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Abstract

Background: Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome
analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded
chromosome analysis has been replaced by molecular techniques in some laboratories; we previously introduced
a QF-PCR/MLPA testing strategy in 2007. To improve diagnostic yield and efficiency we have now updated our
testing strategy to a more comprehensive QF-PCR assay followed by array CGH. Here we describe the results
from the last 5 years of service.

Methods: Fetal tissue samples and products of conception were tested using QF-PCR which will detect
aneuploidy for chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. Samples that were normal were then tested by
aCGH and all imbalance >1Mb and fully penetrant clinically significant imbalance <1Mb was reported.

Results: QF-PCR analysis identified aneuploidy/triploidy in 25.6% of samples. aCGH analysis detected imbalance in
a further 9.6% of samples; this included 1.8% with submicroscopic imbalance and 0.5% of uncertain clinical
significance. This approach has a failure rate of 1.4%, compared to 30% for G-banded chromosome analysis.

Conclusions: This efficient QF-PCR/aCGH strategy has a lower failure rate and higher diagnostic yield than
karyotype or MLPA strategies; both findings are welcome developments for couples with recurrent miscarriage.
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Background
Around 15% of clinically recognized pregnancies end in
miscarriage, usually toward the end of the first trimester
[1], and approximately 1% of couples suffer from recur-
rent miscarriage (defined as three or more consecutive
miscarriages). Identifying the cause of pregnancy loss is
important for couples and may be critical for the man-
agement of their future pregnancies.
Traditional cytogenetic testing of miscarriage products

involved culture of chorionic villi or fetal tissue, followed
by G-banded chromosome analysis. This approach is
labour-intensive and has a significant failure rate, espe-
cially when the sample quality is poor; in our laboratory

the karyotype failure rate for these samples was approxi-
mately 30% [2]. We replaced G-banded chromosome
analysis in 2007 with a combined QF-PCR/MLPA ap-
proach (samples were tested by QF-PCR for chromo-
somes 13, 18 21, X and Y followed, in cases with normal
results, by MLPA for subtelomeres) [2]. We have now
replaced this service with an extended QF-PCR assay
(testing chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y)
followed in cases with normal results, by array compara-
tive genomic hybridisation (aCGH).
Array analysis is now the method of choice for the

identification of chromosome abnormality in postnatal
samples. In our laboratory aCGH analysis is the first line
test for postnatal samples [3] and for prenatal samples
requiring genome-wide copy number analysis following
a normal QF-PCR result [4]; ~25,000 postnatal and
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~1,000 prenatal samples have been tested. Array CGH-
based diagnosis has improved diagnostic yield for both
postnatal and prenatal samples. However, the clinical
utility of arrays for investigating pregnancy loss is still
being established; the extent to which submicroscopic
imbalance contributes to pregnancy loss and/or fetal ab-
normalities is unknown. The application of arrays for
testing of fetal tissues was first described in 2004 [5];
since then there have been a limited number of pub-
lished clinical cohorts [6–11]. Interpreting and reporting
copy number variants (CNV) detected by aCGH in mis-
carriage samples is complex, given potential implications
for familial testing and future pregnancies, and best
practice has yet to be determined.
In addition, the UK Royal College of Obstetricians and

Gyneacologists (RCOG) issued new guidelines in 2011
[12] following a review of the evidence regarding chromo-
some analysis of couples who suffer recurrent miscarriages
[13]. It is now recommended that chromosome analysis
should be performed on products of conception (POCs)
and fetal tissues rather than parental blood samples. This
resulted in an increase in the number of miscarriage
samples received, precipitating the need for a high
throughput and efficient testing strategy.
Here we describe the results from five years of our

QF-PCR/aCGH testing service, including our CNV
reporting criteria. This strategy has proven to be an effi-
cient and streamlined method of testing POCs and fetal
tissue samples with a lower failure rate and higher ab-
normality detection rate than previous testing strategies.

Methods
Samples
Nearly all samples were obtained from miscarriage
products with a small number obtained from medical
terminations or still births. Tested tissue types included
chorionic villi, cord, skin, gonad, bone, muscle, lung, liver,
spleen and central nervous system. Fetal tissues were al-
ways tested in preference to placental tissues, with lowest
priority given to tissues from spleen, liver and lung as
DNA quality is often poor from these tissues. For some
pregnancies (approximately 50%) only placental material
was available. The type of tissue tested was given in the
report.
Gestation varied from 8 to 40 weeks. Samples where

no fetal or placental material (based on morphological
analysis) could be categorically identified were re-
ported as ‘unsuitable’ and no further analysis was car-
ried out. DNA was prepared from all samples where
fetal or placental material was identified, including
samples that were delayed or were macerated and
which would not previously have been considered suit-
able for culture and karyotyping. Cultures were not
routinely established.

