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Abstract

Cultured neuronal cell lines can express properties of mature neurons if properly differentiated. Although the
precise mechanisms underlying neuronal differentiation are not fully understood, the expression and activation
of ion channels, particularly those of Ca®*-permeable channels, have been suggested to play a role. In this study,
we explored the presence and characterized the properties of acid-sensing ion channels (ASICs) in NS20Y cells, a
neuronal cell line previously used for the study of neuronal differentiation. In addition, the potential role of ASICs
in cell differentiation was explored. Reverse Transcription Polymerase Chain Reaction and Western blot revealed the
presence of ASICT subunits in these cells. Fast drops of extracellular pH activated transient inward currents which
were blocked, in a dose dependent manner, by amiloride, a non-selective ASIC blocker, and by Psalmotoxin-1
(PcTX1), a specific inhibitor for homomeric ASICT1a and heteromeric ASICTa/2b channels. Incubation of cells with
PcTX1 significantly reduced the differentiation of NS20Y cells induced by cpt-cAMP, as evidenced by decreased
neurite length, dendritic complexity, decreased expression of functional voltage gated Na™ channels. Consistent
with ASIC1a inhibition, ASICTa knockdown with small interference RNA significantly attenuates cpt-cAMP-induced
increase of neurite outgrowth. In summary, we described the presence of functional ASICs in NS20Y cells and
demonstrate that ASIC1a plays a role in the differentiation of these cells.
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Background
Neuronal differentiation is essential for the development
of the nervous system. A hallmark characteristic of
differentiation is the sprouting of neurites which later
become axons and dendrites. Major changes in mem-
brane proteins are observed during the differentiation,
maturation, and development of neurons, for example
increased expression of acid-sensing ion channels
(ASICs) [1]. Although the precise mechanisms under-
lying neuronal differentiation are not fully understood,
expression and activation of ion channels, particularly
those which are Ca®"-permeable, have been suggested to
play an important role in the process [2—4].

ASICs are proton-gated cation channels belonging
to the degenerin/epithelial Na® channel (DEG/ENaC)
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superfamily. There are at least four genes that encode six
alternatively spliced transcripts: ASICla, ASIC1b, ASIC2a,
ASIC2b, ASIC3 and ASIC4. ASICla, a primary subunit
highly expressed in the central and peripheral neurons, is
highly sensitive to decrease in extracellular pH [5]. Studies
using knockout mice have suggested that activation of
ASICla contributes to synaptic plasticity, learning and
memory [6]. It is unclear however whether ASICs play
any role in neuronal differentiation. In this study, we first
explored the presence and characterized the properties of
ASICs in NS20Y cells, a neuronal cell line that has been
previously used to study neuronal differentiation. Next,
we determined whether ASIC inhibition affects the differ-
entiation of these cells. Our data provides strong evidence
that functional ASICla channels are expressed in NS20Y
cells and that activation of these channels may play a role
in neuronal differentiation.
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Methods

Cell culture

NS20Y cells, derived from the mouse neuroblastoma,
were cultured in Dulbecco’s Modified Eagle’s Medium
(Invitrogen), supplemented with 10 % FBS, 100 units/ml
penicillin, and 100 pg/ml streptomycin. Cells were plated
at 10 - 20 % confluence on 35 mm dishes coated with
poly-L-ornithine and maintained at 37 °C in a humidi-
fied incubator with 5 % CO, - 95 % atmosphere. For dif-
ferentiation, cells were treated with 1 mM cpt-cAMP for
72 h or 1 mM cpt-cAMP and 10 nM PcTX1 by adding
reagents directly to cell media. The culture medium was
not changed during the 72 h treatment. The pH during
experiments were 7.62 in control, 7.63 in cpt-cAMP, and
7.64 in cpt-cAMP + PcTX1 treated medium.

