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Abstract

Posttraumatic stress disorder is developed by exposure to a threatening and/or a horrifying event and characterized
by the presence of anxiety, hyperarousal, avoidance, and sleep abnormality for a prolonged period of time. To
elucidate the potential molecular mechanisms, we constructed a mouse model by electric foot shock followed by
situational reminders and performed transcriptome analysis in brain tissues. The stressed mice acquired anxiety-like
behavior after 2 weeks and exaggerated startle response after 4 weeks. Avoidance latency and freezing behavior
were sustained up to 5 weeks post stress and abnormal static behavior was observed during the sleep period. RNA
sequencing was performed in two of the emotional regulatory regions, anterior cingulate cortex and amygdala, at 2
and 5 weeks post stress. More than 1000 differentially expressed genes were identified at 2 weeks in both regions.
The number of the regulated genes remained constant in amygdala at 5 weeks post stress, whereas those in
anterior cingulate cortex were plummeted. Although synaptic remodeling and endocrine system were the most
enriched signaling pathways in both anterior cingulate cortex and amygdala, the individual gene expression profile
was regulated in a region- and time-dependent manner. In addition, several genes associated with PTSD involved
in Hypothalamic-Pituitary-Adrenal axis were differentially regulated. These findings suggested that global gene
expression profile was dynamically regulated in accordance with the disease development stage, and therefore
targeting the distinct signaling molecules in different region and development stage might be critical for effective
treatment to PTSD.

Keywords: Synaptic remodeling, Neuroendocrine, Long-term regulation, Anxiety, Avoidance, Hyperarousal, Sleep,
RNA-seq, Amygdala, Anterior cingulate cortex

Introduction
Post-traumatic stress disorder (PTSD) is a psychiatric dis-
order defined by profound disturbances in cognition, emo-
tion, behavior and physiological function in response to a
life threatening or a horrifying traumatic event. The symp-
toms of PTSD are characterized by three long-lasting
symptomatic clusters (DSM-5): (1) re-experiencing

(intrusive thoughts, recurrent nightmares, flashbacks and
reactivity to reminders of the trauma); (2) avoidance and
emotional numbness (avoiding stimuli associated with
trauma and anhedonia); and (3) hyperarousal (hypervigi-
lance, exaggerated startle response and sleep disturbance).
PTSD patients may also exhibit impaired cognition, work-
ing memory, and reduced social activities. Another charac-
teristic of PTSD is that those symptoms emerge long after
traumatic events in some patients, suggesting that disease
can develop after an extended asymptomatic period.
Anxiety disorders including PTSD encompass hetero-

geneous conditions that are associated with abnormal-
ities in brain regions controlling fear response such as
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the medial prefrontal cortex, amygdala (AMY), hippo-
campus, and nucleus accumbens [1, 2]. Changes in activ-
ity and functional connectivity of these brain regions
lead to the development and maintenance of anxiety
disorders [3–5]. AMY is a critical brain region involved
in the detection of threat, fear learning and expression,
and heightened emotional memory. The exaggerated
activity in AMY following traumatic events is correlated
with the severity of symptoms in PTSD patients. AMY is
modulated by the cortical influence from medial
prefrontal cortex. The altered activity in the anterior cin-
gulate cortex (ACC), a subregion of medial prefrontal
cortex, has been demonstrated in PTSD using functional
MRI [6]. With extensive connection to limbic structures
including AMY, ACC is thought to be the direct top-
down regulator of PTSD susceptibility through modulat-
ing AMY activation to threatening stimuli [7, 8]. In par-
ticular, dorsal ACC is thought to facilitate the expression
of conditioned fear and increased neuronal activity in
PTSD during fear conditioning [2, 9]. The volume of
ACC was consistently found to decrease in PTSD,
however some studies have revealed hyperactivation of
the ACC rather than hypoactivation [10]. Therefore, it is
important to investigate the functional activity of ACC
in relation to AMY hyperactivation in PTSD.
Recent genomic profiling and neuroimaging studies

for human PTSD have uncovered several candidate
genes for the pathogenesis, however detailed investiga-
tion on gene regulation and the underlying mechanisms
are still limited [11–13]. Molecular and cellular encoding
of traumatic events and behavioral responses can be
reflected by the changes of synaptic plasticity. Specific-
ally, signaling molecules associated with synaptic
transmission and plasticity in connecting to AMY are
implicated as primary substrates for fear learning and
memory. Alteration in glutamatergic and GABAergic
neurotransmission contributes to abnormal behavioral
responses [14]. In addition, downstream signaling com-
ponents, such as MAPK, cAMP and calcium mediated
signaling molecules are involved in synaptic plasticity
[15]. The alteration in several neuromodulatory systems
such as endocannabinoid signaling, Wnt signaling and
ErbB signaling can affect fear memory [16] and anxiety-
like behavior by synaptic remodeling in medial pre-
frontal cortex [17] and AMY [18, 19].
Hypothalamic-pituitary-adrenal (HPA) axis plays a piv-

otal role in stress response upon exposure to emotional
or physical stressors, and its feedback loop mediated by
cortisol is altered in PTSD [20, 21]. In fact, human gen-
etic studies identified several PTSD-associated genes are
involved in HPA axis and cortisol, for instance FKBP5
and corticotropin releasing hormone receptors [22].
Oxytocin and thyroid hormone signaling pathways are
modulated by cortisol and the imbalance may cause

emotional lability, impatience, anxiety and sleep distur-
bances [23, 24].
As PTSD diagnostic criteria are not met at least 1month

after traumatic event according to DSM-5, sustained psy-
chological abnormality is one of the prominent features.
However, the molecular mechanisms underlying these
psychological changes are not well-addressed. In this study
we employed genome-wide unbiased gene analysis using
RNA-seq to characterize the regulation of differentially
expressed genes in a stress induced PTSD-like mouse
model and found that several signaling pathways involved
in synaptic remodeling and endocrine systems, as well as
PTSD-associated genes were regulated in a region- and
time-dependent manner.

