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Abstract

Reprogramming of cancer metabolism is a newly recognized hallmark of malignancy. The aberrant glucose
metabolism is associated with dramatically increased bioenergetics, biosynthetic, and redox demands, which is vital
to maintain rapid cell proliferation, tumor progression, and resistance to chemotherapy and radiation. When the
glucose metabolism of cancer is rewiring, the characters of cancer will also occur corresponding changes to
regulate the chemo- and radio-resistance of cancer. The procedure is involved in the alteration of many activities,
such as the aberrant DNA repairing, enhanced autophagy, oxygen-deficient environment, and increasing exosomes
secretions, etc. Targeting altered metabolic pathways related with the glucose metabolism has become a promising
anti-cancer strategy. This review summarizes recent progress in our understanding of glucose metabolism in
chemo- and radio-resistance malignancy, and highlights potential molecular targets and their inhibitors for cancer
treatment.
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Background
Cancer is a serious public health problem. The incur-
rence and mortality is increasing year by year [1]. In
addition to conventional radiotherapy, chemotherapy,
and surgery, there are currently more and more popular
neoadjuvant chemotherapy and molecular targeted ther-
apies. These treatment options can cure early and part
of the intermediate tumors in certain degrees, but are
not ideal for most of cancer in middle and late stages
[2]. Among many reasons, the treatment resistance is
the one of major drawbacks. Radiotherapy and chemo-
therapy, as the routine treatment, face substantial chal-
lenges of resistance. However, the characters of chemo-
and radio-resistance in different kinds of cancers are not
exactly the same.

In the early 1920s, German biochemist and physiolo-
gist Otto Warburg conducted groundbreaking research
and proposed the famous “Warburg effect”: Tumor cells
prefer to use glycolysis for glucose metabolism even in
oxygen-rich conditions, rather than more efficient mito-
chondrial oxidative phosphorylation for ATP production
[3]. Actually, the entire metabolic network reprograms
under the control of oncogenes and tumor suppressor
genes, and the flow of nutrient in metabolic networks is
also redefined in the process of tumorigenesis. Metabolic
reprogramming provides critical information for clinical
oncology. The aberrant glucose metabolism is a major
kind of metabolic reprogramming in cancer [4], and re-
cent studies have shown that aberrant glucose metabol-
ism regulates cancer proliferation, cell cycle, drug
resistance, and DNA repair [5–7]. As the molecular
mechanisms underlying chemo- and radio-resistance are
still poorly understood, the alteration of glucose metab-
olism in cancer provides new ideas to explain chemo-
and radio-resistance. Herein, this review updates the
mechanisms of metabolic reprogramming involved in
tumor chemo- and radio-resistance.
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Main text
The overview of glucose metabolic reprogramming
Metabolic reprogramming refers to the redefinition of the
flow and flux of nutrient in tumor cells in the metabolic
network to meet the needs of tumor cells for energy and
anabolism [8]. Under oxygen-rich conditions, normal or
differentiated cells can metabolize glucose and produce
carbon dioxide through a tricarboxylic acid cycle (TCA),
which produces 30 or 32mol of adenosine triphosphate
(ATP) per mole of glucose and a small amount of lactate
during oxidative phosphorylation [9]. Only under hypoxic
conditions, normal or differentiated cells produce large
amounts of lactic acid by anaerobic glycolysis. However,
German scientist Otto Warburg first proposed that tumor
cells rely mainly on glycolysis to provide energy under aer-
obic conditions [3](Fig. 1). Weinberg characterized “aber-
rant metabolic phenotype” with “autologous proliferation
signaling, apoptosis resistance, evasion of proliferation in-
hibition, continuous angiogenesis, infiltration and migra-
tion, unlimited replication capacity, immune escape” in
tumor cells.
Glucose metabolic reprogramming between aerobic gly-

colysis and oxidative phosphorylation, previously specu-
lated as exclusively observable in cancer cells, exists in
various types of immune and stromal cells in many differ-
ent pathological conditions other than cancer [6]. It has
been well established that tumor cells have elevated rates