Evaluation of neuronal differentiation
Cells in 35 mm dishes were examined at 400X magnifica-
tion and photographed using phase contrast microscopy
(Nikon). Cells were washed three times with extracellular
solution (ECF) before photographs were taken. Neurite
length and cell complexity were measured using Nikon
Image Software (NIS) (Nikon Instruments, Inc., Melville,
NY, USA). For each experiment, at least 5 random fields
were selected for evaluation. Number of primary dendrites
and total neurite length were quantified [7]. In these
experiments neurites are defined as any process that
extends from the soma. Neurite length (in pm) was quan-
tified by using a free hand line tool measuring the distance
from the neurite tip to where the neurite joins the soma
[7]. Exclusion criteria included: 1) cell clusters typically
greater than or equal to two, 2) where the total neurite
length cannot be ascertained because neurites extend out
of the field of view, 3) neurites that appear to have formed
neurite-neurite or neurite-somatic connections, and 4)
cases of extensively branched or overlapped neurites [7].
Sholl analysis is a widely used method in neurobiology
to quantify the complexity of dendritic arbors [8]. The
Sholl analysis of NS20Y cells was conducted by plotting
the number of neurite intersections against the radial
distance from the soma [7].

Electrophysiology

Whole cell patch clamp recordings were performed as
described previously [9]. Patch pipettes were pulled by a
two-step puller (PP83; Narishige, Tokyo, Japan) from
thin walled borosilicate glass (1.5 mm diameter, World
Precision Instruments, Sarasota, FL). The pipettes had a
resistance of 3—4 MQ when filled with intracellular solu-
tion: 140 mM CsF, 10 mM HEPES, 11 mM EGTA, 2 mM
tetraethylammonium chloride, 1 mM CaCl,, 2 mM MgCl,
and 4 mM MgATP, pH 7.3 (adjusted with CsOH),
290-300 mOsm adjusted with sucrose. Extracellular solu-
tion contained: 140 mM NaCl, 5.4 KCI, 2 mM CaCl,,
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1 mM MgCl,, 10 mM HEPES, 10 mM glucose, pH 7.4,
320-330 mOsm. When needed, 300 nM tetrodotoxin was
used in ECF to block the Na* currents. PcTX1 (Peptide
International) was dissolved in ddH,O at 20 uM before
adding to extracellular solutions. Amiloride was dissolved
in dimethyl sulfoxide (DMSO) at 100 mM before adding
to extracellular solutions to obtain final working con-
centrations. Tetrakis-(2-Pyridylmethyl) ethylenediamine
(TPEN) and Zinc Chloride were dissolved in ddH,O be-
fore adding to extracellular solutions. Unless described
otherwise, all chemicals were purchased from Sigma.

Whole cell patch clamp recordings were done with an
Axopatch 200B amplifier and Digidata 1320 DAC unit.
Unless indicated otherwise, cells were clamped at a hold-
ing potential of -60 mV. ASIC currents were elicited by
pH drops from 7.4 to acidic pH values as indicated.
Currents were activated at least 1 min apart to achieve a
complete recovery from desensitization. A multi-barrel
perfusion system (SF-77 Warner Instruments, Hamden,
CT) was used to achieve a rapid exchange of extracellular
solutions. To generate a current—voltage (I-V) relation-
ship, voltage steps were initiated from -100 and +100 mV
from a holding potential of -60 mV were applied at 1 s
interval. The data were analyzed with pClamp and Sigma
Plot software.

Western blot

Cells were treated with lysis buffer (50 mmol/L Tris—HClI,
150 mmol/L NaCl, 1 % Triton X-100, protease and phos-
phatase inhibitor cocktail) and collected by scraping into
individual aliquots. The samples were put on ice for
30 min, centrifuged at 12,000 g at 4 °C for 30 min, and
then supernatants were collected. Protein concentration
was measured using the Bio-Rad protein assay kit (Bio-
Rad, Hercules, CA, USA). Thereafter, the proteins were
mixed with Laemmli sample buffer and boiled at 95 °C for
5 min. Proteins were separated by 10 % SDS-PAGE,
followed by electrotransfer to polyvinylidene difluoride
membranes. Blots were probed with antibodies against
ASIC1 (rabbit anti-mouse/human, 1:1,000; Gift from Dr.
Xiangming Zha, University of South Alabama, Mobile,
AL, USA) or beta-actin (1:2,000; Abcam, Cambridge, MA,
USA), detected using horseradish peroxidase-conjugated
secondary antibody (1:1,000; Cell Signaling, Danvers, MA,
USA), and visualized by ECL (Amersham Biosciences Pis-
cataway, NJ) and Blue Autoradiography film (MedSupply
Partners, Atlanta, GA). The intensity of the protein bands
were quantified using NIH Image ] software.