Materials and methods
Animals
Male, 8 to 10 weeks old C57BL/6J mice were purchased
from Jackson Laboratories (Bar Harbor, ME). Animals were
maintained under standard conditions of controlled
temperature (23 °C) and housed in a 12 h light/dark cycle
(light on at 6 AM) with access to water and food ad
libitum. They were group housed with 3 to 5 mice per cage
and habituated to the vivarium for at least 3 days. Experi-
mental procedures were carried out in accordance with
NIH guidelines and approved by the Uniformed Services
University Animal Care and Use Committee. One hundred
twenty-four mice in total were used for performing various
behavioral tests (Fig. 1) and molecular analyses.

Foot shock induction
Animal model for PTSD-like symptoms was constructed
by foot shock induced fear conditioning and re-exposure
to the shock chamber as previously described [25, 26].
Briefly, trauma procedure consisted of a single exposure
to an inescapable electric foot shock (Day 0) followed by
re-exposure to the shock chamber every week until 4
weeks (Fig. 1). Mice received 15 s handling for 3 consecu-
tive days before given foot shock. On the shock day, each
animal was placed in the light compartment. After a 2min
adaptation period, the door to the dark shock apparatus
made of plexiglass (17 cm× 17 cm× 25 cm) was open to
let the animal entering the shock chamber. After another
5min adaptation in the closed chamber, the animal
received inescapable foot shock (1.5mA× 2 s with 2min
interval for 8 times). The control group received the same
procedures without stress. Animals were removed from
the apparatus 1min after the last shock.

Behavioral test
All the behavioral tests were performed during the light
on phase from 8AM to 3 PM. Mice were given one test a
day to avoid the potential interference from the other tests
(Fig. 1). Animal cages were moved to a testing room at
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least 1 h prior to each test. After completion of the test
session, the behavioral apparatus and chamber were
cleansed with 70% ethanol, and then dried by hand-fan
completely.

Avoidance latency/situational reminder and freezing tests
For measuring avoidance latency, animals were placed in
a compartment adjacent to a foot shock chamber. After
30 s acclimation, the door was open and the time spent
before entering foot shock chamber was measured
within a period of 2 min. Test was terminated once
mouse entered, and the mouse was immediately
removed from the shock chamber to a new cage. For
measuring freezing time, animals in 5 weeks post stress
were placed inside chamber with the same context, and
mouse behavior was monitored for 5 min with the digital
video system. The data was analyzed by ANY-maze
software (Stoelting Co, Wood Dale, IL) to determine
freezing time and the number of episodes.

Open field test
Each mouse was placed in the center of a cubic chamber
(40 cm × 40 cm × 35 cm) with a black Plexiglas wall
under dim light in the testing room. The position and
movement of animals were monitored for 10 min by
video camera installed above the chamber. Data analyses
were carried out by ANY maze software to determine
the moving velocity, total travel distance, the time spent
in the center zone, the entry number to the center zone.
Center zone was assigned in a 20 cm × 20 cm square area
in the center of arena.

Elevated plus maze test
The apparatus consisted of four arms (34 cm × 5 cm
width), with two arms open and two closed by gray walls
(15 cm height) arranged in the opposite side of the same
type. The platform was located 50 cm above the floor of
the testing room illuminated and four arms were
connected in the center platform (5 cm × 5 cm), where
animal was placed facing to a closed arm. The position

and movement of animal was monitored for 5 min by
video camera. An entry was defined if more than half of
the animal’s full body entering the open arm. The time
spent in the open arms and number of visits to the open
arms were analyzed using ANY-maze.

Light/dark box test
The light–dark box was made of white and black opaque
Plexiglas (40 × 20 × 30 cm light chamber, 23 × 20 × 30 cm
dark chamber). The chambers were connected by a 6 ×
6 cm door in the middle of the wall separating the two
chambers. Animals were placed in the middle of the
dark chamber with the door closed. Video monitoring
was started when the door was open and continued for
10 min to measure transition number into the lit area,
retention time in lit, and travel distance inside lit using
ANY-maze software.

Acoustic startle test
Startle response was measured using ventilated startle
chambers (SR-LAB system, San Diego, CA). Sound levels
within each chamber were measured using a sound-level
meter to ensure consistent presentation. Animals were
placed in a Plexiglas cylinder (∅4.7 cm × 10 cm long)
inside a chamber (29 cm× 29 cm× 29 cm). The cylinder
resting on a platform was connected to a piezoelectric ac-
celerometer to monitor movement. Each test session was
started with a 3min acclimation period to background
white noise of 70 dB, followed by 10 times acoustic stimu-
lus (120 dB × 20ms) with a 1min interval. Animals were
returned to home cage immediately after test session. Data
analyses were carried out by SD software (SR-LAB system)
and summarized with Microsoft Excel. The latency to first
peak, maximum amplitude, and average startle amplitude
from 1ms to 100ms were analyzed.

Home-cage immobility test
Video, magnet, photobeam, or infrared sensor system has
been used to measure home cage activity [27]. This system
has been applied for monitoring sleep-wake behavior
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3 wk
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D-4 thru D-1
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Long term 
monitoring
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Fig. 1 Timeline of PTSD-like model construction and behavior tests. C57BL/6J mice at 8–10 weeks of age were subjected to acclimation followed
by electric foot shock. The control mice underwent the same acclimation procedure without foot shock. Avoidance test and situational reminder
(AV/SR) were weekly performed, and the freezing test was done at 5 weeks post stress (PS). Open field test (OF) and elevated plus maze test
(EPM) were performed at 2 weeks and 4 weeks PS. Light/dark box test (LDB) was performed around 4 weeks PS. Acoustic startle response test
(ASR) was performed around 2 weeks and 4 weeks PS, and locomotive activity test were carried out from 4 weeks to 5 weeks PS
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instead of polysomnography [28, 29]. Group housed ani-
mals were separated individually into a cage (20 cm× 38
cm) and nourished with water gel and food ad libitum for
3 days. One day prior to the test, the cages were placed on
a test platform before 6 PM to adapt the environment.
The room light was turned off at 6 PM and turned on at 6
AM the following day, in accordance with the previous
light-dark cycle. Locomotive activity was monitored
immediately after 6 AM with the video camera system and
continued for 11.5 h. Data was analyzed numerically by
ANY maze software to determine the immobile period.
Locomotive activity during the entire test period was dis-
sected with a 2min interval to assess immobile period
which showed no locomotion within each 2min-section.
Total travel distance and total immobile time were mea-
sured by ANY maze. Short immobile episode was deter-
mined as the number of immobile periods of 1 or 2
sequential immobile sections.

