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Abstract

Tumor neoantigen is the truly foreign protein and entirely absent from normal human organs/tissues. It could be
specifically recognized by neoantigen-specific T cell receptors (TCRs) in the context of major histocompatibility
complexes (MHCs) molecules. Emerging evidence has suggested that neoantigens play a critical role in tumor-
specific T cell-mediated antitumor immune response and successful cancer immunotherapies. From a theoretical
perspective, neoantigen is an ideal immunotherapy target because they are distinguished from germline and could
be recognized as non-self by the host immune system. Neoantigen-based therapeutic personalized vaccines and
adoptive T cell transfer have shown promising preliminary results. Furthermore, recent studies suggested the
significant role of neoantigen in immune escape, immunoediting, and sensitivity to immune checkpoint inhibitors.
In this review, we systematically summarize the recent advances of understanding and identification of tumor-
specific neoantigens and its role on current cancer immunotherapies. We also discuss the ongoing development of
strategies based on neoantigens and its future clinical applications.
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Introduction
Tumor neoantigen, or tumor-specific antigen (TSA),
is the repertoire of peptides that displays on the
tumor cell surface and could be specifically recog-
nized by neoantigen-specific T cell receptors (TCRs)
in the context of major histocompatibility complexes
(MHCs) molecules [1–5]. From an immunological
perspective, tumor neoantigen is the truly foreign
protein and entirely absent from normal human or-
gans/tissues. For most human tumors without a viral
etiology, tumor neoantigens could derive from a var-
iety of nonsynonymous genetic alterations including
single-nucleotide variants (SNVs), insertions and dele-
tions (indel), gene fusions, frameshift mutations, and
structural variants (SVs) [2, 5]. For virally associated
tumors, such as human papillomavirus (HPV)–related
cervical or oropharyngeal cancer, Merkel cell

polyomavirus (MCPyV)–related Merkel cell carcinoma
(MCC) and Epstein-Barr virus (EBV)–related head and neck
cancers, any epitopes derive from open reading frames
(ORFs) in the viral genome also contribute to the potential
source of neoantigens [6–8]. In recent years, emerging evi-
dence has suggested that neoantigens play a pivotal role in
tumor-specific T cell-mediated antitumor immunity. As sum-
marized in several elegant reviews [2, 4, 5, 9], this evidence
includes, but is not limited to, (1) the occurrence of antitu-
mor immune response via T cell recognition of neoantigen,
(2) the relationship between tumor mutation/neoantigen bur-
den and clinical outcomes to immune checkpoint blockade,
and (3) the promising antitumor effects of therapeutic vac-
cines or adoptive T cell transfer based on neoantigen.
Unlike neoantigens, another two common types of

tumor antigens, named tumor-associated antigens (TAAs)
and cancer-germline antigens (CGAs), are not only
expressed on the tumor cell surface, they would also be
found on healthy or immune-privileged tissues (especially
reproductive tissues including testes, fetal ovaries, and
trophoblasts) with low levels of expression [3, 10, 11].
Therapeutic vaccines based on the TAAs or CGAs have
obtained dismal results mainly due to the central and
peripheral tolerance mechanisms [12]. Moreover, high-
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affinity TCRs for TAAs are preferentially depleted because
of positive selection, and the affinities of the remaining
TCRs for TAAs are lower than those for neoantigens and
other foreign antigens [13]. In addition, since TAAs or
CGAs could still have low levels of expression in normal
tissues, targeting them may result in severe autoimmune
toxicities related to immune activation in non-target
tissues, such as severe hepatitis, colitis, rapid respiratory
failure, renal impairment, and even treatment-related
death [14].
Theoretically, neoantigen is an ideal immunotherapy

target because they are distinguished from germline and
could be recognized as non-self by the host immune
system [5]. Neoantigen-specific immune reactions are
not easily subject to complex immune tolerance mecha-
nisms. Additionally, it may be less likely to trigger
autoimmunity because they do not express on normal
cells. Neoantigen-based therapeutic personalized vac-
cines and adoptive T cell transfer have shown promis-
ing preliminary results. Furthermore, recent studies
suggested the significant role of neoantigen in immune
escape, immunoediting, and sensitivity to immune
checkpoint inhibitors.
In this review, we systematically summarize the recent

advances of understanding and identification of tumor-
specific neoantigens and its role on current cancer
immunotherapies. We also discuss the ongoing develop-
ment of strategies based on neoantigens and its future
clinical applications. We do hope that this review could
help us better understand the ongoing development of
strategies based on neoantigens and its future clinical
applications.