Reverse Transcription — Polymerase Chain Reaction (RT-PCR)
RT-PCR was used to examine the expression of individual
ASIC subunits, as described in our previous studies [10].
Total RNAs were isolated from NS20Y cells with Trizol
reagent (Invitrogen), according to the manufacturer’s



O’Bryant et al. Molecular Brain (2016) 9:68

protocol. Equal amount of total RNA was reverse tran-
scribed and PCR amplified with Superscript II (Invitrogen)
using specific primers for individual ASIC subunit.
ASICla forward5 -TCCTATGAGCGGCTGTCTCT-3',
ASICla, reverse 5 -TGCTTTTCATCAGCCATCTG-3/,
ASIC1b forward 5'-GGCCTTTGTCATAGCACTGGG
TGC -3, ASIC1b reverse 5'-TTCCCATACCGCGTGAA-
GACCAC -3', ASIC2a forward 5-CGCCAACACCTC-
TACTCTCC-3’, ASIC2a reverse 5'-TGCCATCCTCGCC
TGAGTTA-3’, ASIC2b forward 5'-CCTTGGCTTGCTG
TTGTCCT-3" ASIC2b reverse 5'-TGCCATCCTCGCCT-
GAGTTA-3’, ASIC3 forward 5'-GTCTGGACCCTGCT-
GAACAT-3’, ASIC3 reverse 5-GGCTCTGGATCAAA
GTCGGG-3’, ASIC4 forward 5'-GGGCTAGCATCCT-
CACCTTG-3’, ASIC4 reverse (5'-GGCCCAGTTTCA
TGGGTACT-3". RT positive (+) samples was run with
the reverse transcriptase, while RT negative (—) samples
were run without reverse transcriptase. The RT-PCR
products were electrophoresed on 1.5 % agarose gel.

ASIC1a shRNA transfection

Short hairpin ASICla (shASICla) and control shRNA
were purchased from SuperArray Bioscience Corpor-
ation (Frederick, MD), each vector contains the ShRNA
under control of Ul promoter and the GFP gene, for
the enrichment of transiently transfected cells. NS20Y
cells were transfected with 5 pg of each specific ASICla
shRNA or control shRNA using Lipofectamine™ reagent
in serum free OptiMEM-1 medium (Invitrogen, Carlsbad,
CA) per 35 mm dish according to the manufacture’s
instruction. After transfection, cells were grown for fur-
ther 72 h in growth medium as indicated in each experi-
ment before utilization.

Statistical analysis

Data were expressed as mean + SEM. Where applicable,
multiple groups were compared using analysis of variance
(ANOVA). Two groups were compared using Student’s
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t-test (paired and unpaired where appropriate). Values
of p <0.05 were considered statistically significant.

Results

Detection of ASIC transcript and protein in NS20Y cells
Using RT-PCR, the presence of ASIC transcripts in
NS20Y cells was investigated. The mRNA expression of
all ASIC subunits including ASICla, 1b, 2a, 2b, 3 and 4
were examined. RT-PCR results clearly show the pres-
ence of ASICla and ASIC1b transcripts at the expected
sizes (299 bp and 399 bp) without detection of other
subunits (Fig. 1a). We further examined the expression
of ASICla protein by Western blot. Chinese Hamster
Ovarian (CHO) cells and CHO cells with stable ASICla
expression (CHO-ASICla) were used as negative and
positive controls. Western blots showed clear immuno-
reactivity to the ASICla in NS20Y cells at the expected
molecular weights (Fig. 1b). Taken together, these find-
ings indicate that ASICla is expressed in NS20Y cells.