Testing strategy
The testing strategy and sample numbers are sum-
marised in Fig. 1. All samples that were not classed as
unsuitable were investigated using QF-PCR assays for
chromosomes 13, 16, 18, 21, X and Y following QF-PCR
for aneuploidy Best Practice Guidelines [14]. Primers for
chromosomes 15 and 22 were added to the multiplexes
in October 2012, whilst primers for chromosome 14
were added in April 2016. QF-PCR identifies both non-
mosaic and mosaic chromosome aneuploidies, molar
and triploid pregnancies and maternal cell contamin-
ation (MCC). Additional cell lines, such as in cases of
mosaicism and MCC, are reliably detected if they con-
tribute at least 20% of the tested cell population. If MCC
was present at a significant level (approximately 30%),
such that the QF-PCR result could not be confidently
interpreted, a second sample was prepared and tested.
Abnormal QF-PCR results were reported and in most
cases no further testing of the sample was carried out.
Samples where QF-PCR detected partial chromosome
imbalance were tested by MLPA or aCGH. Parental
samples were requested where aneuploidies associated
with a possible recurrence risk in future pregnancies
were detected. Samples with a normal QF-PCR result
went on to be tested using either MLPA (prior to
October 2012) or aCGH (October 2012 to present).
MLPA is generally considered unable to detect mosai-
cism whereas aCGH detects mosaicism if present at
≥20% (dependent on quality of DNA).

DNA extraction
Forty milligrams of fetal tissue was roughly chopped or
15 mg chorionic villi was cleaned of any residual mater-
nal decidua; these samples were incubated overnight at
56 °C with proteinase K. DNA was then extracted using
a Chemagen DNA extraction robot according to the
manufacturer’s instructions (Chemagen, Baesweiler,
Germany). DNA was quantified using a Nanodrop spec-
trophotometer according to the manufacturer’s instruc-
tions (Thermo Scientific), and the DNA quality was
checked by agarose gel electrophoresis. Samples with
completely degraded DNA were tested by QF-PCR only
and, if necessary, a second DNA sample was prepared
for MLPA/aCGH analysis.

QF-PCR testing and analysis
Amplification of microsatellite markers was carried out
as described previously [15]. Details of primer sequences
and multiplexes are given in Table 1. Briefly, DNA was
amplified using two multiplexes that include a total of
31 markers; assay 1 contains primers for chromosomes
13, 18, 21 and 22, and assay 2, primers for chromosomes
14, 15 and 16 and the X and Y chromosomes. Supple-
mentary markers were used as required. PCR products
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were separated on an ABI 3100 capillary genetic ana-
lyser, and results were analyzed using ABI Genotyper
software.

MLPA testing and analysis
All MLPA procedures were carried out as described in
Donaghue et al., 2010 [2].

aCGH testing and analysis
DNA samples were labelled using CGH Labelling kit for
Oligo Arrays (Enzo Life Sciences, Exeter, UK) and
purified by QIA quick PCR purification kit (Qiagen,
Manchester, UK) both as per the manufacturer’s instruc-
tions. Array CGH was carried out using an oligonucleo-
tide array platform comprising 60,000 probes (Agilent,
Wokingham, UK; design ID:028469), as described pre-
viously [16]. The arrays were hybridized, washed and
scanned using an Agilent scanner, and output from the
scanner analysed using Feature Extraction and Genomic
Workbench (Agilent) in order to quantify the images and
detect CNVs. Agilent ADM-2 algorithm at threshold 6

(with a 3 probe sliding window providing a median detec-
tion of 120 kb) was used to call CNVs.
A patient vs patient hybridization strategy was employed

where differentially-labelled patients were hybridised
against each other. For any detected imbalance, average
signal intensity level for each dye was compared with in-
tensities for that region in 10 other samples from the same
array run, in order to inform “ownership” of the imbal-
ance. Although any shared imbalance would not be de-
tected, the risk of this was minimised by mismatching
phenotypes of hybridization partners where possible and
by comparing the signal intensities for each chromosome
across the whole array run (typically 48 arrays) to detect
any arrays where both hybridization partners carried the
same whole chromosome aneuploidy. This strategy pro-
vided substantial cost savings.
All CNVs (outside established population polymor-

phisms) greater than 1 Mb in size were reported. For
CNVs smaller than 1 Mb, only those interpreted as of
fully penetrant clinical significance or as being associated
with fetal abnormalities were reported.