Historical overview in the understanding of tumor
neoantigens
Currently, it is well-known that the immune system
possesses an extraordinary ability to distinguish self from
non-self, and recognize and target non-self antigens on
abnormal cells [4]. However, our understanding of
tumor neoantigens and its important role in antitumor
immune response is a long and tortuous process (Fig. 1).
We can go back to the late nineteenth century when
William Coley, father of cancer immunotherapy, firstly
attempted to leverage the patient’s immune system to
treat cancer [15, 16]. In spite of the tremendous out-
comes in individual cases, his findings were abandoned
due to the huge success of chemotherapy and radiother-
apy in control of various cancers. The investigation of
the immune system in carcinogenesis and control of
tumor growth during progression has recurred in the
early part of the twentieth century [17]. In 1943, Gross
et al. firstly showed that mice could be protected against
subsequent re-exposure from tumor cells after surgical
removal of the same tumors [18]. They also found that

analogous protection against tumor cells could be in-
duced by first exposing mice to lethally irradiated tumor
cells. Their findings revealed that the immune system
can recognize and eliminate malignant cells. Ten years
later, another group further found that mice were im-
mune against a second challenge with the same tumor
cells after resection of carcinogen-induced tumors, sup-
porting the idea of the existence of antitumor immunity
[19]. Nevertheless, the nature of antigens that could
substantially trigger antitumor immune response was
unclear during this period. Several decades later, De
Plaen and colleagues reported a significant finding that
antitumor T cells could recognize aberrant peptides
derived from tumor-specific mutations in a methylcho-
lanthrene (MCA)-induced mouse tumor model [20].
They further identified the first T cell–recognized
neoantigen by using a cDNA library screen. After that, a
series of neoantigens derived from somatic mutations
were identified in various human tumors including
melanoma and renal cell carcinoma [21, 22]. Another
significant advance in our understanding of neoantigens
occurred in the early twenty-first century, when Huang
et al. found nearly complete regression in a melanoma
patient after infusion of a cell product with a high pro-
portion of neoantigen-reactive T cells [23] and Lennerz
et al. reported that the T cells of the patient with melan-
oma were reactive against five mutated peptides result-
ing from somatic point mutations and T cells against
mutated epitopes was clearly predominated over the
response to TAAs [24]. Similarly, the Rosenberg group
found that neoantigen-specific T cells could persist at high
levels in both the tumor and peripheral blood 1month
after adoptive transfer in a patient with melanoma that
experienced a complete regression following adoptive
transfer of ex vivo–expanded autologous tumor-reactive
tumor-infiltrating lymphocytes (TILs)[25]. Collectively,
these studies provided initial evidence that neoantigens
play a vital role in the naturally occurring antitumor T cell
response. With the advent and wide application of
next-generation sequencing (NGS) technology, we have
obtained a more and more profound understanding on
tumor neoantigens. In 2012, two research groups inde-
pendently and firstly applied NGS technology to iden-
tify immunogenic neoantigens in mouse tumor models
[26, 27] and reported the protective effects of neoanti-
gen vaccines in B16 tumor model [27]. Soon after, NGS
technology was widely applied to explore T cell recog-
nition of neoantigens in cancer patients [28]. Subse-
quent studies indicated that T cell responses against
mutated antigens are frequently observed within TIL
products in types of cancers including melanoma, lung
cancer, colorectal cancer, cholangiocarcinoma, and
squamous cell carcinoma of the head and neck [29–33].
Nonetheless, whether the fraction of patients with
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detectable neoantigen-specific T cell responses is compar-
able across these tumor types remains largely unknown at
this moment. Recent advance in our understanding of
neoantigens is derived from the research of immune
checkpoint inhibitors targeting cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and programmed cell
death protein 1 (PD-1) on T cells. The cancer-immunity
cycle indicates that T cells recognized neoantigens dis-
played by MHCs on tumor cells is the first step to elimin-
ate the established tumor via using immune checkpoint
inhibitors [34, 35]. Mechanically speaking, there should be

