS.

Trial registration: The present study was registered in ClinicalTrial.gov with the ID number NCT02430324.
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Background
A traumatic brain injury (TBI) is a leading cause of mor-
tality and morbidity mostly among young people; al-
though, its incidence is increasing in older people,
particularly in high-income countries [1]. The outcome of
a TBI depends on several factors, including the patients’
characteristics, disease severity at admission, and compli-
cations arising during its clinical course. Multivariable
prognostic models such as the International Mission for
Prognosis and Clinical Trial design in TBI (IMPACT)
have shown that most prognostic information is contained
in a core set of three predictors: age, the Glasgow Coma
Scale (GCS) motor score (GCSm), and pupillary reactivity
[2]. IMPACT also provided an extended prognostic model,
which adds the brain computed tomography (CT) classifi-
cation and secondary cerebral insults, such as hypoxia and
hypotension, to the core variables. Both core and extended
IMPACT models focus on identifying prognostic factors
at baseline and do not include predictors from the inten-
sive care unit (ICU) stay [3]. Posttraumatic cerebral infarc-
tion (PTCI) is a common complication of a TBI in the
acute stage of the disease. A PTCI is frequent in patients
who die after a moderate or severe TBI, with a reported
incidence in post-mortem studies up to 90%. The ante-
mortem occurrence rate of a PTCI has been assessed in
six single-center studies, of which only one was prospect-
ive, and the rate varied between 1.9% and 20.3% [4–9].
None of these studies investigated whether PTCI adds in-
cremental value to current prognostic models. Therefore,
we planned a multicenter, prospective observational co-
hort study in patients with a moderate or severe TBI to in-
vestigate: (1) the impact of PTCI on the 6-month outcome
evaluated by the Glasgow Outcome Scale (GOS), (2) if the
PTCI adds incremental value beyond that provided by the
IMPACT prediction models on the GOS at 6 months, and
(3) the occurrence of PTCI in the study population.

Methods
In the present prospective observational cohort study
(ClinicalTrials.gov Identifier: NCT02430324), we in-
cluded all consecutive adult patients aged ≥ 16 years with
a moderate (post-resuscitation GCS 12 to 9) or severe
(post-resuscitation GCS 8 to 3) TBI who were admitted
to the ICUs of nine Italian trauma centers from December
2009 to December 2012. Exclusion criteria were a history
of cerebral ischemia, CT evidence of brain ischemia at
admission, absence of invasive intracranial pressure (ICP)
monitoring, and patients with a GCS score of 3 and unre-
active pupils.

Patient management
All patients were intubated, mechanically ventilated,
underwent ICP and arterial blood pressure monitoring
and ECG and were monitored for peripheral oxygen

saturation and end-tidal CO2. Management was in ac-
cordance with international recommendations aimed at
aggressively treating intracranial hypertension and rap-
idly correcting secondary cerebral insults [10].

Ethics approval
The study was conducted in accordance with the Declar-
ation of Helsinki and was approved by the local Ethics
Committees of each participating center. Patients’ in-
formed consent was waived due to the lack of definition
of a legal representative of temporarily incapacitated
adult patients in the Italian legislation [11]. The informed
consent was obtained from the surviving patients as soon
as they regained their mental competency. Family mem-
bers received detailed information on the study scope and
protocol. We followed the STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology)
guidelines for reporting cohort studies [12].

Data collection
Data on age, sex, GCS, the ICU and hospital length of stay
(LOS), days of mechanical ventilation, type of surgery,
major cardio-circulatory events (systemic hypotension,
life-threatening cardiac arrhythmias, cardiac arrest), brain
CT scans (see below), and GOS were prospectively col-
lected. Several of these variables are risk factors for PTCI
development, and their association with PTCI risk in this
patient population will be investigated and reported in a
separate article.

