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Abstract

Apolipoprotein E4 (ApoE4) is a major genetic risk factor for sporadic or late onset Alzheimer's disease (AD). Brain-derived
neurotrophic factor (BDNF) is decreased by 3 to 4-fold in the brains of AD patients at autopsy. ApoE4 mice also
have reduced BDNF levels. However, there have been no reports relating the different ApoE isoforms or AD to
differential regulation of BDNF. Here we report that in the hippocampal regions of AD patients both prepro-BDNF
and pro-BDNF expression showed a 40 and 60% decrease respectively compared to that expression in the hippocampi of
age-matched control patients. We further report that ApoE isoforms differentially regulate maturation and secretion of
BDNF from primary human astrocytes. After 24 h, ApoE3 treated astrocytes secreted 1.75- fold higher pro-BDNF than
ApoE2-treated astrocytes, and ApoE2-treated astrocytes secreted 3-fold more mature-BDNF (m-BDNF) than ApoE3-treated
astrocytes. In contrast, ApoE4-treated cells secreted negligible amounts of m-BDNF or pro-BDNF. ApoE?2 increased the
level of intracellular pre-pro BDNF by 19.04 + 6.68%, while ApoE4 reduced the pre-pro BDNF by 21.61 + 59% compared
to untreated cells. Similar results were also seen in ApoE2, ApoE3 or ApoE4 treated cells at 4 h. Together, these results
indicate that an ApoE2 or ApoE3 mediated positive regulation of BDNF may be protective while ApoE4 related
defects in BDNF processing could lead to AD pathophysiology. These interactions of the ApoE isoforms with
BDNF may help explain the increased risk of AD associated with the ApoE4 isoform.
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Introduction

The discovery of the apolipoprotein E (ApoE) 4 allele as
a major risk factor for sporadic and late-onset familial
AD has brought attention to the possible role of ApoE
in neurodegenerative conditions. The human ApoE gene
exists as three polymorphic alleles—e2, €3 and e4—which
have a worldwide frequency of 8.4, 77.9, and 13.7%, re-
spectively [1]. The presence of the ApoE4 allele is associ-
ated with increased risk of cerebral amyloid angiopathy
and age-related cognitive decline during normal aging [2].
The ApoE4 allele is also a risk factor for other neurode-
generative conditions, such as Parkinson’s and multiple
sclerosis, and is associated with worse outcomes after
ischemic or traumatic brain injury [3].

In the CNS, the ApoE protein is mainly produced by
astrocytes and transports cholesterol to neurons via the
lowdensity lipoprotein receptor (LDLR) family. ApoE is
an essential component for axonal growth and synaptic
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formation and remodeling—events that are crucial for
learning, memory formation, and neuronal repair. ApoE
also regulates hippocampal neurogenesis by maintaining
the neural progenitor cell pool in the adult dentate gyrus
region of the hippocampus [4]. In AD and healthy aged
controls, APOE &4 gene dosage correlates inversely with
dendritic spine density in the hippocampus [5]. Reduced
synaptic transmission was observed in 1monthold ApoE4-
transgenic mice compared with ApoE3transgenic mice,
suggesting that ApoE4 may also contribute to functional
deficits early in development, which may account for
alterations in neuronal circuitry that result in cognitive
disorders later in life [6]. ApoE4 not only increases A
deposition but also affects synaptic repair, plasticity and
neural development [2, 7]. We have also shown that
ApoE3 acts through PKCe to protect primary neurons
against AP-induced cell death and induce synaptogenesis,
whereas ApoE4 does not [8]. Furthermore, ApoE4
epigenetically suppresses BDNF mRNA expression by
inducing nuclear translocation of histone deacetylases 4
and 6 (HDACs) in human neurons [9].
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Brain-derived neurotrophic factor (BDNF) is a critical
factor in synaptic repair and plasticity. Considerable
evidence suggests that a decrease in BDNF is associated
with AD. BDNF expression is greatly decreased in the
hippocampus and temporal and frontal cortex of AD
patients [10]. BDNF mRNA is decreased in parietal cortex
and hippocampus by 3 to 4-fold in AD autopsy samples
[11]; both precursor and mature BDNF are dramatically
decreased in preclinical stages of AD, and correlate with
behavioral scores [12]. Although evidence for BDNF poly-
morphisms in AD is still inconclusive, synaptic loss is the
single most important correlate of AD. BDNF protein is
synthesized as pre-proBDNF and cleaved into a proBDNF
protein. ProBDNF is either cleaved intracellularly or ex-
tracellularly to mature BDNF (mBDNF). Pro-BDNF and
mBDNF function differently although it has not been
previously known whether ApoE isoforms differentially
regulate the cleavage of pro-BDNF.