a significant correlation between tumor neoantigen load
and clinical efficacy of immune checkpoint inhibitors. This
relationship was also demonstrated by several elegant
studies [33, 36–38]. However, some cancers with high
level of neoantigen load are not as sensitive to immune
checkpoint inhibitors as expected. It is likely to be associ-
ated with the neoantigen clonality [39] but true mechan-
ism of this phenomenon is not fully understood,
suggesting that we still need to pay more effort to deepen
our understanding of tumor neoantigens and its role in
antitumor immune response.

Fig. 1 Historical overview in understanding of tumor neoantigens
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Prediction and identification of tumor-specific
neoantigens
The genetic changes harbored by a neoantigen could
transform a self-protein into a functionally non-self-
protein. The neoepitopes being presented by MHC-I
could then drive immunogenic responses through
several potential mechanisms. First, neoepitopes de-
rived from mutations could improve MHC-I binding
affinity and then result in the presentation of MHC-
I ligands that would ordinarily not be presented
during T cell selection [40]. Second, neoepitopes
may increase the stability of the TCR–MHC-I inter-
action even with similar binding affinities as wild-
epitopes and can induce different immune responses
[41]. Third, mutation-induced changes to flanking
amino acid residues significantly interfere the pres-
entation of MHC-I viral epitopes. Theoretically, a
mutation harbored within a neoantigen could drive
the presentation of an adjacent unmutated MHC-I

ligand that has escaped immune tolerance due to
poor processing [42, 43].
Neoepitopes can be identified in various ways. Prior to

the advent of massively parallel NGS, labor-intensive in-
dividual cDNA library screening was used to screening
T cell–reactive neoepitopes [24]. When NGS became a
routine technique, the ability to identify tumor-specific
genetic mutations altering the protein coding regions
became rapid and high throughput, facilitating neoanti-
gen prediction. This is accomplished by applying ma-
chine learning algorithms that model aspects of the
MHC-I processing and presentation pathway to patient
tumor exome data to predict potential neoepitope tar-
gets [44, 45]. Predicted neopeptides can next be synthe-
sized and tested for reactivity by autologous T cells
using various assays such as ELISPOT, fluorescently la-
beled HLA tetramers, or barcode-labeled HLA multi-
mers [46]. A classic procedure for identification of
neoepitopes was shown in Fig. 2.

Fig. 2 Flowchart for tumor neoantigen prediction and detection of T cell–recognized neoantigens
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Several machine learning–based epitope prediction
tools are available, such as NetMHCpan [47], NetMH-
CIIpan [48], MHCflurry [49], ConvMHC [50], PLAtEAU
[51], and NetCTLpan [52]. For a neopeptide to become
a neoepitope, two properties must be fulfilled: the pep-
tide must be processed and presented by HLA, and the
presented peptide must be recognized by a suitable T
cell. Therefore, although these approaches show im-
mense potential, current neoepitope prediction methods
based on sequencing and predictions of epitope process-
ing and presentation result in a low rate of validation.
Bjerregaard et al. summarized published data from 13
publications on human neopeptides originating from
single amino acid substitutions for which T cell reactiv-
ity had been experimentally tested. Less than 3% were
reported to elicit the T cell response [53]. One major
reason may be that the machine learning algorithms are
highly dependent on the datasets available for training
and testing [54]. As a widely used resource, The
Immune Epitope Database and Analysis Resource
(IEDB) hosts a database of experimentally validated epi-
topes. But its datasets of validated T cell epitopes found
in databases are almost entirely formed of epitopes from
bacteria or viruses and were not obtained by standard-
ized experimental methodologies in cancer models [55].
Recent developments in HLA peptidomics for class I

