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Abstract

Background: Genetic studies for complex diseases have predominantly discovered
main effects at individual loci, but have not focused on genomic and environmental
contexts important for a phenotype. Gene Set Enrichment Analysis (GSEA) aims to
address this by identifying sets of genes or biological pathways contributing to a
phenotype, through gene-gene interactions or other mechanisms, which are not the
focus of conventional association methods.

Results: Approaches that utilize GSEA can now take input from array chips, either
gene-centric or genome-wide, but are highly sensitive to study design, SNP selection
and pruning strategies, SNP-to-gene mapping, and pathway definitions. Here, we
present lessons learned from our experience with GSEA of heart failure, a particularly
challenging phenotype due to its underlying heterogeneous etiology.

Conclusions: This case study shows that proper data handling is essential to avoid
false-positive results. Well-defined pipelines for quality control are needed to avoid
reporting spurious results using GSEA.
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Introduction
Gene Set Enrichment Analysis (GSEA) is a statistical method to assess whether differences

in expression of gene sets between two phenotypes are statistically significant [1, 2]. It was

initially designed for analysis of mRNA expression values, obtained from the then recently

developed microarray technology [3], based on the observation that existing methods at

the time were not capable of separating the small difference in expression profiles between

two classes, and a grouping strategy was necessary. The original study [3] also developed

collections of gene sets, based on biological knowledge available at the time.

Since then, multiple additional methods and reference gene sets have been devel-

oped, in an attempt to tackle caveats that emerged with the increase in use of GSEA

and the new types of data, such as genome-wide association studies (GWAS) and ex-

ome sequencing. Among the current existing methods, Pathway Studio [4],

MAGENTA [5], PANTHER [6], EVA [7] and Ingenuity [8] are commonly used,

whereas the most common gene set definitions are Gene Ontology [9], KEGG [10, 11],

REACTOME [12, 13], BIOCARTA [14] and MSIGdb [15].
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Heart failure (HF) is a major medical problem of the Western world, carrying a high

morbidity, mortality and economic burden [16, 17]. The susceptibility to develop HF is

thought to be partially genetically based [18], but despite a tremendous increase in

knowledge regarding etiology and risk factors for HF, still relatively little is known

about genetic factors related to HF incidence. Until now, genetic causes of HF have

mainly been identified in rare cases of non-ischemic HF with monogenic inheritance

[19]. Genetic studies for complex diseases, such as HF, focus on main effects of single

loci using strict statistical thresholds for significance, and typically do not consider

more complicated biological, genomic, or environmental hypotheses and models in

their primary scans.

While genome-wide studies have succeeded in identifying a multitude of genetic vari-

ants affecting disease risk, for incident heart failure (HF) thus far only two SNPs have

been identified in different ethnicities [20], most likely due to the relatively small sam-

ple sizes of the efforts so far, and the fact that HF is a very heterogeneous phenotype.

Functional SNPs with small main effects may not replicate across studies due to

context-dependent effects, such as the selection criteria of each cohort. Novel alterna-

tive analysis approaches to GWAS data that focus on the combined effects of many

loci, each making a small contribution to overall disease susceptibility, such as GSEA,

may provide a solution for the aforementioned limitations. Based on evidence from

GSEA, SNPs may be selected for further studies even if the association of that SNP

with heart failure is sub-genome-wide significant. Discovery of loci that contribute sus-

ceptibility to complex diseases like HF through gene-by-gene or gene-by-environment

interactions may segregate main effects at the individual loci that are weak or even en-

tirely absent, motivating approaches like GSEA or pathway-based methods that detect

association at the biological systems level.

We hypothesize that multiple loci interact to contribute to development of HF. GSEA

can be used to summarize genome-wide and exome array data integrating biochemical

systems and gene function. With possible gene-gene interactions present in gene sets,

potentially novel pathophysiological pathways can emerge, underlying the development

of HF, which are missed by conventional methods.