Astrocytes are a well characterized source for biologically
active molecules including BDNF, both in culture and
in vivo. Astrocytes are known to produce BDNF in vivo
following injury [13]. In culture, they increase BDNF
synthesis and release in response to glutamate metabo-
tropic stimulation. Numerous glutamate signaling pro-
teins are downregulated in ApoE4 mice [14]. Since
ApoE in the brain is mainly produced by the astrocytes
we investigated whether the ApoE isoforms have an ef-
fect on the maturation and secretion of BDNF from
astrocytes.

Methods

Materials

Cell culture media were obtained from Sciencell, CA,
USA. Recombinant human ApoE2 (rh-ApoE2), ApoE3
(rh-ApoE3), ApoE4 (rh-ApoE3), and other reagents
were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Primary antibodies against BDNF and [-actin
were obtained from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA); all secondary antibodies were
purchased from Jackson ImmunoResearch Laborator-
ies, Inc. (Bar Harbor, ME, USA).

Culture of primary human astrocytes

Human primary astrocytes (ScienCell Research Laboratories,
Carlsbad, CA, USA) were plated on poly-L-lysine coated
plates and were maintained in astrocyte medium (ScienCell
Research Laboratories, Carlsbad, CA, USA) supplemented
with the astrocyte growth supplement (AGS, ScienCell
Research Laboratories, Carlsbad, CA, USA) and 2% fetal
bovine serum (FBS). For maintenance of astrocytes, the
media was changed every 3 days. Before treatment of the
cells, the media was replaced with serum and growth fac-
tor free DMEM/F12 media (Invitrogen, Carlsbad, CA).
Cells were treated with cholesterol, or ApoE2/ApoE3/
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ApoE4 + cholesterol for 4 and 24 h. ApoE (20 nM) and
cholesterol (100 uM) were added separately to the cul-
tures. Cholesterol was dissolved in ethanol.

Collection of cell secreted media

Media from the treated cells was collected using a pipette.
The collected media was concentrated 10-fold using a
3-kDa molecular-cut filter (Amicon Ultra-4, Millipore,
Tullagreen, Ireland).

Human brain tissue

Fresh frozen human brain tissue was obtained from the
Harvard Brain Tissue Resource Center, McLean Hospital,
Boston, MA which is the part of NIH NeuroBioBank (IRB:
Partners Human Research Committee; Title: Brain Tissue
Repository for Research on Neurological and Psychiatric
Disorders; IRB No: 2015P002028) (Table 1). Approval for
the study was obtained from tissue access committee
of NIH NeuroBioBank (https://neurobiobank.nih.gov/
documents/). Informed consent was obtained from all
patients or legal representatives. The pathological diag-
nosis of AD was conducted according to the Consor-
tium to Establish a Registry for Alzheimer’s disease
(CERAD). The study was carried out in accordance
with the Code of Ethics of the World Medical Associ-
ation (Declaration of Helsinki) for experiments involv-
ing humans (http://www.share-project.org/fileadmin/pdf_
documentation/Declaration_of_Helsinki.pdf).

Cell and tissue protein preparation

Cells and tissue were harvested in homogenizing buffer,
containing 10 mM Tris-Cl (pH 7.4), 1 mM PMSF (phe-
nylmethylsulfonyl fluoride), 1 mM EGTA, 1 mM EDTA,
50 mM NaF, 20 uM leupeptin and 1% NP-40 and were
lysed by sonication. Protein concentration was measured

Table 1 Patient ID, Braak stage and age of human brain tissue

Patient ID  Gender  Age  Average age + SD  Autopsy diagnosis
AN02930 M 80 775+1234 AD Braak 3
AN14554 F 61 AD Braak 6
AN17726 M 72 AD Braak 2
AN06468 M 98 AD Braak 4
AN16195 F 73 AD Braak 5
AN02773 F 81 AD Braak 5
AN00704 F 82 774 + 586 Control
AN00316 F 75 Control
AN17896 M 69 Control
AN12667 M 86 Control
AN08396 M 76 Control
AN15515 M 73 Control
AN10329 F 81 Control
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using the Coomassie Plus (Bradford) Protein Assay kit
(Pierce, Rockford, IL, USA).