and II HLA molecules have been relevant for the im-
provements in the available epitope datasets [56, 57].
Abelin et al. set up their own dataset (> 24,000 peptides)
and identified thousands of peptides bound to 16 differ-
ent HLA class I alleles to quantify the contribution of
factors critical to epitope presentation, such as protein
cleavage and gene expression [58]. A commercial plat-
form, EDGE (Epitope Discovery in cancer GEnomes)
was constructed on deep learning to a large (N = 74 pa-
tients) HLA peptide and genomic dataset from various
human tumors and could increase the positive predictive
value of HLA antigen prediction by up to nine-fold [59].
Another strategy to improve the ability to predict neoe-
pitope was the integration of potential immunogenicity
assessments to the prediction process. MuPeXI algo-
rithm ranks predicted neoepitopes by a priority score
that is based on inferred abundance, MHC binding
affinity, and an immunogenicity score based on similar-
ity to non-mutated wild-type peptide [60] EpitopeHunter
algorithm, which integrates RNA expression with im-
munogenicity prediction algorithm based on the hydro-
phobicity of the TCR contact region [61, 62]. Neopepsee
algorithm using a machine learning algorithm trained on
epitope features, including antigen processing and
presentation, amino acid characteristics, the binding dif-
ference between wild-type and mutant epitope, and simi-
larity to known epitopes, to predict the immunogenicity
and reduce the false-positive rate [63]. In conclusion, to

maximizing the probability of identifying clinically rele-
vant neoepitopes, multiple method epitope prediction
and advanced neoepitope quality metrics are warranted.

Neoantigens-directed immunoediting and
immune escape
Cancer immunoediting is a conceptual framework
integrating the immune system’s dual host-protective
and tumor-promoting roles. During cancer immunoedit-
ing, the host immune system shapes tumor fate in three
phases: elimination, equilibrium, and escape [64]. De-
cades of researches have revealed the dual role of the
immune system in tumorigenesis. Recent work on cellu-
lar or animal model and clinical study on one cancer
patient case [26, 64–67] have shown unequivocal
evidence that the immune system can facilitate cellular
transformation, prevent or control tumor outgrowth and
shape the immunogenicity of tumors [68–70]. Studies
using tumor exome sequencing to predict candidate
neoantigens provide insights into the contribution of
mutated peptide antigens encoded by somatic mutations
to tumor antigenicity in human cancers [28, 71].
Interactions between the immune system and tumors

have clear functional significance for tumor control, as
the immune system exerts evolutionary pressure on
highly immunogenic tumor clones through the process
of immunoediting [26, 65, 72], and antitumor immune
responses can be enhanced therapeutically by agents
such as immune checkpoint inhibitors [73]. However,
until recently, several multi-omics studies demon-
strated the direct impact from immune pressure and
immune editing on clonal evolution of tumor cells in
metastases, benefit from the development of bioinfor-
matic approaches on neoantigen prediction and on
tumor evolutional and metastasis model based on som-
atic mutational landscape from lesions from different
space and time [74–79]. A total of 258 samples from
different regions of 88 early stage, treatment-naïve
NSCLC were examined in the Tracking Cancer Evolu-
tion through Therapy (TRACERx) NSCLC study [77].
Similar to genomic heterogeneity, the immunological
landscapes of different regions of the same tumor can vary
dramatically. An increase in the ratio of observed-
to-expected neoantigens was noted from clonal to subclo-
nal mutations among tumors with a low level of immune
cell infiltration, which possibly reflects an ancestral
immune-active microenvironment that has subsequently
become cold. Tumors with high or heterogeneous levels
of immune cell infiltration had significantly lower levels of
expressed clonal neoantigens than those with limited
levels of infiltration (median 29% and 35% versus 41%;
P < 0.01). The pattern of neoantigen quantity and/or
quality changes reflecting the immunoediting was also
observed in other solid tumors including pancreatic
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cancer [79], colorectal cancer [74], melanoma [75], and
glioblastomas [78].
Tumor cells could evolve several mechanisms to es-