Imaging
Posttraumatic brain CT findings were classified accord-
ing to Marshall et al. [13, 14]. Brain CT scans were per-
formed at hospital admission and then repeated within
24 h or within 12 h if the first CT scan had been ob-
tained within 3 h after injury, in case of neurological de-
terioration or an increase in ICP [15–17]. A third CT
scan might be scheduled on the 3rd day post-trauma
[15]. Follow-up brain CTs were performed at the discre-
tion of the attending physicians of each participating
center.
The final diagnosis of PTCI with identification of the

time of onset and the type of infarction (territorial cere-
bral infarction, watershed cerebral infarction, and non-
territorial, non-watershed cerebral infarction, see below),
as well as the presence of cerebral herniation, CT signs
of intracranial hypertension, Marshall CT score, pres-
ence of subarachnoid hemorrhage (SAH) or epidural
hematoma (EDH), and the midline shift was performed
after central revision of the entire brain CT data set of
all patients enrolled. Two senior neuro-radiologists (LP,
MF) of the University of Brescia, who were blinded to
each other’s diagnosis and to the patient’s outcome,
assessed the brain CT based on DICOM (Digital
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Imaging and Communications in Medicine) scans of
each patient in duplicate. Each neuroradiologist inde-
pendently performed a “one shot” assessment of the
entire neuroradiological history of each patient, with an
immediate comparison of any questionable findings in a
given CT scan to several previous and following exams,
thus making the final diagnosis of cerebral infarction
much more reliable. In case of discordance, an agree-
ment was reached by a third neuro-radiologist (RG).
Only cerebral infarction that developed after trauma

was considered; ischemic lesions identified on the first
CT scan whose density remained unchanged during
the neuroradiologic follow-up were considered old in-
farcts and ignored. Moreover, subtle brain CT hypo-
densities of uncertain classification due to indistinct
margins and no clear mass effect at the first scan
were diagnosed as PTCI if one or more of the follow-
ing findings were present in the follow-up CT exams:
(1) an increased hypodensity in the following 24–48 h,
with progressive delineation of sharp margins; (2) a
wedge-shaped lesion with clear effacement of the
cerebral sulci when the lesion was cortical, often in a
specific vascular territory of a major cerebral artery;
(3) a progressive attenuation of the CT findings in
the subacute phase of the ischemia (the so-called
“fogging effect”). Conversely, subtle brain CT hypo-
densities suggesting PTCI in a given brain CT scan,
which (1) faded away at the 24 h CT control, or (2)
completely disappeared at longer CT follow-up, or (3)
did not follow the expected CT changes for an ische-
mic lesion, were discarded as a non-ischemic lesion.
Following the definition used in our previous study

[4], cerebral infarction was classified according to the
following criteria [18–20]: (1) territorial cerebral infarc-
tion: well demarcated hypodense lesions within a de-
fined cerebral vascular territory, involving the entire
arterial territory (complete infarct) or only part of it
(incomplete infarct); the vascular territories considered
were the anterior cerebral artery (ACA), middle cere-
bral artery (MCA), posterior cerebral artery (PCA), len-
ticulostriate arteries (LSAs), anterior choroidal arteries,
thalamo-perforating arteries (TPAs), basilar artery
(BA), anterior–inferior cerebellar artery, superior cere-
bellar artery (SCA), and posterior–inferior cerebellar
artery (PICA); (2) watershed cerebral infarction: well
demarcated hypodense lesions positioned in boundary
zones between the territories of the ACA, MCA, and
PCA (superficial or leptomeningeal border zones) or in
the terminal zones of the perforating arteries within the
deep white matter (deep or medullary border zones);
(3) non-territorial, non-watershed cerebral infarction:
single or multiple hypodense lesions, unilateral, bilateral,
or multifocal with marked borders without a precise
localization in a vascular territory.

Outcomes
The primary outcome was the GOS at 6 months (5 = good
recovery; 4 =moderate disability; 3 = severe disability; 2 =
vegetative state; 1 = death) [21]. In particular, we wanted
to evaluate if a PTCI was an independent risk factor for
the GOS and if it added incremental value in predicting
long-term outcome compared with the IMPACT predic-
tion model. The secondary outcomes were (1) the occur-
rence rate of PTCI in patients with a moderate or severe
TBI and (2) the association of PTCI with hospital and
ICU mortality, as well as the 6-month mortality. The oc-
currence rate was also calculated as the number of cases
of PTCI during the observation period divided by the total
number of patients enrolled in the study [22].