of glucose uptake and high lactate production in the pres-
ence of oxygen, known as aerobic glycolysis (also termed
the Warburg effect) [10]. As a matter of fact, high lactate
production also remodels the tumor microenvironment
(TME) by contributing to acidosis, acting as a cancer
cell metabolic fuel and inducing immunosuppression
resulting in aggressive proliferation, invasion, migration
and resistance therapy [4]. However, the molecular
mechanisms involved in the changes of glucose metab-
olism are complex. Changes in the tumor microenvir-
onment, activation of oncogenes, and inactivation of
tumor suppressor genes all contribute to the disruption
of metabolism and steady-state metabolism of cells, ul-
timately leading to aberrant glucose metabolism [11,
12]. Specific oncogenes activation or tumor suppressor
genes deactivation can reprogram the underlying me-
tabolism of tumor tissues. Some genes can act as initia-
tors of glucose consumption, include myc, KRAS, and
BRCA1 [13–15]. Despite the progression, we still do
not fully know the metabolic pathways that are repro-
grammed by oncogenes or suppressor genes.

Glucose metabolic reprogramming and chemo- and
radio-resistance
Tumor cell survival under aberrant metabolism of glucose
is a vital step not only for the process of tumorigenesis but
also in treatment resistance and recurrence, especially for

Fig. 1 The energy metabolism of cancer cells. Under aerobic condition, Most of the glucose is first converted to pyruvate via glycolysis in the cytosol.
Most pyruvate are mostly processed to lactate via glycolytic pyruvate even in the presence of oxygen, and only a small portion of pyruvates enters the
mitochondria to produce CO2 by undergoing TCA cycle. In addition, small proportion of the glucose is diverted into the upstream of pyruvate
production for biosynthesis (e.g., pentose phosphate pathway, and amino acid synthesis)
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the occurrence of treatment resistance [4]. Chemotherapy
in the form of neo-adjuvant or adjuvant therapy is the
dominant treatment for most of cancers; the resistance
directly affects the survival and prognosis of cancer pa-
tients [16]. Theoretically, the tumor mass, made of distinct
chemo-resistant cell populations has been recognized as
an important mechanism for chemo-resistance [17]. Actu-
ally, inhibition of glycolysis not merely inhibited cell pro-
liferation, but alleviated resistance to chemotherapeutic
drugs.
Existing evidence indicates that increased glucose uptake

and enhanced aerobic glycolysis are able to induce the in-
trinsic or acquired resistance to DDP in gastric cancer cells
[18]. Elevated lactate levels caused by aberrantly activated
glycolysis can reinforce DNA repair and promote
cisplatin-resistance in cervical carcinoma cells via the in-
activation of histone deacetylase [19]. High-precision radi-
ation therapy enables radiation oncologists to decrease
delivery of an excessive dose of radiation to normal tissues
and also to administer a high and booster dose of radiation,
particularly to small target fractions in a malignant tumor
[20]. Previous studies have revealed that the Warburg effect
or aerobic glycolysis promotes the radio-resistance of vari-
ous malignant tumors via generating a chemically reduced
milieu associated with the development of radio-resistance
in laryngeal carcinoma, prostate cancer, head and neck can-
cer [21–26]. For example, activation of adenosine
monophosphate-activated protein kinase (AMPK) mediates
metabolic reprogramming in resistant cancer cells through
promoting both the Warburg effect and also mitochondrial
biogenesis [27–30]. However, both the gene network trig-
gering metabolic reprogramming and the molecular mech-
anism linking the reprogramming with radio-resistance
remain to be determined.

The mechanisms of glucose metabolic reprogramming-
mediated chemo- and radio-resistance
Although increasing evidence has confirmed that glucose
metabolic reprogramming can induce tumor radiotherapy
and chemotherapy resistance, the specific mechanisms are
still not clear [31–34]. The previously reported resistance
mechanisms include mutations or increases in drug tar-
gets, changes in drug metabolism, and alterations in DNA
repair, overexpression of anti-apoptotic genes, and inacti-
vation of apoptotic gene products, immunosuppression
and the formation of CSCs, etc.
With the increasing research understanding on the re-