RNA extraction
Mice were sacrificed after deep anesthetization from 10
AM to 2 PM. Brains were immediately fresh frozen on dry
ice and stored at − 80 °C. Coronal section of the brain at
300 μm was cut at − 20 °C. Three adjacent brain sections
of bilateral amygdala (AMY) (Bregma − 0.94mm to −
1.84mm) and those of bilateral anterior cingulate cortex
(ACC) (Bregma + 1.34mm to + 0.44mm) [30] were col-
lected by punching with 1mm-diameter brain punch
based on the method described by Palkovits [31]. Total
RNAs from AMY and ACC were isolated by Trizol
(Invitrogen, Carlsbad, CA) and purified with the
RNeasy Mini Kit (Qiagen, Germantown, MD). The
RNA concentration was measured by Qubit 3.0
Fluorometer (Invitrogen).

RNA-seq
Library preparation for RNA-seq was performed by True-
Seq stranded mRNA sample preparation kit (Illumina,
San Diego, CA) starting from 600 ng of total RNA. Se-
quence data were generated by Illumina 3000 and Next-
Seq platforms. We converted raw BCL files to FASTQ
files and performed multiplexing using Illumina bcl2fastq2
software (version 2.17). Sequencing quality control was
done by Fastqc program. We aligned the resulting FASTQ
files to mm 10 mouse reference genome by STAR aligner.
Quantification to read counts, FPKM and TPM was done
by RSEM program. With raw read counts matrix as input,
we identified genes that were differentially expressed by
DESeq2 R package, using unpaired two-class significance
analysis and a false discovery rate threshold of 0.05. Gene
expression visualization was plotted by heatmap R pack-
age. KEGG Pathway and GO analysis were performed by
the Database for Annotation, Visualization and Integrated

Discovery (DAVID) v6.8 [32] or “DOSE” R Bioconductor
package [33].

Statistics
The GraphPad Prism 7 (GraphPad Software Inc., San
Diego, CA) was used for statistical analysis. The weekly
avoidance latency test was analyzed by two-way ANOVA
followed by Bonferroni’s multiple comparison test. The
statistical comparison between the two groups was de-
termined by Welch’s unpaired two tailed t-test. All data
are expressed as mean ± SEM. Statistical significance was
set at p < 0.05. *, **, and *** depicting p < 0.05, p < 0.01,
and p < 0.001, respectively.

Results
Sustained avoidance and fear memory in foot shock
stressed mice
For assessment of avoidance behavior, latency till moving
into the same foot shock chamber from the light compart-
ment was measured every week. The latency of stressed
mice was longer than that of control mice starting from the
first week and sustained for at least 4 weeks (F4,104 = 2.782,
p = 0.0305) (Fig. 2a). Notably, almost all stressed mice did
not move out from light compartment to the stressed
chamber except for the first trial (Fig. 2a). When placed
inside the same shock chamber at 5 weeks after stress, the
stressed mice possessed a longer freezing time compared to
the control mice (p = 0.0038) (Fig. 2b), although the fre-
quency of freezing episode was not significantly altered.

Anxiety-like behavior emerged at 2 weeks post stress
As anxiety is a typical behavioral feature in PTSD, we
examined if stressed mice acquired and sustained anxiety
using several behavioral tests. Open field test was per-
formed in a black walled squire space for 10 min. At 2
weeks PS, the stressed mice showed decreased retention
time in the center zone and entry number to the center
zone (p = 0.0056) (Fig. 3a, b). Total travel distance was
significantly shorter in the stressed mice than control
mice (p = 0.0006) (Fig. 3c). At 4 weeks PS, the stressed
mice showed significant reduction in retention time in
the center zone (Fig. 3d, p = 0.0126), entry number to
the center zone (Fig. 3e, p = 0.0304), and total travel
distance (Fig. 3f, p = 0.0047). Shorter travel distance was
unlikely caused by motor deficit of the stressed mice, since
maximum running speed was not impaired (Fig. 3g). In
the elevated plus maze test, the stressed mice spent less
time in open arms than control mice at 2 weeks PS, des-
pite the significant difference was not reached (Fig. 4a).
The entry number to open arms was significantly lower in
the stressed mice (p = 0.0095) (Fig. 4b). When examined
at 4 week PS, there were no significant differences in both
time spent and entry number in open arms between the
stressed mice and control mice (Fig. 4c and d). To further
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examine the anxiogenic behavior at these time points, we
also performed a light/dark box test. It was shown that
the number of transitions to light area and travel distance
in light area during 10min test period were significantly
reduced in the stressed group than the control group
(Fig. 5a and c). Although time spent in light area was not

significantly different (Fig. 5b), the stressed mice preferred
dark protected area and less explored in an unprotected
area compare to control mice at 4 weeks PS. Overall, these
tests demonstrated that the stressed animals started to
show anxiety-like behavior at 2 weeks PS and continued
till 4 weeks PS.
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Fig. 3 Anxiety-like behavior assessed by Open field test. Mice were placed in a cubic square under dim light and allowed to move freely for 10
min. Mice movement related to anxiety was assessed based on the time in center zone (a and d), entry number to center zone (b and e), total
travel distance (c and f), and maximum speed (g). Panels a, b, and c show the results at 2 weeks PS, panels d-g show those at 4 weeks PS.
Unpaired two-tailed t-test was performed. Data are represented as mean ± S.E.M. (n = 24/group at 2 weeks PS, n = 34/group at 4 weeks PS)
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Hyperarousal symptoms in stressed mice
Acoustic startle response against 120 dB stimulus re-
peated for ten times were monitored by a motion sensor
system, and the maximum peak amplitude, latency to
the first peak, and average amplitude were measured. As
shown in Fig. 6a, both control and stressed mice showed
a similar pattern to startle response. The average ampli-
tude of the maximum peak out of 10 trials was not dif-
ferent between control and stressed mice at 2 weeks PS.
The average amplitude from 1ms to 100 ms was also
similar despite a slight increase observed in the stressed
mice (Fig. 6c). However, at 4 weeks PS the peak amplitude
was significantly higher in the stressed mice (p = 0.0048)
(Fig. 6d), and the average amplitude was also greater in
stressed mice than control mice (p = 0.0440) (Fig. 6e).
There was no difference in startle response latency be-
tween the stressed and control mice at either test period.
These results suggested that startle response was exagger-
ated in stressed animals at relatively later time point.