Statistical analysis
Continuous variables are presented as the mean and
standard deviation if normally distributed; while the me-
dian and interquartile range was used for non-normally
distributed continuous variables and ordinal variables.
Discrete variables are reported as the count and percent-
age. We did not have any missing data at baseline or
follow-up (GOS at 6 months). Differences between pa-
tients with and without PTCI were tested using the t-
test or Mann-Whitney U test, as appropriate, for
continuous variables (age, ICU LOS, hospital LOS, days
of mechanical ventilation), and the χ2 test for binary and
categorical variables (secondary cerebral insults, coma,
SAH or EDH, Marshall brain CT). We performed a sam-
ple size calculation for the association of PTCI with the
dichotomized GOS at 6 months (unfavorable outcome,
GOS ≤ 3). We estimated that 116 patients were needed
to obtain a power of 80% and to detect a minimum odds
ratio of 3, considering a prevalence of unfavorable out-
come in patients without PTCI of 25% at a two-sided
significance level of 0.05.
Ordered logistic regression (proportional odds logistic

regression) was used to assess whether PTCI could pre-
dict the 6-month GOS (ordinal outcome) [23] using sim-
ple regression analysis and whether PTCI remained an
independent predictor after adding the predictors from
the IMPACT models using multiple regression analysis.
In particular, we first assessed the association of the
GOS with the variables included in the IMPACT core
model (age, GCSm, and pupillary reactivity) and in the
extended model (core variables plus Marshall CT classi-
fication scale, SAH or EDH, and secondary cerebral in-
sults, in particular, hypoxia and hypotension). We then
added PTCI to each model to evaluate its independent
association with the GOS [3]. The proportionality as-
sumption was checked for each selected predictor.
To assess the incremental predictive performance of the

model when adding PTCI, we dichotomized the 6-month
GOS into “unfavorable” (GOS ≤ 3) and “favorable” (GOS 4
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and 5) outcomes, performed logistic regression analysis
for the core and extended models with and without PTCI,
and compared the area under the receiver operating char-
acteristic curve (AUC) of the models with PTCI versus
those without PTCI. The AUC varies between 0.5 (a non-
informative model) and 1.0 (a perfect predictive model).
Differences in the AUC between models were tested using
the roc.test function in R (package pROC). To internally
validate our model and to avoid over-optimism, we used a
bootstrap procedure [24] using the “auc.adjust” R func-
tion. Finally, we repeated the AUC comparison using the
AUC corrected for optimism. All statistical tests were
two-tailed, and statistical significance was defined as p <
0.05. All statistical analyses were performed using R
(3.0.3).

Results
During the study period, 487 patients with a TBI were
admitted to the 9 participating ICUs with a final 143 pa-
tients (29.3%) enrolled in the study (Fig. 1). Of these, 47
(32.9%) patients developed a PTCI. There were no differ-
ences in patients with and without PTCI in terms of age,
severity of the TBI, presence of SAH or EPH on the ad-
mission brain CT, hospital LOS, and days of mechanical
ventilation (Table 1, Table 2). The incidences of intra-
hospital hypotension and hypoxia, pupillary light reflex
abnormalities, and evacuated mass lesions (defined ac-
cording to Marshall brain CT classification) were higher
in patients developing a PTCI (Table 1). A total of 94
cerebral infarctions developed in 47 patients, 81 were
territorial (86.2%) and 8 were watershed (8.5%). Five in-
farctions could not be attributed either to territorial or
watershed types. Territorial infarctions were in the area
of the MCA (n = 17; 18.1%), ACA, (n = 18; 19.1%), PCA
(n = 21; 22.3%), LSA (n = 8; 8.5%), TPA (n = 7; 7.4%), BA
(n = 3; 3.2%), SCA (n = 3; 32%), PICA (n = 1; 1.1%), and
anterior communicating artery (AcoA) (n = 3; 3.2%).
Watershed infarctions were in the boundary zones (n =
3; 3.2%) and terminal zones (n = 5; 5.3%). The mean