Given the statistical approach of each method, the gene sets and the input each one

takes, outputs obtained for a given phenotype may differ widely between GSEA

methods, causing uncertainty on how to interpret the data and move research forward.

Our goal in this paper is not to review each method separately (refer to Elbers et al.

[21] for a broad comparison), but instead to offer general guidelines that can be applied

to every method of the GSEA class. To illustrate these methods, we use genome-wide

data from the CHARGE consortium [20], PREVEND [22, 23] and Go-DARTS [24]

reporting incident HF, and CARDIoGRAM [25] and C4D [26] for coronary artery dis-

ease (CAD).

Cohort descriptions
Discovery

We use in this paper as input the results of the GWAS meta-analysis on incident heart

failure performed by the CHARGE (Cohorts for Heart and Aging Research in Genomic

Epidemiology) consortium [20]. The analysis of the CHARGE - Heart Failure Working

Group, part of the CHARGE Consortium, included 4 prospective cohort studies: the
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Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health

Study (CHS), the Framingham Heart Study (FHS) and the Rotterdam Study (RS).

These studies included participants of European and African ancestry who were

free of HF at study baseline. Incident HF cases were identified during follow-up by

self-report, administrative data or periodic clinical in-study examinations. A total of

20,926 participants of European ancestry and 2895 participants of African ancestry

with available genome wide data were eligible. The average age at baseline ranged

from 53.3 to 72.6 years and 57% were women. In total 2526 (12.1%) incident HF

events were identified among those of European ancestry over an average of

11.5 years follow-up and 466 (16.1%) during 13.7 years of follow up among those

of African ancestry. The average age at the time of HF onset was 73.6 years and

52% of events occurred among women. In those with European and African ances-

try, 73% and 78%, respectively, had no history of myocardial infarction prior to the

diagnosis of heart failure.

Replication
Firstly, we conducted replication using incident heart failure cases from the Genetics of

Diabetes Audit and Research Study in Tayside Scotland (Go-DARTS) [24], a cohort

with European individuals with type 2 diabetes, which was genotyped using Illumina

ExomeChip. This chip gives us the advantage of having one-to-one SNP-to-gene

mapping, because protein-coding SNPs were included in this chip, and their map-

ping is known. Secondly, we conducted replication using heart failure cases and

GWAS data of the Prevention of REnal and Vascular ENdstage Disease (PREVEND)

Study (n = 3,418, non-diabetics), a Dutch ongoing prospective study investigating the

natural course of increased levels of urinary albumin excretion and its relation to

renal and cardiovascular disease [22, 23].

All studies in CHARGE, Go-DARTS and PREVEND received institutional review

board approval, and all participants provided written informed consent for the use of

their DNA for research.

Initial pathway results
We analyzed the CHARGE [20] meta-analysis results for HF with EVA [7] using

MSIGdb [15]. We defined P < 0.05 as the threshold for significance, calculated via en-

richment tests counting the number of SNPs below this threshold as compared to the

total of SNPs mapped to each gene, in the first step. We mapped SNPs to genes using

BEDtools [27], dbSNP142 and the RefSeq gene reference, both datasets downloaded

from the UCSC Genome Browser [28], using a 500 kb window for mapping. We then

used the obtained gene p-values to calculate pathway p-values, by counting the number

of gene p-values below the significance threshold of 0.05 as a proportion of the number

of genes in each pathway.