Increased frequency of short immobile episodes during
the sleep period
Sleep disturbance is a common feature and impacts the
pathophysiology of PTSD and other psychiatric diseases
[34]. We characterized the sleep-wake behavior of stressed
mice with long-term video monitoring in their home cages.
There was no significant difference between control and
stressed mice in total immobile time during the entire in-
active phase (Fig. 7a). However, the number of short immo-
bile episodes was significantly larger in the stressed mice
than the control mice (p = 0.0353) (Fig. 7b), suggesting that
the sleep/wake cycle was disturbed in stressed mice. The
total travel distance showed no significant difference be-
tween the control and stressed mice, indicating the locomo-
tive activity was not impaired in stressed animals (Fig. 7c).

Differentially expressed genes in ACC and AMY
We performed genome wide RNA expression analysis in
the anterior cingulate cortex (ACC), which is involved in
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the modulation of emotional and fear encoding and con-
solidation. Of the 3233 differentially expressed genes
(DEGs) in ACC at 2 weeks post stress (PS), 1335 were
upregulated, and 1898 were downregulated (Additional
file 1: Figure S1A). However, at 5 weeks PS the numbers
plunged to 43 (Additional file 1: Figure S1B) and only 16
of them were overlapped between these time points
(Additional file 1: Figure S1C). In AMY 2 weeks PS,
there were 1063 DEGs, in which 873 genes were pre-
dominantly down-regulated (Additional file 2: Figure
S2A). Different from ACC, there were a substantial
number of DEGs in 5 weeks PS (Additional file 2: Figure
S2B). Of more than 1000 DEGs, approximately 9% (94
DEGs) were overlapped between 2weeks and 5weeks PS as
shown in the Venn diagram (Additional file 2: Figure S2C).

Regulation of PTSD associated genes in the mouse model
Several human genomic studies have been conducted re-
cently to identify candidate genes for PTSD patients
[35–38]. We found that ten genes associated with PTSD
were regulated in either AMY or ACC (Table 1). Several
of these genes were involved in HPA axis and gluco-
corticoid regulation, which include Crhr1 and 2, Fkbp5,
Rora, Sgk1, and Stat5b. Other genes including Adcy8,
Cacna1c, Klhl1, and Shank1 were involved in synapse
plasticity and regulation. Gene expression regulation in
our animal model was correlated, at least to some ex-
tent, with that identified in different brain areas or blood
samples from patients with PTSD.

Differentially expressed genes in AMY
Those DEGs in AMY were applied for Gene Ontology
(GO) analysis using DAVID to determine enriched
functional annotation in terms of molecular functions

(Additional file 3: Table S1) or biological processes
(Additional file 4: Table S2). First, to characterize the
regulation of global mRNA expression, we searched
for the GO terms related to transcriptional regulation
and found comparable numbers of DEGs in the Tran-
scription and Negative regulation of transcription be-
tween 2 weeks and 5 weeks PS, whereas the Positive
regulation of transcription was enriched only in 5
weeks PS (Additional file 5: Figure S3). Of note, the
Covalent chromatin modification was enriched only in 2
weeks PS. Consistently, there were four more enrichments
related to the chromatin modifications: unmethylated
CpG binding, histone deacetylase binding, histone H3-K4
methylation and histone H4-K5 acetylation.
There were several gene regulations in terms of cellu-

lar alteration in the central nervous system (CNS)
(Additional file 6: Figure S4). Nervous system develop-
ment was enriched both in 2 weeks and 5 weeks PS,
while neuron projection development was only seen in
2 weeks PS. Neurogenesis and Neural precursor cell
proliferation were enriched in 5 weeks PS. GOs related
to neuron differentiation were enriched both in 2 weeks
PS and in 5 weeks PS. For non-neuronal cell differenti-
ation, Oligodendrocyte differentiation and Epithelial
cell differentiation were enriched in 2 and 5 weeks PS,
respectively.

Gene regulation in AMY
A number of KEGG pathways were involved in synaptic
remodeling (Fig. 8) from the enriched pathway analyses
(Additional file 7: Table S3). Pathways for neurotransmit-
ters including acetylcholine, dopamine, GABA, glutamate,
and serotonin were enriched in 5 weeks PS. We found
gene regulation of glutamatergic kainite receptor subunits,
Grik3, 4 and 5, metabotropic receptor subunits, Grm4 and
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Fig. 7 Characterization of immobile pattern during inactive phase. Locomotive activity in home-cage was monitored by video camera during
inactive phase for 11.5 h and analyzed using ANY-maze software. Total immobile time was shown in (a), and number of short immobile episode
(immobile duration between 2min and 4min) was shown in (b), and total travel distance was shown in (c). Data are represented as mean ±
S.E.M. (n = 28/group). Unpaired two-tailed t-test was performed
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Table 1 Regulation of PTSD-associated genes

Gene symbol Gene name region time Regulation Regulation in PTSD Reference

Adcy8 adenylate cyclase 8 AMY 5 Up [38]

Cacna1c calcium voltage-gated channel subunit alpha1C ACC 2 Dw [72]

Crhr1 Corticotropin releasing hormone receptor 1 ACC 2 Up [73]

Crhr2 Corticotropin releasing hormone receptor 2 ACC 2 Dw [74]

Fkbp5 FK506 binding protein 5 ACC 2 Dw Up (orbito-frontal cortex)
or Dw (subgenual PFC)

[22, 75, 76]

Klhl1 Kelch like family member 1 AMY 2 Dw [36]

Oxtr Oxytocin receptor AMY 2 Up [77]

Rora RAR related orphan receptor A ACC 2 Up [78]

Sgk1 serum/glucocorticoid regulated kinase 1 AMY 2 Dw Dw (PFC) [49, 79]

Shank1 SH3 and Multiple Ankyrin repeat doamin1 ACC 2 Dw Up (subgenual PFC) [75]