Fig. 1 A flow chart illustrating the testing strategies and sample numbers
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Table 1 Marker name, location and primer sequences for assays 1 and 2

Marker Name Location Primer sequences 5’-3’

D13S252 F 13q12.2 PET-GCAGATGTACTGTTTTCCTACCAA

D13S252 R AGATGGTATATTGTGGGACCTTGT

D13S305 F 13q13.3 VIC-CTAATGCAAGGAAATTTGTGG

D13S305 R CAGCCTGTTTGAGGACCTGT

D13S634 F 13q21.33 6FAM-GGCAGATTCAATAGGATAAATAGA

D13S634 R GTAACCCCTCAGGTTCTCAAGTCT

D18S976 F 18p11.31 PET- GAGATCCTGAACATGGAGCAG

D18S976 R ACACTATTGGCATCCCTTGG

D18S391 F 18p11.31 VIC-GGACTTACCACAGGCAATGTGACT

D18S391 R CTGGCTAATTGAGTTAGATTACAA

D18S535 F 18q12.3 6FAM-CAGCAAACTTCATGTGACAAAAGC

D18S535 R CAATGGTAACCTACTATTTACGTC

D18S978 F 18q12.3 NED-GTAGATCTTGGGACTTGTCAGA

D18S978 R GTCTCCCATGGTCACAATGCT

D18S386 F 18q22.1 VIC-TGAGTCAGGAGAATCACTTGGAAC

D18S386 R CTCTTCCATGAAGTAGCTAAGCAG

D18S390 F 18q22.3 NED-GGTCAATAGTGAATATTTGGATAC

D18S390 R CTCCAACCTCACTTGAGAGTA

D21S11 F 21q21.1 6FAM-TTTCTCAGTCTCCATAAATATGTG

D21S11 R GATGTTGTATTAGTCAATGTTCTC

D21S1409 F 21q21.2 PET-AAGCGAAGGATTTGGATCAG

D21S1409 R TTTGCCTCTGAATATCCCTATC

D21S1435 F 21q21.3 6FAM-CCCTCTCCAATTGTTTGTCTACC

D21S1435 R ACAAAAGGAAAGCAAGAGATTTCA

D21S1411 F 21q22.11 ATAGGTAGATACATAAATATGATGA

D21S1411 R NED-TATTAATGTGTGTCCTTCCAGGC

D22S873 F 22q11.21 VIC-GACAGAGTGACAGCCCGTCT

D22S873 R TGGAATCTGACCTCCTCATTG

D22S528 F 22q12.2 PET-CTCGAGCCTGTCTCATCTCAC

D22S528 R AGCCCAGGAGTTCTCTGTCTC

D22S685 F 22q12.3 6FAM-ATCTGCAAGCTCTCCAGCTC

D22S685 R CAGTGGATCCAGGGGAAAG

D22S417 F 22q13.2 6FAM-AGCCTGGGAAGTTAAGACTGC

D22S417 R ATTTTCCCATTTAGCGTTTCC

AMEL F Xp22.2/Yp11.2 PET-CCCTGGGCTCTGTAAAGAATAGTG

AMEL R ATCAGAGCTTAAACTGGGAAGCTG

TAF9L F 3p24.2/Xq21.1 AGCATCTCTGTTAAATTTAGAAATG

TAF9L R PET-CAGGAAACAGCTATGACCTGCTTTTGACAGGTAGTTTTGG

DXYS267 F Xq21.31/Yp11.2 PET-ATGTGGTCTTCTACTTGTGTCA

DXYS267 R GTGTGTGGAAGTGAAGGATAG

DXYS218 F Xp22.33/Yp11.32 6-FAM- AACTGAGGGGACCTGGAATG

DXYS218 R GAATCGATTCAACCCGGGAGA

DXS981 F Xq13.1 6FAM-CTCCTTGTGGCCTTCCTTAAATG

DXS981 R TTCTCTCCACTTTTCAGAGTCA

DXS6807 F Xp22.32 6FAM- TCTCCCTTATTTGTGGTTTTGC

DXS6807 R AAAATACTCCCACCCCCAGT
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Results
Sample numbers
In the five year period April 2011 to March 2016, 3805
samples, including samples classed as ‘unsuitable’ were
received. Figure 2 shows samples numbers received per
quarter between April 2011 and March 2016. Period 1
(April 11 - March 12, n = 447) was prior to the implemen-
tation of the RCOG guidelines, period 2 (April 12 – March
13, n = 634) was the first year of the new referral criteria
and was seen as a consolidation period, whilst for periods 3
(n = 757), 4 (n = 940) and 5 (n = 1027) all referral centres

were expected to be referring samples in line with the new
RCOG guidelines. This correlated with an increase in
sample numbers of 130% between periods 1 and 5.