cape immune responses. On the one hand, cancers can
hijack mechanisms developed to limit inflammatory and
immune responses and escape the immuno-elimination.
On the other hand, the metabolic or genetic alterations
of tumor cells can render themselves invisible to the
immune system or can favor the generation of an extra-
cellular milieu preventing immune cell infiltration or
cytotoxicity. And the tumor clone possessing neoanti-
gens with potent immunogenicity tends to be eliminated
during immunoediting. There are several ways through
which immunogenic neoantigens could escape from
immunological surveillance. At the DNA level, chromo-
somal instability–induced copy number alterations may
drive the loss of neoantigens [77]. At the RNA level, the
neoantigen expression could be decreased for the pro-
moter hypermethylation, while epigenetics mechanism
could not account for all the transcriptomic neoantigen
depletion. Additional mechanisms of neoantigen tran-
scription repression need elucidation [76, 77, 80]. At the
protein level, the machinery to presenting antigen pep-
tides could be disrupted by mutations affecting HLA
heterozygosity, MHC stability, HLA enhanceosome, or
neopeptide generation [77, 81]. All these different mech-
anisms through which the tumor hiding target to evade
immune predation provide series potential clinical set-
ting worth to be exploited [82].

Preclinical and clinical neoantigen-based studies
Recent preclinical and clinical studies have shown that
neoantigen-based approaches are able to induce robust
antitumor immune responses in individual tumor micro-
environment (TME). The two main approaches targeting
tumor neoantigen that are well-established now include
neoantigen-based cancer vaccines and neoantigen-based
adoptive cell transfer (ACT) treatment. Also, combin-
ational therapies employing both neoantigen-based
approaches and immune checkpoint blockade (ICB) are
underway to overcome ICB-induced immune resistance
and maximize antitumor immune activity [83].

Neoantigen-based cancer vaccines
Personalized vaccines targeting neoantigens are designed
to prime and amplify neoantigen-specific T cell popula-
tions in vivo to augment adoptive antitumor immunity
among individuals. Actually, cancer vaccines were first
employed to target TAAs, which are overexpressed in
tumors but also expressed in normal tissues [84]. How-
ever, previous clinical trials of TAA-based cancer vac-
cines failed to demonstrate durable and effective
beneficial efficacy due to the deficient T cell priming in
TME [85]. In contrast, neoantigens detected via NGS or

mass spectrometry could result in decreased systematic
immune tolerance and improved safety profile [56].
Thus, enthusiasm on neoantigen-based vaccines is
increasing rapidly, with several recent preclinical and
clinical studies demonstrating its potent activation of
antitumor immune responses.
Recent preclinical studies have shown the efficacy and

feasibility of neoantigen-targeted cancer vaccines on murine
tumor models among melanoma [86–88], colon carcinoma
[89], esophageal squamous cell carcinoma [90], sarcoma
[91], and glioma [92]. Theresa et al. reported the potential
role of IDH1 (R132H) mutation–specific vaccination for
glioma treatment. They synthesized neopeptides containing
IDH1 (R132H) p123-142 mutated region to bind to trans-
genic human MHC-II molecules in glioma mouse model.
Results after vaccination indicated that neopeptide vaccine
lead to effective mutation-specific antitumor immune
responses in the mouse model with IDH1 (R132H)-
mutated gliomas [92]. In addition, a synthetic DNA
vaccine targeting multi-neoantigens reported by Eliza-
beth et al. also showed the potent ability of immune
activation. The electroporation-mediated DNA vaccine
delivery in this research was proved to be immuno-
genic and induced predominantly MHC-I restricted
CD8+ T cell responses in C57BL/6 mice, resulting in the
direct killing of tumor cells by the expanded neoantigen-
specific T cells [88]. Thus, the DNA platform may have
unique advantages to prime T cell activation for neoanti-
gen-based vaccines.
The encouraging results from preclinical studies have

also accelerated the development of clinical trials of
neoantigen-based vaccines [93–98]. The first reported
phase I clinical trial of neoantigen-based vaccines was
from Beatriz’s team in 2015 [93]. They found that den-
dritic cell (DC) vaccine could promote the presentation
of neoantigens by HLA-A*02:01 in three patients with
advanced melanoma. Soon after, two significant studies
published by Ott et al. and Sahin et al. in 2017 con-
firmed the potent role of neoantigen-based vaccines in
melanoma treatment [96, 97]. Ott et al. employed a syn-
thetic long peptide (SLP) vaccine targeting up to 20 pre-
dicted personal tumor neoantigens into six melanoma
patients, among whom four patients did not have tumor
recurrence within 25months after vaccination and two
other patients with recurrence achieved complete tumor
regression (CR) when they received PD-1 antibodies
[96]. Sahin et al. generated the first personalized RNA
mutanome vaccines for melanoma treatment. Of the 13
patients, a third of patients achieved CR to RNA
vaccination combined with PD-1 blockade therapy and
detected enhanced neoantigen-specific T cell priming in
vivo [97]. Apart from melanoma, most recently two co-
published works in Nature expanded the potential role
of neoantigen-based vaccines in the treatment of human
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glioblastoma [94, 95]. In a phase I study reported by
Keskin et al., eight enrolled glioblastoma patients with
multi-epitope neoantigen vaccination presented an in-
creased number of neoantigen-specific CD4+ and CD8+