(SD) onset time of a PTCI was 6.2 (11.4) days with an
early peak within 24 h (21 cases, 39.6%), a late peak be-
tween 3 and 7 days (14 cases, 26.4%), and 4 cases (7.6%)
between 24 and 48 h, Fig. 2.
After the central revision of the entire brain CT data-

set, we correctly identified 10 patients with PTCI, missed
at the initial evaluation; conversely, 7 patients initially
classified as PTCI were subsequently classified as non-
PTCI.
In the simple ordered logistic regression, the GOS was

significantly worse in patients with a PTCI than patients
without a PTCI, with a higher proportion of patients with
a severe disability and death and a lower proportion of pa-
tients with good recovery and moderate disability
(Table 2). In the multiple ordered logistic regression, a
PTCI was retained in both the core and the extended
models (Table 3a, b) as an independent predictor of the
GOS. The predictive performances of the obtained models
(Fig. 3) were good and increased significantly when PTCI
was added to the IMPACT core model (AUC= 0.73, 95%
C.I. 0.66–0.82 increased to AUC = 0.79, 95% CI 0.71–0.83;
0.0007) and the extended model (AUC= 0.74, 95% C.I.
0.65–0.81 increased to AUC = 0.80, 95% C.I. 0.69–0.85;
p = 0.00008). The results were replicated after correcting
the AUC for optimism (Fig. 4 and Table 4). Patients with
a PTCI showed higher ICU mortality (10 patients [21.3%]
vs one patient [1.0%], p < 0.0001) as well as higher 6-
month mortality (13 patients [27.7%] vs 7 patients [7.3%],
p < 0.0001); whereas hospital mortality did not differ be-
tween the two groups (Table 2).

Discussion
In this multicenter prospective cohort study, we found
that a PTCI is an independent predictor of an unfavor-
able 6-month outcome and its addition to the IMPACT
core and extended models increased their performance
in predicting the GOS. Moreover, we confirmed that
PTCI is a frequent complication occurring in more than
one-third of patients suffering severe or moderate TBI.
Most of the PTCIs were territorial, affecting one or more
cerebral artery territories, and developed early during
the ICU stay.
This is the first prospective study showing a PTCI has

an independent effect on a patient’s long-term outcome.
Previous studies were either post-mortem neuropatho-
logical investigations or ante-mortem retrospective
clinical investigations. Among the latter, the GOS was
assessed in four single-center studies at 3months [5] or 6
months [4, 9]; while in one study, the timing of the GOS
was not reported [8]. These studies showed increased
morbidity [4], increased mortality [9], increased morbidity
and mortality [8], or no difference [5] in patients with a
PTCI compared with patients without. In three of these
studies [4, 5, 9], the impact of a PTCI was assessed while

Fig. 1 Study flow chart
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Table 1 Demographic and clinical data

Variables PTCI (n = 47; 32.9%) Non-PTCI (n = 96; 67.1%) p value

Age, mean (SD) years 43.8 (17.2) 42.1 (18.4) 0.606

Sex, no. (%) males 38 (80.8%) 75 (78.1%) 0.141

Admission GCS, median (IQR) 6 (4–8) 7 (5–9) 0.704

Severe head trauma, no. (%) 37 (78.7%) 70 (72.9%) 0.452

Moderate head trauma, no. (%) 10 (21.3%) 26 (27.1%) 0.452

Secondary cerebral insults in the first 48 h, no. (%)

Pre-hospital hypoxia 5 (10.6%) 7 (7.3%) 0.460

Intra-hospital hypoxia 7 (14.9%) 13 (13.5%) 0.048

Cardiac arrest 11 (23.4%) 1 (1.0%) < 0.0001

Pre-hospital systemic hypotension 8 (17.0%) 39 0.021

Intra-hospital systemic hypotension 12 (25.5%) 35 0.274

Hyperthermia intra-H 13 (27.7%) 34 0.289

Pupillary light reflex, no. (%)