sistance of chemo- and radiotherapy, the researchers have
pointed out that cancer stem cells, tumor microenviron-
ment, autophagy, and exosomes are all closely related to
tumor chemo- and radio-resistance. In fact, recent reports
have shown that chemo- and radio-resistance acquisition
is coupled to deregulate glucose metabolism and glycolysis
[35]. Signaling pathways related to chemo-radiotherapy

resistance are abnormally activated or inactivated during
metabolic stress, such as Wnt, PI3K/AKT, Notch, NF-κB,
MAPK [36–41]. In addition, the metabolic reprogram-
ming mediated by aberrant expression of oncogenes can
enhance the pentose phosphate pathway and aerobic gly-
colysis to promote the DNA repair and apoptosis resist-
ance [42–44]. For example, the glucose metabolic
reprogramming of colorectal cancer induced mainly by
aberrant MYC expression could activate the pentose phos-
phate pathway, purine/pyrimidine synthesis pathway, fatty
acid oxidation pathway and mitogen-activated protein kin-
ase (MAPK) signaling pathway to prolong the survival of
cancer cells under the chemotherapy and radiotherapy
[45–47]. In truth, the metabolic reprogramming may in-
duce the DNA repair, the immunosuppression of tumor
microenvironment, the anti-apoptosis by enhanced au-
tophagy, and the formation of cancer stem cells mediated
by exosomes, which all induce chemo- and
radio-resistance. Herein we will introduce mechanisms of
glucose metabolic reprogramming in radiotherapy and
chemotherapy resistance.

Activating DNA damage repair
It’s well known that the essence of chemotherapy and
radiotherapy is to cause the disruption of DNA replication,
thus leading to cell death or apoptosis and achieving thera-
peutic purposes [48]. Accumulating evidence suggests that
the continuous activation of aerobic glycolysis plays a vital
role in tumor development and the expression of many al-
tered genes is accompanied by aerobic glycolysis in tumor
development and resistance [49, 50]. Efficient DNA damage
repair would depend on anabolic alterations that could pro-
vide cancer cells with nucleotide pools for repair of radi-
ation and chemotherapy-induced DNA damage [51].
Recent study has indicated that the chemo-resistant breast
cancer cells and mesothelioma cells have high levels of al-
dehyde dehydrogenase (ALDH) activity. ALDH is an im-
portant detoxifying enzyme of glycolysis, which belongs to
a class of detoxifying enzymes whose expression is linked
to cancer chemo-resistance [52]. Meanwhile, glycolysis can
also enable cancer cells to reduce the level of intracellular
reactive oxygen species (ROS) by limiting the pyruvate flux
into mitochondrial respiration, and thus acquire resistance
to apoptosis and DNA impair(Fig. 2) [53–55].
An elevated endogenous ROS level generated from at-

tacks of mitochondria on nearby mitochondrial DNA
(mtDNA) results in an imbalance between production and
destruction of ROS, which resulted in oxidative damage to
mtDNA under aberrant condition of glucose metabolism
[56–59]. ROS, which can increase oxidative DNA damage
and hence the load of the DNA-repair machinery, are reg-
ulated through different metabolic pathways. High ROS
levels affect many aspects of tumor biology like DNA
damage and genomic instability. Furthermore, mutations
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in genes involved in the glucose metabolism rewiring can
also block the balance of DDR (DNA damage respon-
se)and DNA repair to result in resistance to chemotherapy
and radiotherapy. For example, PFKFB3 (6-phosphofruc-
to-2-kinase/fructose-2,6-bisphosphatase 3), an altered
genes significantly accelerates the glycolysis, enhances the
ability of DNA repair and its pro-tumor effects during gly-
colysis through the PFKFB3/Akt/ERCC1 signaling path-
way, thus leading to failure of chemotherapy and
radiotherapy in HCC [60]. Furthermore, a study indicated
that disrupting cancer metabolism had an important role
for both glycolysis and glutaminolysis in promoting
DNA-DSB (double strand breaks) repair and preventing
accelerated senescence after irradiation [61].
The aberrant glycolysis and glutaminolysis could pro-

mote DNA repair via targeting the hexosamine biosyn-
thetic pathway (HBP) and tricarboxylic acid (TCA) cycle
[62]. The previous researches had indicated that Mucin1
(MUC1), an oncogene overexpressed in multiple solid tu-
mors, can mediate DNA repair in breast cancer cells and
facilitate the metabolic reprogramming in pancreatic can-
cer cells [63]. In MUC1-expressing pancreatic cancer cells,
the metabolite levels in glycolysis, PPP and nucleotide