We followed exactly the same procedure and phenotype (HF) for the other two

datasets (GoDARTS and PREVEND), with the exception of the SNP-to-gene map-

ping step for GoDARTS since all Exome chip SNPs are known to code specific

genes. Additional file 1: Table S1 presents p-values for all significant pathways in

the analysis of the CHARGE data and their p-values from the analyses of the other

two cohorts.
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Four pathways were significant for all three studies: KEGG_TYPE_I_DIABETES_

MELLITUS, KEGG_ALLOGRAFT_REJECTION, KEGG_GRAFT_VERSUS_HOST_

DISEASE and KEGG_ASTHMA. These pathways share a considerable amount of SNPs

(15 out of 30, 43, 36 and 41, respectively), the vast majority of which is related to the

MHC complex (Additional file 2: Figure S1). Permutation tests run in R [29] with

100000 simulations showed a low likelihood of these results arising by chance, with

P < 10−06 for Graft versus Host disease, P ~ 0.002 for Type 1 Diabetes and Asthma

and P ~ 0.007 for Allograft rejection (Additional file 1: Table S2).

Despite the multiple and convincing evidence in favor of the results, we explain

below why these are false positives, which is mainly as a consequence of data handling.

In the following sections we will explore strategies to avoid such false-positive findings

in GSEA.

Pre-processing the data
Every GSEA method is highly dependent on the input provided. As an example, while

PANTHER [6] accepts as input gene symbols without associated p-values, MAGENTA,

Ingenuity and EVA take as input SNP IDs with p-values, obtained, for instance, from

GWAS, and use this p-value information to calculate proportions of significant signals

according to predefined thresholds.

When providing SNPs and p-values to GSEA, it is important to check for the LD

structure of the data provided, since GWAS arrays and especially gene-centric arrays

have dense coverage in regions of particular interest, and lower coverage in other re-

gions of the genome. Such unbalance can lead to artificial enrichment of regions, in

case a densely covered region presents an LD block under the p-value threshold deter-

mined; the opposite can also happen, and a potentially important region may be lost

due to a non-significant LD block in the vicinity. A recent study by Sobota et al. [30]

concludes that an r [2] of 0.3 is a reasonable threshold to eliminate redundancy, and

our tests corroborate that recommendation, with the original 2,438,671 SNPs narrowed

down to 410,986, without losing any locus of the top SNP hits (P < 10−3).

SNP-to-gene mapping
Another crucial step is the SNP-to-gene mapping. Recent studies suggest that a 100 kb

window gives on average one mapping per SNP [31]. Using the same window of

100 kb, we obtained 2.6 mappings per SNP on average, with 1,801,727 SNPs mapped

4,762,714 times), at the cost of missing ~600 k SNPs, which are probably located in

gene deserts.

Larger windows can unveil promoter and enhancer mappings, which are commonly

within 500 kb regions of the SNP [32–34] (although enhancers can be found further

away [35]). Also, more complex regions, such as MHC, may have SNPs in LD separated

by over 3 M bases [36], and rare variant effects may be found up to 2.5 M bases away

from the tag SNP [37, 38].. We do not recommend large windows for SNP-to-gene

mapping, as the number of mappings becomes intractable: our tests showed an average

of 9 mappings per SNP with a 500 kb window, with 2,241,172 SNPs being mapped

20,159,139 times. For a 1 Mb window, 2,387,544 SNPs were mapped 34,793,184 times,

giving an average of 14.6 mappings per SNP, most of them likely to be false mappings

regarding LD structure (encompassing multiple unrelated genes, due to the mapping
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based only on distance). Such extensive mapping may lead to overplay of the effects of

a single SNP in multiple genes, and if it happens to be a highly significant gene, it could

drive the overrepresentation of a whole gene set [39]. These patterns remain even after

LD clumping (best proxy method implemented in Plink [40], independent of p-value),

with 301,509 SNPs mapped 830,835 times (average 2.8 mappings per SNP) for a 100 kb

window, and 367,854 SNPs mapped 3,542,909 times (average 9.6 mappings per SNP)

using a 500 kb window. A 100 kb window thus seems reasonable to obtain the most

manageable ratio of “true” mappings, under an assumption that the nearest genes are

most likely the ones affected by a variant (although it is arguably not always the case).