Characterization of the ASIC currents in NS20Y cells

Using patch-clamp recording, we then studied the acid-
activated currents and examined the effect of various
pharmacologic agents known to modulate ASICs. ASIC
currents were induced by an extracellular pH drop from
7.4 to 6.0 [9]. As shown in Fig. 2, drop of extracellular
pH from 7.4 to 6.0 induced transient inward currents.
Amiloride, a commonly used nonspecific inhibitor of
ASICs [11-14], blocked the acid activated currents in
NS20Y cells in a dose-dependent manner with a half-
maximal inhibitory concentration (ICsp) of 11.04 pM
(n =5) (Fig. 2a).

Psalmotoxin-1 (PcTX1), isolated from the venom of tar-
antula Psalmopoeus cambridgei, potently and specifically
inhibits the proton-gated currents mediated by homomeric
ASICla expressed in heterologous systems [15]. In
addition, PcTX1 also inhibits the current mediated by het-
eromeric ASIC1a/2b channels [11]. We tested the effect of
PcTX1 on ASIC currents in NS20Y cells. As shown in
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Fig. 1 The Expression of ASICs in NS20Y cells. a Reverse Transcription (RT) - PCR reveals the presence of ASICTa and ASICTb mRNA in NS20Y cells.
b Western blot reveals the expression of ASIC1a Protein. Chinese Hamster Ovarian (CHO) cells with (CHO-1a) or without (WT) expression of ASIC1a
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Fig. 2 Inhibition of ASIC current by amiloride and PcTX1 and modulation of ASIC current by zinc and zinc chelator in NS20Y cells. a Amiloride
dose dependently inhibits the ASIC current in NS20Y cells with a half-maximal inhibitory concentration (ICso) of 11.04 uM (n=5). b PcTX1, at 10
nM, also significantly inhibits the ASIC current in NS20Y cells (**p < 0.01, n=9). ¢ Zinc chelator, TPEN, at 100 uM, significantly potentiates ASIC
currents (p <0.05, n=7). d Zinc, 100 uM causes a significant inhibition of ASIC currents (p < 0.05, n=7)
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(Fig. 2b), after several minutes of perfusion, PcTX1 (10
nM) produced a significant inhibition of ASIC currents in
NS20Y cells (p<0.05, paired student’s t-test). In 9 cells
tested, an average inhibition of 66.9 + 14.8 % of the current
amplitude was achieved. Since our RT-PCR data did not
show clear expression of ASIC2b (Fig. 1), this result
suggested that the acid-activated current in NS20Y cells is
largely mediated by the homomeric ASICla channels.

Zinc modulates ASIC currents, but different ASIC
subunit stoichiometry responds differently to zinc; as
such, zinc may either potentiate or inhibit the acid-
activated currents [16, 17]. For example, at nanomolar
concentrations, zinc inhibits ASICla containing channels
with an ICsy of ~10 nM [16]. While at high micromolar
concentrations, zinc potentiates ASIC2a containing
channels [17]. Zinc chelator tetrakis-(2-Pyridylmethyl)

ethylenediamine (TPEN) potentiates ASICla current, by
removing zinc mediated inhibition. Application of 100 uM
TPEN significantly increased the amplitude of ASIC cur-
rents in NS20Y cells, further supporting the presence of
ASICla containing channels (p < 0.01, paired student’s t-
test, n =7, Fig. 2c). We found that addition of 100 pM zinc
caused no potentiation but an inhibition of ASIC currents
in NS20Y cells (p <0.01, paired Student’s t-test, n =7,
Fig. 2d), which is consistent with the presence of
ASICla containing channels.