biosynthetic pathways increased to enhance the DNA
damage repair and inhibit the sensibility of radiation ther-
apy and chemotherapy [64–67]. Furthermore, amplified
N-Myc can directly bind with the tetrameric form of p53
at the C-terminal domain in the nucleus to alter
p53-dependent transcriptional responses in neuroblast-
oma patients with wild-type p53, but wild-type p53 nega-
tively regulates G6PD activity, a rate-limiting enzyme of
the pentose phosphate pathway that is the most important
sources of nucleotides, and then decreases dNTP synthe-
sis, ultimately influencing the DNA repair [46, 68, 69].
Therefore, N-Myc directly suppresses the transcriptional
responses of wild-type p53 to inhibit the pentose phos-
phate pathway and increase the DNA repair.
In essence, the DNA damage repair induced by glu-

cose metabolic reprogramming is a complicated proced-
ure which involves the activation of many oncogenes
and activation or silencing of signaling pathways and
needs more researches to clarify it.

The apoptosis resistance of enhanced autophagy
Autophagy is an evolutionarily conserved process through
which lysosomal degradation of damaged and superfluous

Fig. 2 Simplified diagram of the main metabolic pathways involved in DNA damage/repair. Continuous activation of aerobic glycolysis can
increase the capture of glucose into the cytoplasm by up-regulating the expression of glucose transporters (GLUTs) and substantially enhance the
high rate of glucose influx via activating HK, PFK, and aldolase enzyme and promoting their expression, which in turn facilitates the aerobic
glycolysis. The glycolytic switch in tumor cells allows the direct or indirect flux of glycolytic intermediates to many biosynthetic pathways (e.g.,
pentose phosphate pathway, serine synthesis pathway, MG pathway, and nucleotide synthesis), which provides the biomacromolecules and other
materials required for prolonging the cancer cell survival via enhancing DNA repair, inhibiting DNA damage and decreasing
chromatin remodeling
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cell components are recycled back into basic biomolecules
in the cytosol [70, 71]. Low glucose levels could induce
autophagy in a wide variety of mammalian cell types, in-
cluding cancer cells, and this regulation appears to be par-
tially dependent on the activation of AMPK [72].
Enhanced autophagic activity buffers glucose and amino
acid starvation most likely by degrading intracellular en-
ergy reserves like glycogen, and proteins [73]. E.g. CAFs
(cancer-associated fibroblasts) in the tumor stroma exhibit
robust activity in terms of aerobic glycolysis and autoph-
agy due to loss of caveolin 1 (Cav-1) expression [74–77].
CAFs with higher levels of aerobic glycolysis and autoph-
agy in the tumor stroma can produce more IL-8 and acti-
vate the NF-κB signaling pathway, ultimately leading to
resistance to cisplatin in human gastric cancer [75, 76,
78]. In general, enhanced autophagy protects cancer cells
during chemotherapy and radiotherapy via supporting the
survival of tumor cells, leading to cancer resistance and
refractory cancer [75, 79–83]. In addition, increased au-
tophagy regulated by the PI3K/AKT/mTOR pathway pro-
longs cancer cell survival via resisting to apoptosis under
acidic environment stress produced by glycolysis [84].
A new study has found that autophagy is a major way