Immunoblot

Following quantification, 40 pg of protein from each
sample was subjected to SDS-PAGE analysis in 4-20%
gradient Tris-Glycine gel (Invitrogen, Carlsbad, CA,
USA). The separated protein was then transferred to a
nitrocellulose membrane. The membrane was blocked
with BSA at room temperature for 15 min and was incu-
bated with primary antibody overnight at 4 °C. After
incubation, it was washed 3x with TBS-T (Tris-buffered
saline-Tween 20) and further incubated with alkaline
phosphatase conjugated secondary antibody (Jackson
Immunoresearch Laboratories) at 1:10,000 dilution for
45 min. The membrane was finally washed 3x with TBS-T
and developed using the 1-step NBT-BCIP substrate
(Pierce, Rockford, IL, USA). The blot was imaged in the
ImageQuant RT-ECL (GE Life Sciences, Piscataway, NJ,
USA) and densitometric quantification was performed
using IMAL software. For quantifying expression of a pro-
tein, densitometric values for the protein of interest were
normalized against -actin (loading control).

Statistical analysis

All experiments were performed at least three times. Data
are represented as mean + SEM. Data containing more
than two groups was analyzed using one-way ANOVA with
post-hoc Newman-Keuls multiple comparison test. Data
with two groups were tested for significance with paired
two-tailed ¢ test comparisons using GraphPad Prism 6.1
software (La Jolla, CA, USA). P values <0.05 were consid-
ered statistically significant.

Results

BDNF levels are lower in autopsy-confirmed human AD
hippocampus

To determine if BDNF levels are affected in AD brain,
we measured the BDNF levels from autopsy-confirmed
human AD hippocampus (Average age = 77.5 + 12.34
(SD); n = 6) and aged matched control (AC) human
hippocampus (Average age = 77.4 + 5.86 (SD); n = 7)
using immunoblot. In AD hippocampus both the prepro-
BDNF and pro-BDNF levels were significantly lower than
AC hippocampus (Fig. 1b, d). No m-BDNF was detected
in these samples. Both prepro-BDNF and pro-BDNF levels
showed a negative correlation (not significant) with the
Braak stage among AD cases (Fig. 1c, e).

ApoE isoforms differentially regulate the secretion of
mature BDNF from human astrocytes

To evaluate the effect of ApoE2, ApoE3 and ApoE4,
primary human hippocampal astrocytes were grown in
serum free media and treated with cholesterol (100 pM),
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Fig. 1 Human Alzheimer’s disease hippocampus has lower BDNF
levels. a Immunoblot showing BDNF expression in the hippocampus of
four AD and four age matched controls (AQ). In AD hippocampus the
prepro-BDNF levels were significantly lower than AC hippocampus (AC:
1.8+ 0.14,n=7,AD: 1.25 £ 0.11, n = 6. P = 0.012) b and negatively
correlated with the Braak stage c. Pro-BDNF expression were also
lower in AD hippocampus (AC: 0.81 = 0.07, n = 7; AD: 0.49 + 0.073,
n = 6.P=00073) d, e. Data are represented as mean + SE (Student’s
t-test, *P < 0.05 and **P < 0.005)

ApoE2 (20 nM) + cholesterol, ApoE3 (20 nM) + cholesterol
and ApoE4 (20 nM) + cholesterol for 4 and 24 h. After
the treatment the media was collected and BDNF levels
were measured by immunoblot.