Stat5b signal transducer and activator of transcription 5B AMY 5 Dw Dw (blood) [50]

Tbc1d2 TBC1 Domain Family Member 2 AMY 2 Dw [35]

Tbc1d2 TBC1 Domain Family Member 3 ACC 2 Up [35]

Cholinergic synapse

Dopaminergic synapse

GABAergic synapse

Glutamatergic synapse

Serotonergic synapse

Calcium signaling pathway

ErbB signaling pathway

Long−term depression

Long−term potentiation

MAPK signaling pathway

PI3K−Akt signaling pathway

Rap1 signaling pathway

Ras signaling pathway

Retrograde endocannabinoid signaling  

Wnt signaling pathway

Adherens junction

Axon guidance 

Focal adhesion  

Endocytosis

Regulation of actin cytoskeleton

Neurotransmitter

Synapse mediated signaling

Synapse formation & activity

2

3

4

5

6

-log10 (p-value)

Fig. 8 Enriched KEGG pathways related to synapse remodeling in AMY. Enriched pathways were categorized into 3 functions, involved in
neurotransmitter (upper panel), synapse mediated signaling (middle panel), and synapse formation and activity (lower panel). Each pathway in
the two time points was represented as heatmap with color index based on p-value

Tanaka et al. Molecular Brain           (2019) 12:25 Page 9 of 16



7. In GABAergic synapse, type A GABAergic receptor
subunits (Gabrg1, Gabrg3, and Gabrq) and GABA
transporter (Slc38a1) were regulated after 5 weeks.
Moreover, acetylcholine esterase, Ache, and muscarinic
cholinergic receptor, Chrm3, dopamine receptor1,
Drd1, and serotonergic receptors, Htr1b, 1d, 2c, and 7
were regulated.
In terms of synapse mediated signaling, LTP and LTD

pathways and several downstream signaling pathways cru-
cial for synapse plasticity such as MAPK, Ras, and PI3K/
Akt were enriched. Ras signaling pathways including
Mras, Kras, as well as Ras GTPase regulatory factors, and
Rap1 signaling pathways including Rap1 GTPase regula-
tory factors were overlapped in both 2 weeks and 5 weeks
PS. And the key molecules in calcium mediated signaling,
calmodulin (Calm2), CAM kinase (Camk2a), and CREB
binding protein (Crebbp) which are involved in LTP and
LTD were also altered. The key components of Wnt sig-
naling, four receptor genes and three ligands including
β-catenin, were regulated. Notably, the retrograde endo-
cannabinoid signaling was highly regulated at 5 weeks PS.
Moreover, pathways related to synaptic formation and ac-
tivity, including Adherens junction, Axon guidance, Focal

adhesion, Endocytosis, and Regulation of actin cytoskel-
eton pathways were enriched.
To further characterize the gene regulation of synapse

remodeling, the pathways overlapped in 2 weeks and 5
weeks PSs were characterized by individual DEGs. Most
of DEGs were regulated either after 2 weeks or 5 weeks
PS, but there were a few DEGs overlapped in both time
periods, particularly involved in the Endocytosis pathway
(Table 2). These results suggest that individual DEG was
differentially regulated at 2 weeks and 5 weeks PS. Con-
sistent with the differential regulation of synapse remod-
eling genes in AMY, DEGs related to transcription
showed only a few overlapped genes between 2 and 5
weeks PS, suggesting a diverse transcriptional regulation.
GO analysis and pathway analysis revealed that several

GOs and pathways were involved in hormone and neuro-
endocrine, particularly in 5 weeks PS but not at 2 weeks
PS (Fig. 9), among them are Oxytocin, Thyroid hormone,
Gonadotropin releasing hormone, and Estrogen signaling
pathways. Oxytocin (Oxt) was regulated at both 2 and 5
weeks PS, while oxytocin receptor (Oxtr) was only in 2
weeks PS. Thyroid hormone receptors and transporter
(Thra, Rxrg, and Slc16a2) were regulated in 5 weeks PS.

Table 2 DEGs in four representative overlapped pathways and transcription in AMY

2 weeks only 2 and 5 weeks 5 weeks only

Glutamatergic
synapse

ADCY3, ADCY6, GLS2, GLUL, GRIK3, GRIK4, GRM4, ITPR3,
SHANK2

PLCB4, MAPK1 ADCY5, ADCY7, GNG4, GRM7, PRKACB, SLC17A6,
SLC1A6, SLC38A1, ADCY1, ADCY8, DLGAP1, GNG5,
GRIK5, HOMER2, MAPK3, PRKCG, SLC17A7

Ras signaling FGFR2, FGFR3, FGF16, MET, HGF, FOXO4, RALGDS,
BRAP, KSR2, RASGRP3, PLCG1, VEGFA, RASA3, ABL1,
KSR1

MAPK1, KITL, FGF22 PDGFB, MRAS, ELK1, FGF13, PRKCG, PTPN11, IGF1R,
HTR7, RASSF1, MAPK3, RASGRP2, RIN1, PRKACB,
PLA2G3, FGF1, GNG4, GNG5, CALM1

Axon guidance PLXNA1, LIMK1, PLXNB1, PLXNB3, MET, EPHB2,
SEMA5B, UNC5B, SEMA3G, SEMA4D, ABL1

EPHB1, SEMA3F,
MAPK1

NTNG2, CXCL12, SLIT3, PTK2, SEMA6D, UNC5A, EPHA8,
NCK1, MAPK3, ROBO3, NFATC2, SRGAP1, SEMA4A

Endocytosis FGFR2, ARFGAP2, FGFR3, ERBB3, KIF5A, MET, ASAP2,
ARPC5, LDLRAP1, RAB7, AMPH, RAB11FIP4, RAB11FIP5,
ZFYVE27, ARRB1, FOLR1, GIT2, H2-T24, SMURF1, AGAP1,
IQSEC1, MVB12B

IQSEC3 PARD3, RET, USP8, PSD3, PIP5K1C, SMAD3, VPS37C,
CYTH2, CAPZB, SRC, CHMP2B, IGF1R, CHMP1A, FAM21,
HSPA2, NTRK1, ACAP2, SPG20, PARD6G, EPN1, IQSEC2