of down-regulating cell metabolism, leading to cancer
cell quiescence, survival, and chemo-resistance [85, 86].
The up-regulation of autophagy mediated by metabolic
dysfunction could contribute to a common mechanism
of resistance to chemotherapy and radiotherapy by sup-
pressing apoptosis, such as rapamycin (Rp) [87–89]. In
addition, the induction of autophagy may defend against
epirubicin-mediated apoptosis, act as a pro-survival fac-
tor, and thus lead to deficient apoptosis in HepG2 and
A549 cells [90–92]. Besides, a great deal of evidence sug-
gests that autophagy mostly causes cancer cell survival
and resistance to treatment through activation of differ-
ent autophagy-associated molecules and signaling path-
ways, such as Wnt, PI3K/AKT, Notch [93–95].
Whereas, autophagy inhibition could promote tumor
cell death and enhance the sensibility of radio- and
chemotherapies [4, 92, 96–98]. Most studies have sug-
gested that autophagy promotes chemoresistance and
targeting autophagy-associated molecules may increase
cancer cell chemo-sensitivity [99]. An up-regulation of
autophagy may represent a mechanism of resistance
to oxidative stress induced by chemotherapeutic drugs
and may potentiate the survival to hypoxia and nutri-
ent starvation resulting from the frequently defective
tumor vascularization [100]. For example, induction of
p53 and transfection of ERK activating RAS mutants but
not AKT activating RAS mutant in p53-null ovarian can-
cer cells promoted autophagy, although the autophagy in-
duced by p53 or ERK activating RAS mutants showed an
opposite sensitivity to cisplatin treatment because the acti-
vation of RAS/ERK ultimately lead to the increased

expression of p-ERK and Bcl-2 and the decreased expres-
sion of p-AKT and Bax [101]. Furthermore, a recent
study showed that HK-2 (hexokinase-2), a key enzyme
of the rate-limiting step in glycolysis up-regulates
cisplatin-resistance in ovarian cancer cells by enhan-
cing cisplatin-induced autophagy [102]. Whereas, de-
creased autophagy induced by Baf A1 treatment, a
pharmacological autophagy inhibitor, and knockdown
of ATG5 that blocks the non-selective macroauto-
phagy pathway significantly increased apoptotic cell
death in chemoresistant breast cancer cells [103]. In
the chemo-resistant and radio-resistant cancer cells under
periods of glucose metabolic stress, the increased autoph-
agy could prevent cancer cells from apoptosis induced by
ER stress (endoplasmic reticulum stress) [104]. As a kind
of autophagy, moreover, the enhanced mitochondrial au-
tophagy can prevent apoptosis by reducing mitochondrial
outer membrane permeability (MOMP) and reducing the
release of mitochondrial pro-apoptotic proteins, such as
cytochrome C and SMAC/DIABLO [105].
In spite of a spur in research articles demonstrating the

role of autophagy in cancer, the exact role of autophagy
induced by metabolic reprogramming on tumor cells is
still controversial and remains to be further elucidated
[106]. Many of the pathways that control autophagy are
deregulated in cancer, and cancer therapeutics targeting
these pathways activates autophagy. Taken together, the
role of autophagy in tumor initiation and drug resistance
is likely context-specific. The functional role of autophagy
in these settings needs to be established. A particularly in-
teresting possibility is that autophagy favors tumor cell
survival. If this is correct, then inhibition of autophagy
might synergize with existing cancer treatments.

The immunosuppressive effect of tumor microenvironment
Hitherto, as to metabolic reprogramming, tumor cells
finely regulate ATP synthesis by regulating substrate
uptake, as well as enzymes related to glycolysis, which
enables them adapt to the nutrient microenvironment
[107–112]. Metabolic changes occur not only in
tumor cells, but also in immune cells infiltrated in
the tumor tissues that undergo metabolic reprogram-
ming to accommodate functional changes [113]. In
fact, the altered tumor microenvironment (TME) can
induce the tumor cells secretion of immunosuppres-
sive cytokines to inhibit the immune effector cells or
induction of suppressive immune cells to exert im-
munosuppressive effects, then inducing the immune
escaping of cancer cells and ultimately contributing to
chemotherapy and radiation resistance [114, 115].
During recent years, the interaction between immuno-
suppression and treatment resistance in different sub-
sets of tumor cells within the TME was increasingly
valued by cancer researchers [116–118] (Fig. 3).
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Tumor cells have to adapt their metabolism to survive
and proliferate in this harsh microenvironment. Changes
in the tumor microenvironment can affect the levels of in-
filtrating cell-associated chemokines in tumor cells. These
chemokines, in turn, recruit Tregs to tumor tissues to
exert immunosuppressive effects [119]. For example,
under an inflamed microenvironment, the TLR (Toll-like
receptor) can increase glucose uptake and lactate produc-
tion in Treg cells through up-regulating the expression of
key enzymes Glut1 (a glucose transporters), which is
beneficial to the proliferation of Treg cells [102, 120].
Tregs exert immunosuppressive effects by inhibiting ef-
fector T cells and dendritic cells to enhance the effect of
anti-apoptosis and the survival of cancer cells [121]. Be-
cause of the TME comprising of stromal and various com-
ponents of the immune system where reprogramming of
the metabolism manifests Warburg phenotype (enhanced
aerobic glycolysis), it can play a significant role in sup-
pressing the immune attack on the tumor cells leading to
cancer cell survival, proliferation and resistance to therap-
ies [122]. Moreover, Verduzco and others widely accept
that the alterations in tumor microenvironment during
chemo−/radiotherapy lead to the expression of
TME-related factors, which significantly contributes to
chemo−/radio-resistance [123–125]. E.g. Genetic abla-
tion of AMPK activates mammalian target of rapamycin