Both present 30 (63.8%) 85 (88.5%) 0.002

One present 7 (14.9%) 3 (3.1%)

Both absent 10 (21.3%) 8 (8.3%)

SAH on admission brain CT, no. (%) 33 (70.2) 65 (67.7) 0.849

EDH on admission brain CT, no. (%) 15 (31.9) 27 (28.1) 0.697

Admission brain CT, Marshall CT classification, no. (%)

Diffuse injury I 1 (2.3) 0 (0.0) 0.035

Diffuse injury II 10 (23.3) 42 (46.7)

Diffuse injury III 3 (7.0) 4 (4.4)

Diffuse injury IV 2 (4.7) 5 (5.6)

Evacuated mass lesions 25 (58.1) 36 (40.0)

Non-evacuated mass lesions 2 (4.7) 3 (3.3)

Abbreviation: GCS Glasgow Coma Scale, SAH traumatic subarachnoid hemorrhage, EDH epidural hematoma, ICU-LOS intensive care unit length of stay, H-LOS
hospital length of stay, PTCI posttraumatic cerebral infarction

Table 2 Outcomes data

Variables PTCI (n = 47; 32.9%) Non-PTCI (n = 96; 67.1%) p value

Days of mechanical ventilation, mean (SD) 16.0 (9.3) 14.3 (10.4) 0.339

ICU-LOS, mean (SD) 21.8 (14.5) 19.9 (11.7) 0.042

H-LOS, mean (SD) 43.1 (46.2) 45.7 (40.6) 0.735

Primary outcome, 6-month GOS, no. (%)

Good recovery—5 6 (13.0%) 36 (37.9%) < 0.0001

Moderate disability—4 9 (19.6%) 32 (33.7%)

Severe disability—3 15 (32.6%) 16 (16.8%)

Vegetative state—2 3 (6.5%) 4 (4.2%)

Death—1 13 (28.3%) 7 (7.4%)

Secondary outcomes

ICU mortality, no. (%) 10 (21.3%) 1 (1.0%) < 0.0001

H mortality, no. (%) 12 (25.5%) 5 (5.2%) 0.980

6-month mortality, no. (%) 13 (27.7%) 7 (7.3%) < 0.0001

Abbreviation: ICU-LOS intensive care unit length of stay, H-LOS hospital length of stay, PTCI posttraumatic cerebral infarction, GOS Glasgow Outcome Scale
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considering the role of other predicting variables, such as
age and GCS, using multiple regression analysis. However,
none of these studies demonstrated that a PTCI adds
value to risk prediction models that include validated
factors, as we showed here. We added PTCI to the core
and extended IMPACT models, which have been exten-
sively validated with various datasets. The IMPACT
models focus on baseline prognostic factors and do not
include variables that develop throughout the disease
process [3]. Therefore, our research expands the results of
IMPACT, showing that patients developing a PTCI during
the acute stage of disease have a five-fold increased risk
for a poor outcome, independently from important factors
such as age, motor score, pupillary reactivity, hypotension
and hypoxia, brain CT, and the presence of posttraumatic
SAH or EDH.

The AUC increased significantly from 0.73 to 0.79 and
from 0.74 to 0.80 when the PTCI was added to the core
and extended IMPACT models, respectively; although,
these are already strong predictive models. Since the in-
crease in the AUC greatly depends on the strength of
the baseline model, the stronger the baseline model, the
lesser the expected increase in the AUC [26]. This result
further confirms that a PTCI is an important predictor
of outcome in patients with a moderate or severe TBI.
Our finding that a PTCI is a key independent predictor
of long-term morbidity in TBI survivors is highly clinic-
ally plausible. Residual morbidity in patients suffering
from cerebral infarction is high, with 13% of survivors
discharged to institutional care [27]. Almost half of all
elderly people suffering from an ischemic stroke have
hemiparesis and cognitive impairment causing moderate