TILs [95]. In addition, another phase I trial showed that
personalized neoepitope vaccine (APVAC2) induced pre-
dominantly CD4+ Th1 cell responses among 15 glio-
blastoma patients [94]. These findings demonstrated
that neoantigen-based vaccines were feasible for “cold”
tumors such as glioblastoma, which commonly have low
mutation load and immunosuppressive TME. To date,
several phase I/II clinical trials of neoantigen-based can-
cer vaccines are underway among various types of can-
cers (Table 1). Collectively, neoantigen vaccines based
on DNA, RNA, SLP, and DC have shown promising re-
sults of neoantigen-specific T cell infiltration and re-
sponses both in preclinical and clinical studies.

Neoantigen-based adoptive T cell transfer
As an alternative to neoantigen vaccines, the neoanti-
gen-based ACT approaches treat patients with T cell
products manufactured in vitro that contain abundant
group of neoantigen-specific T cells [2]. Compared to

neoantigen-based vaccines, neoantigen-based ACT ther-
apies have several potential advantages including the
higher population of neoantigen-reactive T cells (NRTs)
and the less immunosuppressive effects from TME dur-
ing the amplification phase of NRTs.
Since the first report from Rosenberg group in 2015

that neoepitopes derived from somatic mutations in
common gastrointestinal cancers could be immunogenic
for personalized TILs recognition [99], several studies
have confirmed that neoantigens derived from immuno-
genic mutations induced neoantigen-specific T cell acti-
vation among lung cancer, head and neck squamous cell
carcinoma, colorectal cancer, breast cancer, and lymph-
oma [100–105]. However, TILs could easily acquire a
dysfunctional state and result in very modest replicative
capacity and immune responses. Thus, it may be more
advantageous to transduce neoantigen-specific TCR
sequences into patients’ peripheral blood lymphocytes
(PBLs). Data from a preclinical study proved that TCR-
engineered PBLs reactive with KRAS mutant neopep-
tides reduced xenograft mouse model of melanoma and
other cancers, supporting the feasibility of TCR-T
therapy [106].

Table 1 Current clinical trials of neoantigen-based cancer vaccines

Interventions NCT number Phase Enrollment status Cancer types Combinations

Neoantigen vaccine NCT03558945 I Recruiting Pancreatic tumor None

Neoantigen vaccine NCT03359239 I Recruiting Urothelial/bladder cancer Atezolizumab

Neoantigen vaccine NCT03645148 I Recruiting Pancreatic cancer GM-CSF

Peptide vaccine NCT03558945 II Not yet recruiting TNBC Nab-paclitaxel, Durvalumab

Peptide vaccine NCT03929029 I Not yet recruiting Melanoma Nivolumab, ipilimumab

Peptide vaccine NCT03715985 I Recruiting Solid tumors None

Peptide vaccine NCT01970358 I Active, not recruiting Melanoma None

Peptide vaccine NCT03639714 I/II Recruiting Solid tumors Nivolumab, ipilimumab

Peptide vaccine NCT03956056 I Not yet recruiting Pancreatic cancer Adjuvant chemotherapy

Peptide vaccine NCT02287428 I Active, not recruiting Glioblastoma Radiation therapy

Peptide vaccine NCT02950766 I Recruiting Kidney cancer Ipilimumab

Peptide vaccine NCT03219450 I Not yet recruiting Lymphocytic leukemia Cyclophosphamide