(mTOR) signal with enhanced expression of
hypoxia-inducible factor-1 alpha (HIF-1α), resulting in
rapid cellular proliferation accompanied by activation
of aerobic glycolysis [29, 30, 126]. HIF-1α, a biomarker
of the hypoxia microenvironment, demonstrates an
emerging role in increasing resistance to current cancer
therapies, including chemo−/radio-resistance [125].
Moreover, HIF-1α stabilized by hypoxia microenviron-
ment is also able to activate the expression of PD-L1 by
binding of HIF to a specific hypoxic response element
in the promoter of PD-L1 in cancer cells [127, 128].
PD-L1 expression in cancer cells enables them to de-
liver an inhibitory signal to PD-1-positive T-cells, sup-
pressing T-cell function. This may be responsible for
the accumulation and the activation of immunosup-
pressive cells [129–131]. In addition, the under hypoxic
condition, the tumor cells tend to be anaerobic with
glucose and secrete IL-10 that thriggers STAT3 phos-
phorylation and activation of the PD-1/PD-L1 pathway
[132]. In multiple myeloma (MM), increased glucose me-
tabolism of cancer cells can increase the expression of
HK-2 and lactate dehydrogenase A (LDHA) to reduce the
therapeutic effects of standard care drugs, such as borte-
zomib and melphalan [133] via inhibiting T cell immunity
and promoting cancer stem-like properties. Moreover,
tumor LDHA affects MDSCs (myeloid-derived suppressor

Fig. 3 The immunosuppressive effect of the tumor microenvironment. The hypoxia and acidosis of the tumor microenvironment (TME)
contribute to immunosuppression via several mechanisms. These mechanisms include increased accumulation, activation, and expansion
of immunosuppressive regulatory T (Treg) cells; recruitment of inflammatory monocytes and tumor-associated macrophages (TAMs) and
reprogramming of TAMs towards the pro-tumor M2 phenotype; suppression of dendritic cell (DC) maturation, which results in inhibiting
activation of tumour-specific cytotoxic T lymphocytes (CTLs). Importantly, the programmed cell death protein 1 (PD-1)–programmed cell
death 1 ligand 1 (PD-L1) pathway is often activated in the TME as a mechanism to evade anticancer immune responses, with up-
regulation of PD-L1 expression on TAMs, DCs, and tumor cells. In addition, tumor-infiltrating CTLs typically up-regulate PD-1, limiting their
cytotoxic potential against tumor cells. CCL20, C-C-motif chemokine ligand 20; CXCL, C-X-C-motif chemokine ligand; GM-CSF, granulocyte–
macrophage colony-stimulating factor; TGFβ, transforming growth factor β; IL, Interleukin
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cells) to control tumor immunity [134]. Human MDSCs
induced by granulocyte colony-stimulating factor (G-CSF)
and granulocyte macrophage colony-stimulating factor
(GM-CSF) inhibit T cell immunity in the tumor micro-
environment in patients with cancer [135]. This strongly
suggests the importance of cancer metabolic reprogram-
ming in maintaining the interaction between the tumor
microenvironment and the immunosuppression.
Regardless of the role of complexity components of TME

in chemo−/radio-resistance of cancer cell, the concrete
mechanisms of immunosuppression regulated by TME are
still not verified and need lots of studies to confirm.