At 4 h the amount of secreted m-BDNF (14 kDa)
was increased by 22.5-times in ApoE2 + cholesterol
treated cells and 1.52-times in ApoE3 + cholesterol
treated cells compared to only cholesterol treated
cells. (ANOVA: F (34 = 269.3; P < 0.0001) (Fig. 2a, b).
After 24 h, secreted m-BDNF was increased by 143.5-
fold in ApoE2 + cholesterol treated cells and 38.4 -fold
in ApoE3 + cholesterol treated cells compared to only
cholesterol treated cells (ANOVA: F (35 = 151.3;
P < 0.0001) (Fig. 2d, e). ApoE4 + cholesterol treated cells
showed no change in secreted m-BDNF at 4 and 24 h.
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Fig. 2 ApoE isoforms differentially regulate the secretion of mature-BDNF. Primary human astrocytes were treated with cholesterol (Chol; 100 uM), with
or without ApoE2 (20 nM) or ApoE3 (20 nM) or ApoE4 (20 nM) for 4 and 24 h. a and d Immunoblot showing expression levels of BDNF in the
astrocyte-secreted media after 4 and 24 h respectively. ‘M’ indicates molecular weight marker. b and e ApoE2 + cholesterol induce the secretion of m-
BDNF. ¢ and f Expression levels of secreted pro-BDNF in different ApoE isoforms treated cells. Data are represented as mean + SE of three independent
experiments. (*P < 0.05, **P < 0.005 ***P < 0.0005 and ****P < 0.00005; ANOVA, post hoc Newman-Keuls multiple comparison)

Secreted pro-BDNF level was increased by 13.8- fold
in ApoE2 + cholesterol treated cells and 30 -fold in
ApoE3 + cholesterol treated cells compared to cholesterol-
only treated cells (ANOVA: F (54 = 32.0; P < 0.0001) after
4 h (Fig. 2a, c). At 24 h, secreted pro-BDNF levels increased
by 48.7-fold in ApoE2 + cholesterol treated cells and by
85.4-fold in ApoE3 + cholesterol treated cells compared to
cholesterol-only treated cells (ANOVA: F 34 = 62.7;
P < 0.0001) (Fig. 2d, f). ApoE4 + cholesterol treated cells
showed no significant change in secreted pro-BDNF at 4
and 24 h (Fig. 2a, d). No prepro-BDNF was detected in the
extracellular media.

ApoE2 increased, while ApoE4 decreased the expression
of intracellular prepro-BDNF in astrocytes

We have shown earlier that ApoE4 suppress the expres-
sion of BDNF mRNA [9]. To determine if the ApoE
isoforms differentially regulate the intracellular protein
expression of BDNF, we measured the intracellular pro-
tein levels of BDNF from human astrocytes treated with
cholesterol, ApoE2 + cholesterol, ApoE2 + cholesterol
and ApoE4 + cholesterol for 4 and 24 h. At 4 h the
amount of intracellular prepro-BDNF showed no sig-
nificant difference in cells treated with different ApoE
isoforms. After 24 h, the ApoE2 + cholesterol treated

cells showed a 19.04 + 6.68% increase, ApoE3 + choles-
terol treated cells showed no significant change while
ApoE4 + cholesterol treated cells showed a 21.61 + 5.89%
decrease in intracellular prepro-BDNF (ANOVA: F
s = 23.2; P = 0.0003) (Fig. 3a, b). Mature-BDNF and
pro-BDNF were not detected in these fractions.