Peptide vaccine NCT03422094 I Recruiting Glioblastoma Nivolumab, ipilimumab

DC vaccine NCT03871205 I Not yet recruiting Lung cancer None

DC vaccine NCT02956551 I Recruiting NSCLC None

DC vaccine NCT03674073 I Recruiting Hepatocellular carcinoma Microwave ablation

DC vaccine NCT03300843 II Recruiting Solid tumors None

RNA vaccine NCT03908671 Not Applicable Not yet recruiting Esophageal cancer, NSCLC None

RNA vaccine NCT03480152 I/II Recruiting Solid tumors None

RNA vaccine NCT03468244 Not Applicable Recruiting Solid tumors None

DNA vaccine NCT03532217 I Recruiting Prostate cancer Nivolumab, Ipilimumab

DNA vaccine NCT03122106 I Recruiting Pancreatic cancer Adjuvant chemotherapy

DNA vaccine NCT03199040 I Recruiting TNBC Durvalumab

GM-CSF granulocyte-macrophage colony stimulating factor, TNBC triple negative breast cancer, NSCLC non-small cell lung cancer, DC dendritic cells
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As to clinical studies of neoantigen-based ACT therap-
ies, the Rosenberg group has successfully treated patients
with this strategy in melanoma and other malignancies
[30, 107–110]. They first treated a patient with metastatic
epithelial cancer via the adoptive transfer of ERBB2 inter-
acting protein (ERBB2IP) mutation–reactive CD4+ TILs
to achieve tumor regression in 2014 [110]. After that,
Rosenberg et al. also identified TILs and memory T cells
from patient peripheral blood which recognized KRAS-
and TP53-mutated neoepitopes to treat patients with
epithelial cancers [108, 109]. Additionally, they observed
the promising results from clinical trials of metastatic
colorectal and breast cancer. Complete and durable tumor
regressions were observed in patients with breast cancer
treated with four neoantigen (SLC3A2, KIAA0368,
CADPS2, and CTSB)-reactive TILs and in a colorectal
patient treated with mutant KRAS G12D reactive CD8+

TILs [30, 107]. All these works supported a significant role
of neoantigen-specific T cells in cancer immunotherapies.
The treatment applications and effects of neoantigen-re-
active TILs could be expanded and enhanced through
transduction of specific TCR sequences into other naïve
CD8+ T cells to manufacture neoantigen-specific TCR-T
cells for patients with the same mutations. More recently,
our group constructed an inventory-shared neoantigen
peptide library of common solid tumors to match the
hotspot somatic mutations. Six of 13 patients using this
novel neoantigen identification strategy achieved tumor
regression. One metastatic thymoma patient achieved CR
more than 29months after NRT treatment [111]. Gener-
ally, developments of efficient and timely procedures to
identify and amplify neoantigen-specific T cells also play
an important role for augmenting personized neoantigen-
based immunotherapies.

Combinational therapies
Neoantigen-based vaccine and ACT treatment showed
promising results in preliminary investigations, but they
still need to combine with other therapeutic strategies to
further enhance the antitumor effect due to the inevitably
immunosuppressive effect of inhibitory immune check-
points in TME [9, 112, 113]. As we summarized in Table
1, current combinational therapies could be roughly di-
vided into the combination with other immunotherapies
and other conventional therapies. Since PD-1/PD-L1 path-
way exerts immunosuppressive effects on CD8+ T cells
mediate antitumor immunity, neoantigen-based vaccine
and ACT treatment plus anti-PD-1/PD-L1 antibodies
could yield a strong antitumor immune response. In the
preliminary studies, two research teams independently
demonstrated that PD-1/PD-L1 blockade could markedly
improve neoantigen-based vaccine-induced immune
response [96, 97]. Specifically, Sahin et al. observed the
long-lasting complete response in a patient treated with

neoantigen-based vaccine plus PD-1 blockade therapy
[97]. Their results suggested that it is valuable to test the ef-
ficacy of neoantigen-based vaccine or ACT in combination
with checkpoint blockade and other immunotherapies.
Theoretically, some conventional therapies could result in
the release of tumor-associated antigens and neoantigens
[114–117], suggesting the possibility for synergy with
neoantigen-based vaccine therapy. Moreover, some chemo-
therapeutic drugs have been shown to augment the antige-
nicity and immunogenicity of tumor cells via altering
neoantigen repertoire, increasing antigen production, im-
proving antigen presentation, and augmenting T cell traf-
ficking and responses [116–119]. Herein, we should not
simply consider chemotherapy as tumor suppressive but
treat it as the positive modulation of the immune system
[120]. Several phase I trials are ongoing to investigate the
safety and efficacy of neoantigen vaccine therapy plus
chemotherapy in adjuvant setting (Table 1). These results
are eagerly anticipated.