ASIC blockade inhibits neuritogenesis

To explore the potential role of ASICs in neuronal dif-
ferentiation, the effect of ASIC inhibition on cpt-cAMP
induced neuritogenesis of NS20Y cells was studied.
Treatment of NS20Y cells with 1 mM cpt-cAMP for
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72-h has been shown to induce clear differentiation neurite number, length, and arborization (Fig. 3a, middle
[18, 19]. Differentiation was analyzed morphologically by  panel), co-incubation of 10 nM PcTX1 with 1 mM cpt-
extension and branching of neurites, and by directly cAMP for 48 and 72 h significantly decreased the number
counting the number of primary dendrites (explained in  of neurite branching and neurite length compared to
detail in Methods). While control cells are lack of exten- 1 mM cpt-cAMP treatment alone (n=264, p<0.05,
sive branches (Fig. 3a, upper panel), cells treated with  Fig. 3a, b, ¢). PcTX1 alone has no significant effect on
1 mM cpt-cAMP for 72 h show significantly increased neurite growth (p = 0.38, n = 268, data not shown).
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Fig. 3 Effect of PcTX1 on cpt-cAMP induced differentiation of NS20Y cells. a Example images showing morphology of NS20Y cells in different
treatment groups. For Sholl analysis of dendritic complexity, concentric rings were placed at the center of the soma radiating outward at a 10 um
intervals. Neurite complexity is measured by the number of neurites per intersection. Top panel: Control - shows NS20Y cells grown in media
without pharmacologic treatment. Cells display a full, rounded soma with few, short undeveloped processes. Middle panel: cpt-cAMP treated -
shows NS20Y cells treated with 1 mM cpt-cAMP for 72-h. Cells have large cell bodies, multiple and elongated processes with extensive branching.
Lower panel: cpt-cAMP + PcTX1 - shows NS20Y cells treated with 1 mM cpt-cAMP and 10 nM PcTX1 for 72-h. These cells have a reduced neurite
extension and processes. Photomicrographs were taken at 400x%, phase contrast. b Summary data expressed as the mean neurite length/cell at
time points of 24, 48, and 72 h. cpt-cAMP significantly increases the mean length of neurite extension (*p < 0.05 vs. control). When PcTX1 is
added, there is a significant reduction in neurite length compared to cpt-cAMP treated cells (*p < 0.05). € Summary Sholl analysis data of control,
cpt-cAMP (1 mM) treated and cpt-cAMP (1 mM) 4+ PcTX1 (10nM) treated cells at 72 h. The plot shows the mean number of neurite intersections
at indicated distance from the soma. Treatment with cpt-cAMP significantly increased the dendritic complexity (p < 0.05 vs. control, two way ANOVA,

n =90 cells for each group from 3 separate experiments). Co-treatment with 10 nM PcTX1 significantly attenuated the increase of dendritic complexity
induced by cpt-cAMP (p < 0.05 between cpt-cCAMP and cpt-cAMP + PcTX1, two way ANOVA, n =90 cells from 3 separate experiments)
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The Sholl analysis method has been used extensively
in neuronal cultures for the studies of dendritic com-
plexity [20, 21]. We applied this technique in cultures of
NS20Y cells (Fig. 3a). Cells treated with 1 mM cpt-
cAMP show neurites that significantly extend from the
soma and contain more branches than control cells at
distances between 50 — 90 pm (p < 0.05) (total of 90 cells
measured from 3 independent experiments, two-way
ANOVA) (Fig. 3c), while cells co-treated with 1 mM
cpt-cAMP and 10 nM PcTX1 have neurites that are not
significantly different from control (p = 0.24) (total of 90
cells measured from 3 independent experiments) at the
same distances.

PcTX1 is generally accepted to be a specific inhibitor
of ASICla however there are reports that suggest inhib-
ition of ASICla/2b heteromeric channels [11, 15]. To
provide additional evidence that ASICla is involved in
ctp-cAMP-induced differentiation of NS20Y cells, we
determined whether knocking down the expression of
ASICla with small hairpin interference RNA (shRNA)
has an effect on ctp-cAMP-mediated neurite extension.
After transfection with plasmid containing control-
shRNA-GFP or ASICla-shRNA-GFP, cells were treated
with 1 mM ctp-cAMP for 72 h. Transfection efficiency
was confirmed by a decrease of ASICla expression as
determined by Western blot (Fig. 4a). In cells treated
with control shRNA, ctp-cAMP treatment was able to
induce clear neurite growth (Fig. 4b), as described above.
However, in cells transfected with ASICla-shRNA, aver-
age neurite length was significantly decreased compared
to that in cells transfected with control-shRNA (Fig. 4b,
p<0.05, n=25-44).