Discussion
Brain-derived neurotrophic factor (BDNF) is involved in
multiple aspects of synaptogenesis, from the formation
to the functional maturation of synapses. BDNF influences
the morphological complexity of axons and dendrites
[15-17], increases synapse number [18-20], modulate
synaptic maturation and controls ultrastructural compos-
ition of synapses [21, 22]. BDNF is critical for synaptic
plasticity and memory processing in adult brain and is
also essential to promote short and long term memory
[23-26]. BDNF is synthesized as a precursor (pro-BDNF)
encompassing two domains, the prodomain and the
mature BDNF domain [27]. The pro-BDNF is cleaved
by prohormone convertases such as furin and PC1/3
intracellularly or plasminogen/plasmin and MMPs ex-
tracellularly [28-30] to release the mature form [31].
Our data show that ApoE2 induces the astrocytes to
secrete more m-BDNF than does ApoE3, while ApoE4
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produces a negligible amount. We also found that the
secreted pro-BDNF level was higher in ApoE3-treated
astrocytes than in ApoE2-treated astrocytes. Our find-
ings thus suggest that ApoE2 is critically involved in
cleavage of pro-BDNF to m-BDNF. The m-BDNF binds
to Trk-B receptors leading to cell survival and differenti-
ation, whereas pro-BDNF binds to p75™'® leading to
apoptosis [32]. Infusion of exogenous pro-BDNF pro-
motes synapse elimination, whereas m-BDNF infusion
substantially delays synapse elimination [33]. Exogenous
m-BDNF induces LTP and promotes long-term memory
(LTM). ApoE4-transgenic mice have impaired long-term
spatial memory with reduced dendritic spine density
compared to ApoE3 or ApoE2 mice [34]. Persistent LTMs
are associated with increased BDNF protein levels [26, 35].
Here we found that the total intracellular BDNF protein is
lower in ApoE4-treated cells, higher in ApoE2-treated cells
and remains unchanged in ApoE3-treated cells. We have
demonstrated earlier, that ApoE3 induces and ApoE4 sup-
presses BDNF transcription, epigenetically by inducing
nuclear translocation and association of HDAC6 to BDNF
promoter IV [9]. Thus, ApoE4 is not only blocking the
secretion and conversion of pro-BDNF to m-BDNFE, but
also preventing its synthesis via HDAC. Together our data
indicate that ApoE regulates BDNF transcription, mat-
uration and secretion in an isoform dependent manner.
ApoE2 and ApoE3 may induce transcription, while
ApoE4 inhibits transcription of BDNF via LRP1-HDAC
pathway [9]. ApoE2 has very low binding affinity to
LDLR (1-2% that of ApoE3; [36, 37]) and lower affinity
than ApoE3 for LRP1 (40% of ApoE3 or ApoE4; [38, 39]).
ApoE induces maturation and secretion of m-BDNF in an
ApoE2 > ApoE3 > ApoE4 rank order. The differential
maturation and secretion of BDNF could be regulated by

the pro-BDNF cleaving enzymes viz. furin and plasmin in
an ApoE-isoform dependent manner [40]. These findings
correlate with the previous findings that BDNF expression
and maturation is impaired by ApoE4 which may play an
important role in the ApoE4 mediated deficit in long-term
memory.

ApoE4, the greatest genetic risk factor for sporadic
Alzheimer’s disease (AD), increases risk ~3- and 15-fold
with a single or double allele [2, 41, 42] compared to ApoE3,
whereas ApoE2 decreases AD risk ~2-fold per allele [43]. In
EFAD transgenic mice generated by crossing 5xXFAD mice
and h-APOE-TR mice BDNF levels are decreased in the
following pattern: E2FAD > E3FAD > 5xFAD/APOE-
KO > E4FAD [44]. We found that BDNF protein levels
are lower in human AD hippocampus, confirming the pre-
vious report that precursor form of BDNF and m-BDNF
are decreased in the pre-clinical stages of Alzheimer’s
disease [12].

Considering the common role of ApoE and BDNF in
synaptogenesis, neuroprotection, synaptic plasticity and
learning and memory, our results indicate a mechanistic
link between ApoE isoforms and BDNF in maintaining
synaptic plasticity. ApoE4 impairs the synthesis and
secretion of BDNF which may cause synaptic loss and
neuronal integrity [45, 46], reduced exitatory synaptic
transmission and dendritic arborization [47] and loss of
cognition and memory [44, 48, 49], leading to increased
risk of AD. ApoE2 and ApoE3 induce BDNF expression
and secretion and further downstream signaling path-
ways which may prevent the synaptic loss in AD [50].
ApoE2 overexpression ameliorates spine density loss in
both Tg2576 and PDAPP mice [51]. ApoE3, but not
ApoE4, protectected against neuronal damage in age-
dependent neurodegeneration [52] and Ap-oligomer-
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mediated synaptic loss through PKCe [8]. PKCe is another
synaptogenic factor which shows a deficit in human AD
hippocampus [53] and humanized ApoE4 transgenic mice
[8]. PKCe activators (bryostatin 1, DCP-LA) have been
shown to induce synaptogenesis [54] and prevent syn-
aptic loss in aged and AD mice by inducing BDNF
expression [55-57].

Conclusion

The findings presented here, taken together, shows that
ApoE isoforms differentially regulate BDNF expression and
secretion and therefore, provide additional mechanistic
insight as to how ApoE2 and ApoE3 may offer neuro-
protection through BDNF, and how ApoE4 may cause
neurodegeneration by inhibiting BDNF. It will be of future
interest to clinically test how such defects in BDNF and
neurodegeneration may be prevented by therapeutic use
of PKCg activators [58].
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