Unsuitable samples
Three hundred ninety-four (10.4%) of samples were
classed as unsuitable where no fetal or placental material
was identified by morphological examination. The per-
centage of samples in periods 1 to 5 were 9.6%, 11.2%,
12.3, 10.2 and 8.8% respectively.

Table 1 Marker name, location and primer sequences for assays 1 and 2 (Continued)

DXS1283E F Xp22.31 NED-AGTTTAGGAGATTATCAAGCTG

DXS1283E R CCCATACACAAGTCCTCAAAGTGA

DXS6809 F Xq21.33 PET-TTGCTTTAGGCTGATGTGAGG

DXS6809 R CAGGTTAATTCAAGATATTTGTCA

SRY F Yp11.31 NED- AGTAAAGGCAACGTCCAGGAT

SRY R TTCCGACGAGGTCGATACTTA

DYS448 F Yq11.223 PET- CAAGGATCCAAATAAAGAACAGAGA

DYS448 R GGTTATTTCTTGATTCCCTGTG

D14S125 F 14q23.3 6FAM- GGTTGAATGTGGCGTGTTCCACTC

D14S125 R CCTGGGGCTCTTAACCTCTCATCATA

D14S139 F 14q22.1 6FAM- TAGGCCAAAAATGCAGTCATGGGTA

D14S125 R CTGAAAAACAAAACACAGGGGCAG

D15S1515 F 15q26.2 GAGAGATGATAAATGACAGCTACAGG

D15S1515 R NED- TGGGCTATGGAAGAAACAGAG

D15S822 F 15q12 6FAM-CAGCAGATGTGAAGTGTGTGAA

D15S822 R TGAGCTGCTTCTCTTTGTTGC

D16S485 F 16q22.2 VIC-GAAATTAAGTTTGGGATGAAACT

D16S485 R TGAGGAACTGAGGCCATGTGA

D16S488 F 16q24.1 VIC -AATACAGACAGACAGACAGGT

D16S488 R CGAAAGTGATGCCATAGACTT

Fluorescent labels added to primers are indicated: 6FAM, VIC, NED or PET (Applied Biosystems)

Fig. 2 Quarterly POC and fetal tissue samples received by the laboratory
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Gestation
Gestation was available for 1126 samples, received be-
tween April 11 and March 14. For these samples the
mean and median gestational age of samples over this
3 year period was 16 weeks and 14 weeks respectively.
The change to the RCOG guidelines correlated with
samples from the first trimester increasing from 39 to
52% between periods 1 and 3 (Fig. 3).

Failed tests
0.4% of samples (12/3411) could not be tested due to
high levels of maternal cell contamination. QF-PCR
analysis failed for a further 0.4% (13/3411) of samples,
whilst aCGH failed to give a result for 1.3% of samples
(24/1911). The combined failure rate was 1.4% of
samples (49/3411).

Reporting times
Using the QF-PCR/aCGH testing strategy, 89% of samples
were reported within 28 days; UK guidelines are 90%
within 28 days [17]. This compares to 88% reported within
28 days using a QF-PCR/MLPA testing strategy [2].

Abnormalities identified by QF-PCR
In the five year period, 874 of 3411 samples (25.6%)
tested by QF-PCR were found to have a chromosome
abnormality (see Fig. 4); no further testing of these sam-
ples was carried out in most cases. Testing for trisomies
15 and 22 was introduced in October 2012. Overall, tri-
somy 16 had the highest incidence followed by triploidy
and trisomy 21. When abnormalities were detected in
placental samples, the possibility of confined placental
mosaicism (CPM) was considered and its significance to
the miscarriage and/or fetal abnormalities was discussed.