ASIC1a expression and current density were increased in
differentiated NS20Y cells

ASIC protein expression and current density after treat-
ment with cpt-cAMP were also examined. Western blots
show an increase in ASICla expression after treatment
with cpt-cAMP for 72 h (Fig. 5a, b). (p < 0.05, n =12). The
whole cell patch-clamp recording shows that treatment
with 1 mM cpt-cAMP significantly increases the density
of ASIC current (p < 0.05, n=12, Fig. 5¢, d). These
findings are consistent with other reports showing that
ASIC expression increases with neuronal maturation [1].

Inhibition of ASIC1a reduces the amplitude of voltage
gated Na™ current

Voltage gated sodium channels have been known to be
exclusive to excitable cells, especially those of neuronal
origin [22]. Over the course of neuronal differentiation
developing neurons begin to express a wide variety of
Na* channels [23]. Here, we found that the amplitude of
TTX-sensitive voltage gated Na* current increases with
1 mM cpt-cAMP treatment. The increase of the Na*
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Fig. 4 cpt-cAMP mediated neurite extension is reduced by ASIC1a
knock-down. a Western Blot shows that ASICTa-shRNA treatment
for 72 h significantly decreases ASIC1a expression compared with
Control-shRNA treated NS-20Y cells either with or without 1 mM
cpt-cAMP treatment. b Example photomicrographs of cpt-cAMP
treated cells in the presence of control-shRNA or ASICTa-shRNA as
indicated. Blue arrows indicated NS20Y cells with enhanced neurite
extension. cpt-cAMP + ASICT1a-shRNA treated cells have less and
decreased neurite length indicated by the blue arrow. Increases in
neurite length seen with application of 1 mM cpt-cAMP in control-
shRNA transfected cells is significantly reduced when NS20Y is

transfected with ASIC1a-shRNA (p < 0.01) (n = 25-44)

current by cpt-cAMP is however attenuated by co-
treatment with 10 nM PcTX1 (Fig. 6a, b, ¢, d) (**p <0.01)
(n=12-14 cells). The ratios of cells exhibiting the Na*
current are 12/15, 14/14 and 12/14 in control, cpt-cAMP
and cpt-cAMP + PcTx-1 treated cells, respectively.

Discussion

This is the first report, to our knowledge, of the pres-
ence of functional ASICs in NS20Y, a mouse neuroblast-
oma cell line. More importantly, we show that blocking
the activity of ASICs inhibits neurite growth/neuronal
differentiation. Cyclic-:AMP is commonly used to differ-
entiate NS20Y and other clonal cell lines [19, 24]. The
use of cyclic-AMPs induces increases in the activities of
tyrosine hydroxylase, choline acetyltransferase, the con-
tent of poly(A)" cytoplasmic RNA, and causes changes
in nuclear non-histone proteins [7, 18, 25]. These mo-
lecular changes can be tracked by measuring changes in
expression of differentially regulated molecules such
as neuropeptides [7]. As expected, treatment with
cpt-cAMP resulted in an increased neurite extension,
dendritic complexity and increase in Na' current.
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Fig. 5 cpt-cAMP increases ASIC1a expression and ASICTa current. a ASIC1a protein expression by Western blot. Blots show immunoreactivity to
ASICT and Beta-actin at their expected molecular weights. After treatment with 1T mM cpt-cAMP, there is an increase in the expression of ASIC1a
as evidenced by an increase in density. b Summary data of Western blotting shows that cpt-cAMP significantly increased ASIC1a protein expression
(p=005) (n=12). ¢ Example of whole cell recording that illustrates an increase in ASIC1a current after 72-h treatment with cpt-cAMP. d Summary data
showing the ASIC current density in NS20Y cells from different treatment groups. There is a significant increase in the density of peak ASIC current in

NS20Y cells treated with cpt-cAMP (* p < 0.05 vs. control, n =12 in each group)

To explore a potential role of ASICs in the differenti-
ation of NS20Y cells, we first determined whether
NS20Y cells express ASICs. RT-PCR detected the pres-
ence of both ASICla and ASIC1b transcripts and West-
ern blot confirmed the presence of ASIC1 protein. The
presence of ASICla subunit was expected as it is fairly
ubiquitous in the central and peripheral neuronal tissues
[26-28]. While the presence of ASIC1b in NS20Y cells
was surprising, it was not unaccounted for as this cell
line has heterogeneous origins, composition, and is
mainly found in the peripheral nervous system [14, 24].