Gene sets
Efforts to represent collections of gene sets representing biological pathways have been

an active research topic for the past 20 years [9, 41, 42]. In general terms, each pathway

contains a set of genes that contribute to a certain metabolic process or biological func-

tion, obtained from a multitude of experiments. Each of these experiments and data-

bases has its own level of confidence, which may lead to spurious results if not taken

into account.

To explain this point, we describe an example. MSigdb [15] has collections of signa-

ture databases available that were composed in 2005, including KEGG [10]. The defin-

ition for Type I diabetes (T1D) from KEGG at MSigdb contains 44 genes, including 20

HLA genes. While it is striking that so many HLA-related genes play a role in develop-

ment of T1D at the same time, it is not surprising that inflammatory processes are in-

volved in the pathogenesis of this disease. However, KEGG updated its definition of the

T1D disease pathway with the most recent research findings, and it currently consists

of 22 genes, only three of which are HLA genes [43]. This new set is arguably more

precise, and is likely to lead to different results when used as definition of a GSEA, al-

though MSIGdb has not been updated since. Adriaens et al. [44] suggest that Reactome

should be taken as an initial database for analyses, because of its curation system,

which gives more reliable definitons. Other methods, such as Ingenuity [8], also have

curation systems, to improve the confidence on the results.

Recently, Frost et al. [45] addressed the problem of generality of pathways, i.e., mul-

tiple genes in the same region are assigned to a pathway due to the knowledge one of

these genes is involved in the process, but there is no certainty which. These re-

searchers used gene expression data to score how significant each gene of a pathway

definition actually is, and were able to narrow down pathways to represent more mean-

ingful biological processes. We believe this is a necessary step to help reduce false posi-

tive findings in GSEA.

Test case: CARDIoGRAM and C4D
In the GWAS field, the high number of false-positive findings of the early studies

[46–48] has led to a very stringent p-value significance threshold and a mandatory

replication step in independent samples [49, 50]. We believe that the GWAS proto-

col should be used to GSEA as well. In order to test our method, we decided to

use a well-established meta-analysis on CAD from the CARDIoGRAMplusC4D

consortium [51]. Coronary ARtery DIsease Genome wide Replication and Meta-

analysis (CARDIoGRAM) is a consortium of 14 cohorts with multiple recruitment
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criteria, assessing coronary artery disease (CAD) status of over 80,000 individuals

of European ancestry. The Coronary Artery Disease Genetics (C4D) is a similar

consortium, established to assess CAD status of over 30,000 patients from four dif-

ferent cohorts of European and south Asian ancestry. Results of independent meta-

analyses from CARDIoGRAM [25] and C4D [26] are available online, with GWAS

chip and imputed SNPs from CARDIoGRAM (~2.5 M SNPs) but only GWAS chip

results from C4D (~500 k SNPs). In order to level both datasets we performed im-

putation using DISTMIX [52] on C4D, and after imputation we had most of the

same SNPs in both datasets. After 1000Genomes-based clumping of an unrelated

phenotype, metabolic burden (methods described in Tragante et al. [53]) (r2 > =0.3),

both datasets had over 400,000 SNPs for pathway analysis. We used a 100 kb win-

dow around each SNP to map them to genes in the vicinity. Finally, we used a

combination of MSigdb gene sets C2 (curated gene sets) and C5 (Gene Ontology

gene sets), which include REACTOME, KEGG and Gene Ontology terms.

Using the full original CARDIoGRAM as the discovery set (given its bigger sample

size), we obtained 224 pathways with P < 0.05, 69 pathways with P < 0.01 and 13 path-

ways with P < =0.001. With C4D for replication, we obtained 21 of the 224 discovery

pathways under the P < 0.05 threshold, eight of those with P < 0.01 and two below

P < =0.001. With the clumped datasets, we obtained 250 pathways with P < 0.05, 68

pathways with P < 0.01 and 15 pathways with P < =0.001. Replication in C4D

reached 20 of 250 discovery pathways with P < 0.05, nine of those with P < 0.01 and three

with P < =0.001. Moreover, eight pathways are significant for both CARDIoGRAM and