Regulation of
actin cytoskeleton

FGFR2, FGFR3, SSH1, LIMK1, PPP1R12B, WASF2, FGF16,
GNA12, ITGB4, ARPC5, VAV2, PFN4, ITGA7, FGD3

FGF22, MAPK1,
WASF1

PDGFB, ACTN4, MRAS, MYLK3, ITGA11, PIP5K1C, FGF13,
ITGA4, SRC, INSRR, ITGA9, PTK2, CHRM3, ITGAV, ITGA8,
ARAF, MAPK3, FGF1

Transcription
GO:0006351

ARNT2, FOXO3, FOXO4, ZIC2, ZGPAT, ZFP932, OLIG3,
PPP1R1B, CREB3L2, ZFP687, ZFP276, SATB1, MED12,
ZFP629, ZHX3, RRP8, TRERF1, ZFP592, ASCC2, KDM2A,
ARRB1, FLII, VGLL4, MYBBP1A, TSHZ2, LITAF, SETD1B,
SOX4, TRRAP, SOX8, XAB2, CASZ1, NKX3–1, MTERF2,
TCF25, HIP1, MAFG, DNMT3A, IKZF4, TAF3, BHLHE22,
SMAD7, TAF8, CREBBP, FOXP2, SREBF2, SAFB2, HDAC4,
NOTCH1, SMARCC2, DNMT1, HIVEP1, KAT6B, ADAR,
FOXK1, HR, LBH, SUPT5, KDM5C, FOXJ2, SNAPC1,
SNAPC4, TLE3, SPEN, MXD4, EYA4, HIPK2, ERN1, MYRF,
CUX2, KMT2D, KMT2A, KMT2B, GON4L, MLF1, MINA,
ZKSCAN17, SAFB, BCL11B, PRDM11, POU2F2, POU3F3,
GATAD2B, POU3F2, BCL6, POU3F1, GTF3C1, CHD5,
ZFP526, BRD2, L3MBTL1, PHF12, AFF1, SAP30BP, NKAPL,
MEF2D, RPAP1, HNRNPUL1, THRAP3, KDM4B, MAMLD1,
ZFP536

AKIRIN2, ATMIN,
ARID3B, FOXQ1,
JADE1, IL33, MXD1,
MAPK1, ZFP740

MEF2C, THRA, PRR13, STAT5B, CBX4, MED25, ASCC1,
CBX2, CBX6, RCBTB1, ZFP92, EPC1, SMARCD3, RARB,
ZFP503, MAP 2 K6, MAGEL2, BEND6, ZHX2, SIX3, RXRG,
SKOR1, GTF2IRD1, MAPK3, ZFP697, TFAP2C, CAMTA2,
HMGB3, ELK1, MEIS1, TAL1, VDR, TRP53BP1, MEIS2,
HEXIM2, DRAP1, LHX2, TCF4, SLC30A9, NAT14, RFX5,
KLF13, TAF7, PTPN14, NR4A2, SMAD3, NR4A1, FEZF2,
ZFHX4, PHF1, DLX5, EBF1, HOPX, HABP4, RFX3, ZFHX3,
CREBRF, PAX6, ZEB1, ZFP641, KCNIP3, ARHGAP22,
DYNLL1, YAP1, HSF4, BHLHE41, THRSP, INO80C, ZCCHC12,
TBL1XR1, KHDRBS3, SSBP2, POLR1D, RUNX1T1, GTF2H5,
GTF2B, NRIP2, MYT1L, CCND1, EYA1, CHMP1A, PIH1D1,
HIPK2, CUX1, PEG3, THAP7, SEC14L2, ZBTB18, TSPYL2,
ZFP664, GBX1, PER3, ZFP521, NFATC2, CHD6, ETV4, MAF,
ZFP57, MNAT1, DBP, DACH2, HEYL, NEUROD2, NEUROD1,
SP8, TBL1X, SP9, PBX3
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Gene regulation in ACC
There were substantial number of GOs and pathways
enriched in 2 weeks PS. As seen in AMY, we found several
GOs and KEGG pathways related to hormone and neuro-
endocrine system and synapse remodeling. Figure 10
shows enriched KEGG pathways including Estrogen signal-
ing, GnRH signaling, Insulin signaling, Oxytocin signaling,
Prolactin signaling, and Thyroid hormone signaling.
Substantial number of KEGG pathways were also involved
in synapse remodeling. MAPK signaling pathway was the
only pathway seen in 5 weeks PS among them. Thus, syn-
apse remodeling and hormone and neuroendocrine system
were the mainly regulated pathways in 2 weeks PS, and
they were mostly terminated in 5 weeks PS.

Gene regulation related to PTSD-like behavior in AMY
and ACC
GOs associated with PTSD-like behavior such as fear re-
sponse, startle response, social behavior were predomin-
antly seen after 5 weeks in AMY and 2 weeks in ACC
(Fig. 11). In AMY at 5 weeks PS, Behavioral fear response
did not manifest a strong enrichment, though Startle
response, Response to drug, Sensory perception of pain,
Memory, Learning, and Social behavior were significantly
enriched. Relating to the Response to drugs, several GOs
were selected including Response to cocaine, amphet-
amine, morphine, nicotine and ethanol (data not shown).
On the other hand, Social behavior and Sleep were listed
in 2 weeks PS, despite with a weak enrichment (p > 0.05).
In ACC at 2 weeks PS, Sensory perception of pain, Social
behavior, Memory, and Learning were enriched. Overall,
GOs associated with PTSD-like behavior were regulated

selectively in AMY at 5 weeks PS and in ACC at 2
weeks PS.