Fig. 2 CT scan showing posttraumatic cerebral infarction (PTCI). A1 MCA PTCI: acute parietal subdural hematoma on the right side (long arrow),
extending to the falx (short arrow). A2 CT scan 9 days later showed an acute ischemic lesion in the superficial territory of the right MCA (preserved
right lenticular nucleus, white *). B2 PCA PTCI: acute subdural hematoma along the right side of the tentorium (empty arrow), extra-axial blood in
the prepontine cistern (short arrow), and small para sellar bubble air (long arrow) on admission brain CT. B2 Brain CT scan at 15 days showed
complete effacement of the basal cisterns and bilateral temporo-occipital hypodensities (*), consistent with acute ischemic lesions in the territory of
both PCA. C1 ACA PTCI: hemorrhagic contusions of the right frontal lobe mixed with air and perilesional vasogenic edema, intraventricular
hemorrhage, a thick left frontoparietal acute subdural hematoma (long arrow) with midline shift to the right, and a thin acute subdural
hematoma along the posterior falx (double arrows). C2 Left frontoparietal craniectomy and hematoma evacuation showed multifocal
hypodensities in the anterior and posterior portion of the left cingulate gyrus (white outlined arrows), consistent with acute ischemic lesions in the
territory of the left ACA. The small hypodensity in the genu of the corpus callosum (short arrow), barely visible in the first exam, is consistent with
a shear-strain injury. D1 Superficial watershed PTCI: thick acute subdural hematomas along the whole tentorium and the left frontotemporal
convexity. Diffuse subarachnoid hemorrhage is also visible at the vertex (long white arrows). D2 Bilateral cortical hypodensities in the posterior
parasagittal regions (black arrows), consistent with acute watershed ischemia at the boundary zone between the MCA and ACA territories. Note the
probe for the intracranial pressure monitoring in the left frontal lobe (short white arrow)
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to severe disability [28]. With severe stroke requiring
ICU admission and mechanical ventilation, as many as
two-thirds of surviving patients are left with a severe
persisting disability [29]. The ICU mortality was signifi-
cantly higher in patients with a PTCI, suggesting that a
PTCI might be a proxy of the severity of the TBI; how-
ever, a multivariable analysis could not be performed
due to the small number of deaths.

We found that PTCI was more frequent than in our pre-
vious retrospective study (32.9% vs 19.1%) [4]. In prospect-
ive cohort studies, the selection of patients through
application of the inclusion and exclusion criteria is more
accurate compared to retrospective studies, as it is the
measurement of exposures before the outcome occurs,
thereby establishing temporality and outcome. The avail-
ability of newer brain CT scanners, with higher sensitivity

Table 3 Adjusted ordered logistic regression for the Glasgow Outcome Scale (GOS). Each panel (A and B) includes the IMPACT
model with the relative OR on the left (the core model in panel A and the extended model in panel B), and the recalculated OR
when PTCI was added as a covariate on the right

Panel A IMPACT core model IMPACT core model plus PTCI

GOS OR 95% C.I. p OR 95% C.I. p

Age 1.04 1.02–1.06 < 0.0001 1.04 1.02–1.06 < 0.0001

GCSm 0.43 0.22–0.84 0.011 0.45 0.23–0.90 0.025

Pupils 3.00 1.29–7.14 0.048 1.91 0.79–4.67 0.150

PTCI – – – 3.88 1.85–8.34 < 0.0001

Panel B IMPACT extended model IMPACT extended model plus PTCI

GOS OR 95% C.I. p OR 95% C.I. p

Age 1.04 1.01–1.06 < 0.0001 1.04 1.02–1.06 < 0.0001

GCSm 0.43 0.21–0.84 0.016 0.46 0.22–0.91 0.025

Pupils 3.32 1.33–8.51 0.031 2.26 0.89–5.82 0.085

Hypotension 1.60 0.51–3.78 0.310 0.52 0.78–4.99 0.147

Hypoxia 1.41 0.26–1.89 0.473 1.55 0.56–4.23 0.389

SAH 1.23 0.59–2.58 0.555 1.17 0.56–2.49 0.689

EDH 0.93 0.44–1.97 0.920 0.83 0.12–131.36 0.647

Marshall CT score 2.76 0.06–66.33 0.720 4.42 0.01–8.31 0.385

PTCI – – – 4.77 2.19–10.67 < 0.0001

GCSm Glasgow Coma Scale motor score, OR proportional odds ratio, C.I. confidence interval, SAH traumatic subarachnoid hemorrhage, EDH epidural hematoma.
Hypotension and hypoxia refer to both pre-hospital and intra-hospital periods