Biomarker for immune checkpoint inhibitors
Immune checkpoint blockade has shown significant
therapeutic responses against tumors containing high
tumor mutational burden (TMB) or tumor neoantigen
burden (TNB) [2, 33, 37]. A series of clinical trials re-
ported that patients with NSCLC or melanoma had
high objective responses to immune checkpoint block-
ade. Both two tumor types have the highest somatic
mutation burdens among common solid tumors [121,
122]. In contrast, cancers with low TMB/TNB such as
prostate cancer have shown little benefit from immune
checkpoint inhibitors. These results provided additional
evidence for the significance of neoantigens in the anti-
tumor immune response. Notably, it was not the linear
association between TNB and immune checkpoint
inhibitors response. For example, some cases with high
neoantigen burden showed no response to immune
checkpoint therapies, as well as some with low neoanti-
gen load, were susceptible to immune checkpoint
inhibitors [123]. Interestingly, if we put two main
factors including the likelihood of neoantigen presenta-
tion by the MHC and subsequent recognition by T cells
into a neoantigen fitness model, we observed that this
model could better predict survival in anti-CTLA-4-
treated patients with melanoma and anti-PD-1-treated
patients with lung cancer [124]. In addition, neoanti-
gens may need to be expressed in every tumor cell in
order to be efficiently targeted (so-called clonal neoan-
tigen). An interesting study by McGranahan et al. re-
ported that the therapeutic effect of immune checkpoint
inhibitors was enhanced in NSCLC and melanoma
enriched for clonal neoantigens, suggesting the significant
role of neoantigen heterogeneity in antitumor immunity
and supporting therapeutic developments targeting clonal
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neoantigens [39]. Taken together, these results revealed
that high TNB represents merely a higher likelihood of
the presence of immunogenic neoantigen, suggesting that
neoantigen landscape alone is insufficient in predicting
immune checkpoint inhibitor responses.

Resistance mechanism for immune checkpoint inhibitors
Considering the significant role of tumor neoantigens in
response to immune checkpoint inhibitors, it is reason-
able to suppose that the evolution of neoantigen land-
scape would mediate resistance to immune checkpoint
inhibitors. A retrospective study included 42 patients
with NSCLC treated with PD-1 antibody monotherapy
or combined PD-1 and CTLA-4 blockade and examined
the evolving neoantigen landscape during the emergence
of acquired resistance [73]. Among four consecutive
cases that developed acquired resistance, the authors
found that neoantigen loss via elimination of tumor sub-
clones or via deletion of chromosomal regions containing
truncal alterations, was associated with changes in T cell
receptor clonality, then resulting in acquired resistance to
immune checkpoint blockade. These results imply that
the dynamics of neoantigen loss may be one of potential
resistance mechanism. Widening the breadth of neoanti-
gen reactivity may delay the development of acquired
resistance to immune checkpoint blockade. However, it
should be pointed out that this study had several limita-
tions including small sample size, possibility of tumor het-
erogeneity, and analysis of samples from a defined period
of relatively early acquired therapeutic resistance. Future
investigations with a larger number of patients that devel-
oped acquired resistance to immune checkpoint inhibitors
are still needed.

Conclusions
In conclusion, emerging evidence suggests that tumor
neoantigen plays a pivotal role in immune escape, antitu-
mor immune response and successful cancer immuno-
therapies. Both neoantigen-based vaccine and ACT
treatments show very promising antitumor effect together
with high specificity and safety in preliminary studies.
Combinatorial approaches of neoantigen-based therapies
with other immunotherapies (e.g., immune checkpoint
inhibitors) and conventional treatments are ongoing, and
the results are eagerly anticipated. With a better under-
standing of biological properties and role of neoantigen in
antitumor immunity, there are abundant reasons to
believe that neoantigen-based therapeutic strategies have a
bright future in cancer immunotherapies.
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