Discussion
Behavioral characterization of the foot shock induced
stress model
Electric foot shock has been widely used as fear condi-
tioning, because it can provide consistent stress to ani-
mals and is easy to assess fear memory. Severe foot
shock has also been used as a stressor for PTSD-like ani-
mal model [39]. In previous reports, animals receiving
electric foot shock was subsequently re-exposed to the
same contextual environment [40]. This procedure
which is called situational reminder seems critical to
acquire long-term PTSD-like abnormal behaviors in-
cluding long-lasting hyperarousal [26], sustained freezing
behavior [25] as well as higher evoked field potential in
basolateral AMY [41]. In this study, animals were given
the weekly avoidance test and we observed that, except
for the first week, all the stressed animals avoid to enter
the previously foot-shock chamber, suggesting these
stressed animals were threatened under this situation.
Together with freezing test at 5 weeks PS, we found that
the stressed animals acquired sustained fear memory for
more than 1month. Since anxiety-like behavior is a
prominent characteristic of PTSD, we carried out three
different behavioral tests (Figs. 3, 4, and 5) and found
that the stressed mice acquired anxiety-like behavior,
which emerged after 2 weeks and sustained until 4 weeks
PS. In contrast, exaggerated acoustic startling response
of the stressed mice was only acquired after 4 weeks PS
(Fig. 6). Thus, two abnormal behavioral traits in our
model were differentially evolved. Moreover, short

Oxytocin signaling pathway

GnRH signaling pathway

Estrogen signaling pathway

Thyroid hormone signaling pathway

Peptide hormone processing

Neuropeptide hormone activity

Neuropeptide binding

Neuropeptide signaling pathway

Cellular response to CRH stimulus 2

3

4

5

6

2 weeks      5 weeks

-log10 (p-value)

Fig. 9 Enriched KEGG pathways related to hormone and neuroendocrine system in AMY. Nine pathways that were enriched based on DEGs in
AMY were represented as heatmap with color index based on p-value
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Cholinergic synapse 
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cAMP signaling pathway 
ErbB signaling pathway 
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MAPK signaling pathway  
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Rap1 signaling pathway  
Ras signaling pathway

Retrograde endocannabinoid signaling pathway  
Neurotrophin signaling pathway

Wnt signaling pathway

Adherens junction 
Axon guidance 
Focal adhesion

Regulation of actin cytoskeleton

6

5

4

3

2

9

8

7

Neurotransmitter

Synapse mediated signaling

Synapse formation & activity

Hormone&neuroendocrine 2 weeks    5 weeks

-log10 (p-value)

Fig. 10 KEGG pathways enriched in ACC 2 weeks and 5 weeks PS. Substantial number of DEGs in ACC showed enrichment in hormone and
neuroendocrine system or synapse remodeling. The enriched pathways from the DEGs were represented in heatmaps, and these pathways
included hormone & neuroendocrine (upper panel), neurotransmitter (upper middle panel), synapse mediated signaling (lower middle panel) and
synapse formation & activity (lower panel). Color index represents the level of significance (p-values)
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Fig. 11 GOs related to PTSD-like behavioral traits. Several GOs in AMY (left columns) and ACC (right columns) were associated with behavioral
and cognitive abnormality in PTSD, including fear memory, startle response, drug comorbidity, pain sensitivity, memory and learning, social
interaction, and sleep. Color index represents level of significance (p-values)
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immobile episodes were more frequent in stressed mice
than control animals, suggesting a sleep disturbance in
the stressed animals and a reminiscence of the abnormal
sleep-wake cycle in PTSD patients.
Differential susceptibility of animals to stress has been

recognized as an important trait of the animal model be-
cause of the existence of human resilience or vulnerability
to trauma [42, 43]. In fact, we observed a wider sample
variance in stressed group than in control group in the
acoustic startle test at 4 weeks PS (Fig. 6c and e), but not at
2 weeks PS (Fig. 6b and d), suggesting that differential sus-
ceptibility was created when stress induced hyperarousal
was prominent. Cohen’s group has evaluated individual
rodent susceptibility based on the acoustic startle response
[44]. Currently it is unknown whether the wide variation
was derived from individual difference occurred during the
development of PTSD-like abnormality, since there is lack
of consistency for the stressed animals to behave as vulner-
able or resilient in different behavioral assays.

Gene regulation associated with PTSD
Genome-wide association studies of human PTSD have
identified the disease specific polymorphism of several as-
sociated genes in their gene loci. Some of the associated
genes are involved in HPA axis and glucocorticoids to
regulate stress response and emotional control [13]. In
our model, several genes were regulated in either AMY or
ACC, including Crhr1 and 2 [45–47], Rora [48], Sgk1 [49],
and Stat5b [50] (Table 1). Among them, FKBP5 has been
intensively investigated since it is a co-chaperone for
glucocorticoid (GC) receptor to suppress its transcrip-
tional activity [51]. In addition, we found genes involved
in synaptic plasticity: Adcy8, whose deficiency led to
stress-induced anxiety [52] implying a role in long-term
potentiation and synaptic plasticity for fear related mem-
ory [38], Cacna1c (Cav1.2 subunit of L-type calcium chan-
nel), which mediates long-term synaptic plasticity through
calcium signaling, Klhl1, the actin binding protein modu-
lating calcium current [53] and neurite outgrowth [54],
and Shank1, the anchoring protein playing a role in gluta-
matergic synaptic plasticity [55]. These results suggest that
those PTSD-associated genes can play an important role
on the disease development.

Time-dependent gene regulation in AMY
Numerical gene regulation was comparable between 2
weeks and 5 weeks PS since there were more than 1000
DEGs in each condition (Additional file 2: Figure S2).
However, DEGs in the overlapped pathways were predom-
inantly in either 2 weeks or 5 weeks PS, but only a few
DEGs overlapped, consistent with the transcription related
DEGs (Table 2). Alteration of drastic transcriptional
regulatory genes resulted in dynamic changes of global
gene expression including synapse remodeling or