The formation of cancer stem cells mediated by exosomes
Exosomes are 30–150 nm in diameter microvesicles de-
rived from the multi-vesicular endosome pathway [136].
Cancer cells that utilize aerobic glycolysis as the main
energy generating pathway can enhance the exosome se-
cretion [137–140]. The increased secretion of endogen-
ous exosomes from the resistant cancer cells can be
taken up by recipient cells and leads to the modulation
of aerobic glycolysis and chemotherapy and radiotherapy
sensitivity [141–144]. For example, PC-derived exosomes
(isolated from murine pancreatic cancer cells) could in-
hibit glucose intake and promote lipidosis, developing
an eventual state of insulin resistance in skeletal muscle
cells [142]. The newest documents have found that the
exosomes can induce the formation of cancer stem cells

(CSCs) to decrease the effect of chemo- and radio-therapy
[145–147] (Fig. 4).
The aberrant glycolytic reaction of CSCs contributes to

therapy resistance via preserving stemness and tumori-
genic properties of CSCs [148–150]. Exosomal LMP1 acti-
vates the PI3K/AKT pathway, and then up-regulates the
expression of the surface marker CD44+/High, ultimately
increasing the populations of CD44+/High cells, which are
the putative stem cell in nasopharyngeal carcinoma cells
[150–152]. Besides, exosomal LMP1 could reduce the
phosphorylation of AMPK and changed its subcellular lo-
cation after irradiation, which appears to occur through a
disruption of the physical interaction between AMPK and
DNA-PK, and then causes decreasing in AMPK activity
which is associated with LMP1-mediated glycolysis and
resistance to apoptosis induced by irradiation [126, 153,
154]. Similarity, the resistant cancer cells with enhancing
glycolysis can secrete a large amount of exosomes con-
taining EpCAM protein, an epithelial cancer stem-like cell
markers and glycolysis enzymes [126, 155–159]. The
neighboring non-resistant cells can take up these exo-
somes and positively regulate mTOR and epithelial
growth factor receptor (EGFR) signaling pathways to en-
hance the glycolysis and promote EpCAM+ tumor cells to
ovarian cancer stem cells (CD133+ and CD117+CD44+)
and putative drug-resistant tumor cell phenotype
(EpCAM+ CD45+) transformation [152, 155, 159–162].
Besides, the exosomes secreted from resistant tumor cells

Fig. 4 The role of the exosomes in the formation of CSCs. The cancer cells with enhanced glycolysis could release a large amount of exosomes
contained several of glycolytic enzymes and CSCs markers. These exosomes can be taken up by the recipient cancer cells, and then promote the
glycolysis and induce the dedifferentiation of cancer cells to acquire stemness phenotype through transfer their stemness-related molecules
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can be taken up by non-resistant cells and induce the pro-
duction of ROS via enhancing metabolic reprogramming
[163]. The increased level of ROS can activate the Wnt
signaling pathway to accumulate the cancer stem-like cells
with CD44v8-10high/Fbw7high/c-Myclow or CD44v8-10high/
Fbw7low/c-Mychigh, leading to the formation of resistant
sites [147, 149, 152, 164].
Transport of exosomal components can contribute to

the chemo- and radio-resistance of cancer cells [165–167].
Among them, transfer of miR-100, miR-222 and miR-30a
from the exosomes derived from adriamycin- and
docetaxel-resistant MCF-7 breast cancer cells to drug sen-
sitive MCF-7 cells increased the drug resistance of the
sensitive cell line through increasing CSCs proportion in
cancer cell populations and promoting the phenotypic
transition of non-CSCs toward the CSCs phenotype [168–
170]. Actually, exosomal HSPs could be involved in the
occurrence of EMT and ECM remodeling which were
closely associated with the formation of stem cells to me-
diate the resistance of cancer cells [171]. E.g. exosomal
HspDNAJB8, an Hsp40 family member, has a role in

maintenance of renal cell carcinoma CSCs/CICs (called
cancer stem–like cells/cancer-initiating cells), resistance
to chemotherapy and radiotherapy [172, 173]. Similarly,
the exosomal lncRNA UCA1 is demonstrated to possibly
activate the Wnt signaling pathway and facilitate the ma-
lignant transformation of stem cell through the modifica-
tion of the gene network by tail modification of histone to
increase chemo-resistance of cancer cells [174, 175].
Exosomes are speculated as a novel target for solving the

radio- and chemo-resistance because they can promote
CSCs phenotype. However, the research about the role of
exosomes in the treatment resistance of cancer is not much
more; it isn’t a good explanation to verify the concrete ef-
fect of exosomes and need to more studies to confirm.