Fig. 3 ROC curves for the core and extended IMPACT models with the addition of PTCI. Comparison of ROC curves and AUCs with and without
the addition of PTCI, for both the core and extended models (p values for the difference in AUC: p = 0.05 for core model, p = 0.049 for the
extended model). IMPACT: International Mission on Prognosis Analysis of Clinical Trials in Traumatic Brain Injury
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for detecting brain ischemia, may have also played a role.
Not least, the centralized revision of all brain CTs increased
the detection of PTCI, as 10 more PTCI cases were identi-
fied compared to diagnoses made locally by participating
centers. This happened without sacrificing specificity be-
cause 7 patients initially classified as PTCI were subse-
quently classified as non-PTCI after centralized revision.
Our study has strengths and limitations. Strengths in-

clude the prospective multicenter nature of the study
with central readings of all brain CT scans, as well as
rigorous statistical methodology.
The identification of PTCI in ambiguous cases was

greatly aided by the centralized evaluation of the neuro-
imaging data, allowing the assessment of the entire neu-
roradiological history of each patient, with immediate
comparison of any questionable finding in a given CT

scan to several previous and following exams, thus
making the final diagnosis of cerebral infarction much
more reliable.
The main limitation is the absence of detailed neuro-

logical and neuropsychological assessments of patients at
long-term follow-up, limiting our understanding of the
relative contribution of the primary traumatic and second-
ary ischemic brain damage to the persisting disability. An-
other limitation is that we did not assess the causes of
mortality, and hence, we cannot exclude that life-sustaining
therapies were withdrawn in patients with PTCI, leading to
a self-fulfilling prophecy bias of the outcome prediction
model. Moreover, results became available to the participat-
ing centers only after the entire brain CT data set of each
patient was transferred to the coordinating center where
the diagnosis of PTCI was definitely determined.

Fig. 4 Correction for optimism of AUC for both core and extended models. Auc.boot is the distribution of the AUC value in the bootstrap
sample, which represents “an estimation of the apparent performance.” “auc.orig” is the distribution of the AUC value deriving from the model
fitted to the bootstrap samples and evaluated on the original sample, which represents the model performance on independent data. At the
bottom of the chart, the apparent AUC (i.e., the value deriving from the model fitted to the original dataset) and the AUC adjusted for optimism
are reported on the box plot respectively with the blue line and red line [25]
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Our study is the first multicenter study demonstrat-
ing that a cerebral infarction, indicating posttraumatic
brain damage, is an independent predictor of long-term
disability when added to validated prediction models.
This is in line with the recommendation of the Lancet
Neurology Commission that prognostic models for TBI
patients should include dynamic predictors that de-
velop during the disease course [1]. Future research
should externally validate this finding in larger studies
with adequate power and accurate neurological and
neuropsychological assessments of patients at longer-
term follow-up. This would assess its generalizability
and recommend the inclusion of PTCI in the list of
measurable, clinically relevant variables that improve
prognostication and contribute to a comprehensive def-
inition of the diversity of post-TBI disability and the
needs for personalized rehabilitation. The global burden
of TBI has continuously increased in the last 25 years
[30], and the prevention of residual disability is a major
concern. Future studies should prioritize at risk-
patients identification, along with effective prevention
strategies to be deployed before the cerebral infarction
is fully established.

Conclusions
The findings provide evidence that PTCI is a common
complication in patients suffering from a moderate or
severe TBI and is an independent risk factor for long-
term disability. The addition of PTCI to the IMPACT
core and extended predictive models significantly in-
creased their performance in predicting the GOS.
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