hormone/neuroendocrine system. In addition, histone me-
diated epigenetic regulation may contribute to
time-dependent regulation (Additional file 5: Figure S3),
as recently postulated that epigenetic alteration is deeply
involved in the pathogenesis as well as in the disease sus-
ceptibility [43, 56, 57]. Of note, the glutamatergic,
GABAergic and endocannabinoid signaling were all highly
enriched in 5 weeks PS (Fig. 8), consistent with the notion
that the excitatory and inhibitory neurotransmission is
tightly regulated by the endocannabinoid signaling under
stressful conditions [58]. In addition, cholinergic and sero-
tonergic input can modulate neurotransmission at 5 weeks
PS. Ras, Rap1, and MAPK pathways which play an
important role in synaptic transmission, including fear
memory encoding and expression [59, 60] and calcium
mediated signaling, including LTP were also predomin-
antly regulated (Fig. 8). Moreover, hormone and neuroen-
docrine system were also predominantly enriched in 5
weeks PS (Fig. 9). However, we did not find significantly
regulated expression of the core HPA axis genes including
corticotropin releasing hormone, its receptor, or GC re-
ceptor, which was different from a previous study [61]. It
is possible that the differences might be derived from the
different animal species or experimental procedures.
PTSD-like model constructed by foot shock followed by
situational reminder may not clearly provoke HPA axis
activation in male animal as reported previously [62]. In-
stead, we found that oxytocin signaling, which is known
to exert anxiolytic and antidepressant effect [63, 64], and
also as an important negative modulator of HPA axis and
GC signaling [65], was highly enriched in 5 weeks PS (Fig.
9). In fact, oxytocin was upregulated in 2 weeks PS, then
plummeted in 5 weeks PS. Oxytocin receptor gene was
also upregulated in 2 weeks PS, while returned to basal
level in 5 weeks PS. Thus, there is a possibility that
extra-hypothalamic GC signaling is modulated by regula-
tory neuroendocrine system such as oxytocin, although
further investigation is necessary to clarify the regulation
of HPA axis. Moreover, several GOs that are related to the
PTSD-like behavioral traits such as startle response,
response to drug, and sensory perception to pain were
enriched at 5 weeks PS (Fig. 11), suggesting that those
DEGs play a key role in the molecular mechanism to
disease development. Taken together, gene regulation in-
volved in synapse remodeling and hormone/neuroendo-
crine system in AMY is likely culminated in 5 weeks PS,
which might be correlated to the development of PTSD-
like abnormal behaviors.

Termination of gene regulation after 5 weeks in ACC
ACC is reported to alter the neuronal activity in PTSD
patients during fear conditioning test as well as in the
resting condition [66]. ACC has extensive afferent con-
nections to emotion regulatory limbic regions including
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AMY and is involved in emotional learning and certain
social behavior [67]. Given its proximity and connection
to the limbic structures, ACC is thought to be the direct
top-down regulator of PTSD susceptibility through
modulating AMY activation to threatening stimuli [7, 8].
Despite that the volume of ACC is reduced in PTSD,
some studies have shown hyperactivation of the ACC ra-
ther than hypoactivation [10]. Thus, regulation of AMY
activation as well as PTSD development by ACC re-
mains to be enigmatic. Our gene analyses in the region
found that more than 3000 genes were regulated at 2
weeks PS, then plunged to 43 DEGs at 5 weeks PS,
which suggests that gene regulation was mostly termi-
nated at 5 weeks PS (Fig. 6). In addition to synapse re-
modeling and neuroendocrine and hormone pathways,
18 DEGs related to oxidative phosphorylation were all
upregulated specifically in 2 weeks PS (data not shown),
suggesting that neuronal activity as well as gene regula-
tion was accelerated together with enhanced mitochon-
drial activity. Furthermore, a possible anxiogenic gene
Crhr1 [47] was up-regulated whereas the anxiolytic gene
Crhr2 [45, 46] was down-regulated (Table 1), implying
the anxiogenic state at 2 weeks PS.
To date, genome-wide transcriptomic studies for

PTSD-like model animals have been performed by several
groups [68–70]. Muhie et al. reported using aggressor ex-
posed animal models that genes involved in synaptic plas-
ticity, neurogenesis, inflammation, obesity and cardiac
infarction pathways were differentially regulated [71]. Even
their model construction and sampling procedures were
different, enriched KEGG pathways were remarkably simi-
lar to our results, especially for synaptic plasticity and
neuroendocrine systems. On the other hand, human gen-
omic analyses have identified genes with single nucleotide
mutations associated with PTSD. Thus, the results gener-
ated from our PTSD-like mouse model constructed by a
combination of inescapable foot shock (physical stressor)
and repeated situational reminders (psychological stressor)
is consistent with the previous reports from other labora-
tories. Nonetheless, we are aware that similar to the other
animal models of human diseases, our current model sys-
tem may only represent certain aspects of PTSD symp-
toms. We have not completely characterized our model
animals to fulfill face validity, for example the Sucrose
preference test to assess anhedonia, Social interaction test
for social numbness, and Morris water maze test for
memory impairment. Despite the limitation of the current
model system, the RNA-seq analysis can partially reflect
the PTSD-specific gene regulation, which is likely to pro-
vide a clue for molecular basis of temporal alteration in
the brain regions crucial for emotional control and fear
memory. This study may also help to identify target genes
for intervention at particular brain regions and specific
stages during the development of PTSD.

Additional files

Additional file 1: Figure S1. RNAseq analysis in Anterior Cingulate
Cortex (ACC) of stressed mice. Total RNA was isolated from ACC by
punching brain slice and applied for RNA sequence. Heatmaps of DEGs
were shown for 2 weeks (A) and 5 weeks (B) PS. Green bars and orange
bars indicated control and stressed animals, respectively. Venn diagram of
overlapped DEGs between the two time points was shown in (C). (PPTX
496 kb)

Additional file 2: Figure S2. RNAseq analysis in Amygdala (AMY) of
stressed mice. Total RNA was isolated from AMY by punching brain slice
and applied for RNA sequence. Heatmaps of DEGs were shown for 2
weeks (A) and 5 weeks (B) PS. Green bars and orange bars indicated
control and stressed animals, respectively. Venn diagram between the
two conditions was shown in (C). (PPTX 491 kb)

Additional file 3: Table S1. Enriched molecular functions of regulated
genes in AMY and ACC at 2 and 5 weeks post stress. (PPTX 44 kb)

Additional file 4: Table S2. Top 20 enriched biological processes of
regulated genes in AMY and ACC at 2 and 5 weeks post stress. (PPTX 47
kb)

Additional file 5: Figure S3. Heatmap of enriched GOs related to
transcriptional regulation. Color index represents level of significance (p-
values). (PPTX 54 kb)

Additional file 6: Figure S4. Heatmap of enriched GOs involved in
neuronal development, neurogenesis, and differentiation, and non-
neuronal cell differentiation. Color index represents level of significance
(p-values). (PPTX 53 kb)

Additional file 7: Table S3. Enriched pathways of regulated genes in
AMY and ACC at 2 and 5 weeks post stress. (PPTX 45 kb)
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