Perspectives of metabolic inhibitors
Up to date, the metabolic inhibitors aim to inhibiting the
enzymes about tumor metabolism, and then decrease the
level of cancer glucose consumption to decrease amount of
ATP, attenuating amino acids and nucleotides synthesis,
and generate reactive oxygen species (ROS) [126, 176–182].

Fig. 5 The overview of acquired chemoradiotherapy resistance mediated by metabolic reprogramming in cancer cells
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Metabolic inhibitors reduce the metabolite levels in glycoly-
sis, PPP and nucleotide biosynthetic pathways to
down-regulate the resistant effect of cancer cells via pre-
venting DNA damage repair and enhancing chemotherapy
and radiation responsiveness [47, 183]. For example,
3-BrPA (3-bromopyruvate), a special inhibitor of HK-2 kin-
ase, can induce the imbalance of intracellular redox via
inhibiting the glycolysis and strengthening the tricarboxylic
acid cycle in cancer cells, during which a large amount of
ROS is produced and accumulated in the cancer cells,
destroying the normal structure inside the cell and causing
the cell to gradually die [184]. Therefore, 3-BrPA can
sensitize first-line anti-tumor drugs in the resistant cancer
cells, such as 5-fluorouracil, doxorubicin, mycin, mitoxan-
trone and platinum drugs (e.g. cisplatin, oxaliplatin) [185].
In addition, the covalent inhibitor JX06 targeting PDK via
structural modification hinders access of ATP to its binding
pocket and in turn impairs PDK1 enzymatic activity, which
increases the sensitivity of chemotherapy and radiotherapy
by promoting cellular oxidative stress and apoptosis [186].
FX11, an LDHA inhibitor, can be capable of blocking aer-
obic glycolysis via inactivating the CK2/PKM2/LDHA axis
to induce oxidative stress, and suppress drug resistance in
various cancers [187]. 3PO, a glycolysis inhibitor targeting
PFKFB3, can inhibit the glycolysis of nintedanib- and
sunitinib-resistant tumor cells via inducing cell-cycle arrest
and apoptosis, and thus promote the therapeutic efficacy of
chemo- and radio-therapy [188].
Even though some metabolic inhibitors have been ap-

proved for clinical treatment, the efficacy is not ideal
and rigorous evidence-based medical evidence lacks.
There are inextricable links between cell metabolism,
tumor immunity, and tumor epigenetics. Metabolic in-
hibitors can only achieve maximum biological efficacy
when combined with targeted inhibitors of macromol-
ecule synthesis, cellular immune-agonists, and agonists
or inhibitors associated with metabolic pathways. Fur-
thermore, most metabolic inhibitors lack specificity and
cannot target tumor cells and have a killing effect on
normal cells. Therefore, the researches on metabolic in-
hibitors have promising development prospects.

Conclusions
Extensive studies have provided strong evidence for repro-
gramming of cancer metabolism in chemo- and
radio-resistant cancer. Aberrant glucose metabolism could
alter many physiological activities(Fig. 5), e.g. inducing
DNA damage repair, enhancing autophagy, changing
tumor microenvironment and increasing the secretion of
exosomes, etc. However, these alterations are not a simple
relationship between chemo- and radio-resistance and glu-
cose metabolism. Additional studies are needed to better
understand the molecular mechanisms linking resistance
to cell metabolism. Additionally, it will be important to

understand whether the effects of metabolic inhibitors are
cell type-specific. Because changes in treatment resistance
can directly or indirectly impact multiple processes--in-
cluding metabolism, ROS signaling, and calcium signals.
The outcome may be critically dependent on cell types. Fi-
nally, once the interconnections between the glucose me-
tabolism of cancer cells and resistance to treatments are
better understood, we will hopefully be able to harness this
information to devise therapies for cancer resistance.
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