C4D, original sets and clumped sets. The main pathway identified is Biocarta’s Acute

Myocardial Infarct pathway, which is an on-target result. Other pathways are related to

lipid and platelet metabolisms, which are also directly related to CAD and MI as risk

factors (Additional file 1: Table S3). One advantage of the clumped results over the ori-

ginal datasets is the convergence between gene p-values of both datasets. While for the

original datasets 30 out of 56 bona fide genes, (i.e., with genome-wide significant SNPs)

have either P < 0.05 or P > 0.05 on both datasets, for the clumped datasets, 38 out of

these 56 genes are convergent (Additional file 1: Table S4).

Rerunning the heart failure phenotype with complete preprocessing
Using CHARGE GWAS and imputed data (~2.5 M SNPs) as the discovery set (due

to the bigger sample size), we identified 54 pathways with P < 0.01, 3 of these with

P < =0.001 (Additional file 1: Table S5), which were the same three pathways that

were significantly associated after FDR correction (q = 0.05).

We used two independent cohorts to validate our findings: GoDARTS (~240 k exome

chip SNPs) and PREVEND (GWAS chip and imputed ~2.5 M SNPs). We used the fol-

lowing parameters for discovery and replication: clumped SNP lists with the lead signal

from an LD block of r2 > =0.3, a 100 kb window for mapping SNPs to genes, and

MSigdb gene sets C2 (curated gene sets) and C5 (Gene Ontology gene sets). Replication

in PREVEND resulted in 33 pathways with P < 0.01, 3 of these with P < 0.001

(Additional file 1: Table S6) and significant after FDR correction (q = 0.05). However,

there was no overlap between any of these pathways.

We then decided to increase our SNP-to-gene mapping window, to 500 kb, keeping

the other parameters the same. We then obtained 74 pathways with P < 0.01, 19 of
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those with P < 0.001 (Additional file 1: Table S7) and significant after FDR correction

(q = 0.05) with the CHARGE dataset, and 57 pathways with P < 0.01, 10 of those with

P < 0.001 (Additional file 1: Table S8) and significant after FDR correction (q = 0.05).

Two pathways overlapped between these two sets of results: NIKOLSKY_BREAST_

CANCER_16P13_AMPLICON, consisting of 120 genes, and NIKOLSKY_BREAST_

CANCER_8Q23_Q24_AMPLICON, consisting of 158 genes. We then investigated how

many of these genes have low p-values for both datasets. Surprisingly, none of the 120

genes of the first pathway were significant in both datasets, and only three out of the

158 genes of the second pathway had a P < 0.05 in the first pathway, which is lower

than expected by chance (binomial P = 0.03).

The possible advantage of the known SNP-to-gene mapping of the Exome Chip data

in their use in GoDARTS is undermined by the fact that there are few SNPs per gene

after clumping, leading to imprecise statistics per gene. Therefore, we could not make

use of the Exome Chip results.

Discussion
Gene set enrichment analysis is a strategy to bring insight into biological mechanisms that

lead to disease. Experience from years of GWAS analyses has shown that effect sizes of

genetic variants identified are small. Grouping these variants into biologically meaningful

pathways, such as is done by GSEA, seems to be a potential alternative to gain power and

identify true associations. A very detailed setup is necessary, however, to obtain reliable

and reproducible results. From our example, we have shown that false-positive results can

be found and even replicated without proper data handling. It is important to have well-

defined pipelines for quality control, in order to avoid publishing false-positives, re-

working and delay of scientific development. We provide in Fig. 1 a diagram of an ideal

GSE analysis, with all pre-processing steps we described in the paper.