Acid-sensing ion channels were further characterized
using the whole-cell patch clamp technique. In all cells
examined, lowering the extracellular pH from 7.4 to
pH 6.0 evoked a transient inward current at a holding
potential of -60 mV. The properties of acid-activated
currents in NS20Y cells resemble ASIC currents in
cultured primary CNS neurons (human, mouse, and rat)
[9, 29, 30]. For example, ASICs in NS20Y were pharma-
cologically blocked by the non-specific inhibitor amilor-
ide, and the specific inhibitor PcTX1. The concentration
response data of amiloride in NS20Y cells is consistent
with previously established ICs, for amiloride blockade
of ASICs in CNS neurons [9, 30]. In addition, ASIC
currents were inhibited by zinc but potentiated by zinc

chelation. Zinc inhibition is consistent with the presence
of ASICla containing channels [16, 17]. It is plausible
that homomeric ASIC1b and heteromeric ASICla/1b
formations may occur, these configurations of ASICs are
not sensitive to PcTX1, which is not the case for the
current in NS20Y cells where application of PcTX1
inhibited ~70 % of the current. Although PcTX1 also
inhibits the current mediated by heteromeric ASICla/
ASIC2b channels [11, 15], our RT-PCR result did not
show clear expression of 2b transcript. Taking together,
our data suggest that homomeric ASICla channels are
predominantly responsible for acid induced currents in
NS20Y cells.

Having established the presence of functional ASICs in
NS20Y cells, we explored the potential role of these
channels in neuronal neuritogenesis. Neuritogenesis was
defined as the extension and branching of neurites
(length and complexity), similar to other reports in the
field [7, 19]. These parameters were quantified by count-
ing the number of neurites/cell and their length from
soma to furthest tip. We noted that while control cells
remained small and lacked of extensive branches, cells
treated with 1 mM cpt-cAMP increased neurite number,
length, overall soma size, and arborization. When PcTX1
was used to inhibit the ASICla channels cells treated
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with cpt-cAMP failed to exhibit the same increase of
neurite growth. Similarly, knock-down the expression of
ASICla resulted in a suppression of cpt-cAMP induced
neurite extension. Together, these data suggest that
ASICla may play an important role in neuronal differen-
tiation of NS20Y cells.

ASICla has been suggested to play a role in synaptic
plasticity, learning and memory [6], and in acidosis-
mediated cell death [9, 31]. Since Ca>* permeability/sig-
naling plays a pervasive role in neuronal maturation,
dendritic arborization, and axon outgrowth [18, 32, 33],
it is plausible that ASICla activation may play a role in
neuritogenesis and neuronal differentiation. ASICs are
spatially distributed and co-localize with postsynaptic
density protein-95 (PSD-95) at the soma, along dendritic
shafts and spines and importantly at the synapses,
suggesting the possible involvement of ASIC in normal
synaptic transmission and plasticity [6]. Indeed, when
ASICs are removed from the synapse, long term potenti-
ation (LTP), the molecular model for learning memory,
is impaired [6]. Previous studies have shown that expres-
sion of ASICla modulates the density of dendritic spines
[34], which may partially explain its role in synaptic
plasticity. Our current study suggests that ASICla may
also play a role in neuronal differentiation and matur-
ation, which may, at least partially, account for its role
in synaptic transmission.

NS20Y is a cholinergic cell line which resembles many
properties of neurons when differentiated; however, it
cannot represent all properties of native neurons and
therefore has limitations in neuronal differentiation inves-
tigation. Future studies will explore the role of ASICla
in differentiation/maturation of native neurons.
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