The approach described proved successful for CAD/MI. Using CARDIoGRAM and

C4D, two big consortia that provide detailed meta-analysis results, we were able to

Fig. 1 Pipeline of a GSEA. Preprocessing is essential for all the input of the system
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identify significant pathways that replicated on both datasets, and results are directly

related to the phenotype. It is also worth noting that with the clumping, regions of high

coverage of non-significant SNPs are cleaned up, giving a better estimate of the contri-

bution of each gene in the phenotype. We exemplify this effect with the higher conver-

gence rate between CARDIoGRAM and C4D for genes mapped from the genome-wide

significant loci of the phenotype (38 out of 56, binomial P = 0.01).

Several factors may have played a role in the absence of positive results for the heart

failure phenotype after data QC. The phenotype definition is one of them. Given the

complexity of the heart failure syndrome with different phenotypes between distinct

ethnic cohorts and different etiologies, genome wide association studies on incident HF

can be hampered by heterogeneity. For particularly heterogeneous phenotypes such as

HF, large sample sizes are necessary to overcome the noise intrinsic to the data. Ideally,

a better phenotyping and subsetting of the individuals might lead to a more clear separ-

ation of the genotypes, and results would be clearer with the sample sizes of current

studies (~105 – 106 individuals). Of note, a similar GSEA setup in terms of SNP-to-

gene mapping and mapping window size, conducted by Ghosh et al. [31], in the domain

of coronary artery disease (CAD) (a less heterogeneous phenotype), with the aforemen-

tioned sample size (~105 – 106 individuals), succeeded in replicating pathways from

Reactome, at a P < 0.05 level. Their results led to new hypotheses on mechanisms of

CAD that make biological sense demonstrating that a more homogeneous phenotype

can lead to successful GSE analyses.

Furthermore, there is a predominance of immunological and cancer-related pathways

among the pathways available in MSigdb, coming from multiple papers on the subcat-

egory C2. Pathways with “cancer” as part of their names correspond to 9.4% of all path-

ways in this subcategory (446 out of 4725), and the terms “lymphoma”, “myeloma” and

“blastoma” bring an extra 268 results (5.7%). A more balanced list of reference pathways

may help identify biologically relevant processes for traits and diseases in other fields.

The SNP-to-gene mapping requires further improvement. In our tests, a window of

100 kb around the SNP position seems to provide the best ratio of mappings per SNP,

in terms of biologically plausible mappings (lower windows would reduce the SNPs

mapped up to over half of the input). We note, however, that this is not a final solution;

methods that integrate functional assays with LD blocks could help narrow down the

number of possible mappings, making the mapping more precise. Furthermore, there is

the need to avoid multiple mappings of a single significant SNP to genes, as it could

drive the overrepresentation of a whole gene set [39]. This mistake has led to retraction

of a manuscript, since the main result had been inflated by the same SNP being

mapped to eight genes in the same GO term [54]. This is a hypothesis to be investi-

gated in the future, by making use of the current deluge of data being produced for

functional analysis, such as ChIP-seq, RNA-seq, 4C-seq and eQTLs to provide a precise

SNP-to-gene mapping and limit noise. Moreover, new computational methods that esti-

mate the uncertainty of the potential causal, nearby gene(s) into the enrichment ana-

lysis could be very useful for appropriate significance assessment.

Conclusions
We believe that GSEA is particularly interesting, for example, in domains with high

heritability and low penetrance, such as glucose levels, since multiple mechanisms may
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be influencing the outcome. It may also be useful for phenotypes in which the known

genetic variants explain a low percentage of the phenotypic variance so far, such as

blood pressure, because the individual effect of the SNPs associated is small, and

grouping small effect SNPs can help in finding novel pathways. GSEA may also help

identify cross-ethnic analyses, since different functional SNPs from the same gene with-

out consistent effect across different populations may aggregate at the pathway level,

making pathways more likely to replicate than individual SNPs.

GSEA methods have been gaining momentum as part of the GWAS discovery

pipeline, and we believe that, with the appropriate setup and configuration, they will

help elucidate biological mechanisms underlying phenotypes and diseases.
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