Abnormalities identified by aCGH
One thousand nine hundred-eleven samples that were
normal by QF-PCR were tested by aCGH (from a total
of 2718 suitable samples in this period). All chromosome
imbalances >1 Mb in size were reported. In addition, im-
balance <1 Mb in size associated with a fully penetrant
phenotype or associated with fetal abnormalities were
reported. Using these criteria, chromosome imbalance
was detected and reported for 260 samples (9.6% of
2718 samples). See Fig. 5.

aCGH abnormalities >10 Mb, causative of the miscarriage/
fetal abnormalities
One hundred ninety-seven (7.2%) samples had abnormali-
ties >10 Mb in size (Table 2); all were considered to be
causative of the miscarriage and/or fetal abnormalities. Of
these, 155 (5.7%) samples had whole chromosome aneu-
ploidy including six with complex aneuploidy and nine with
mosaic aneuploidy. Eighteen samples (0.7%) were found to
have an unbalanced genotype indicative of a structural re-
arrangement; two arose from known parental rearrange-
ments whilst sixteen samples were subsequently found to
be derived from balanced parental rearrangements.

aCGH abnormalities <10 Mb, likely causative of the
miscarriage/fetal abnormalities
Twenty-five (0.9%) samples had a reported submicro-
scopic abnormality (Table 3) which were either considered
to be or likely to be the cause of the miscarriage and/or
fetal abnormalities. These included well characterised syn-
drome regions eg Di-George (OMIM 188400), Williams
(OMIM 194050) and Miller-Dieker syndrome (OMIM
247200) regions as well as smaller imbalances with imbal-
ance of critical genes eg PAFAH1B1 (OMIM 601545) and
HCCS (OMIM 300056) genes.

Fig. 3 % of samples from each trimester for the first three annual periods
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aCGH abnormalities <10 Mb, not causative of the
miscarriage/fetal abnormalities but clinically significant
Twenty-four (0.9%) samples had a reported submicro-
scopic abnormality which were considered to be clinic-
ally significant but unrelated to the miscarriage and/or
fetal abnormalities (Table 4).
An additional fourteen (0.5%) samples had imbalances

>1 Mb of unknown significance.
For all abnormalities with a recurrence risk, parental

samples were requested for follow up studies.

Discussion
Identifying the cause of pregnancy loss is important for
couples and may have significance for the management
of future pregnancies. Around 50% of early pregnancy loss
is caused by sporadic chromosome aneuploidy or triploidy

following meiotic or postzygotic mitotic error [18]; in
these cases, the prognosis for future pregnancies is good.
However, where the chromosome complement is normal,
other possible reasons for miscarriage (e.g. antiphospholi-
pid syndrome) can be considered.
We report an efficient, cost effective QF-PCR/aCGH

testing strategy for POCs and fetal tissues that has a
considerably lower failure rate and higher diagnostic
yield compared to other approaches. The overall abnor-
mality rate was 35.2%; 33.8% of samples were found to
have a chromosome imbalance with associated fully
penetrant phenotype, likely to be causative of the mis-
carriage or fetal abnormalities; 1.8% of these imbalances
were submicroscopic (<10 Mb) and would likely not be
identified by karyotype analysis. The finding of chromo-
some imbalance can be used to predict the risk of

Fig. 4 Abnormalities identified by QF-PCR

aneuploidy

unbalanced translocations

>10Mb causative

<10Mb causative

1-10Mb not causative,
clinically significant

VOUS

Fig. 5 Distribution of abnormal aCGH results. VOUS (variant of unknown significance)
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recurrence of both miscarriage and fetal abnormality as
well as providing reasons for pregnancy loss, thus redu-
cing further investigations.
The combined use of QF-PCR and aCGH is also more

cost-effective than testing by aCGH alone. 25.6% of sam-
ples were found to be abnormal by QF-PCR; with the
extended QF-PCR panel now including chromosome 14,
this figure will increase. For these cases, the additional
expense of the genome-wide test is avoided. In addition,
QF-PCR detects triploidy (3.6% of our samples) and
molar pregnancies (0.2% of our samples), neither of
which are identified by MLPA or aCGH.
QF-PCR is also significantly more robust than either

aCGH, MLPA or karyotype analysis; failure rates are
found to be 0.4%, 1.3, 5% [2] and 30% [13] respectively.
QF-PCR genotyping also identifies and quantifies MCC;
an important quality check.
The oligo array platform used has an average resolution

of 120 kb; however, due to the lack of data regarding the
clinical significance of submicroscopic imbalance in fetal
tissues and POCs, a cautious reporting approach was
adopted; all imbalance >1 Mb was reported in addition to
smaller regions of known fully penetrant clinical signifi-
cance. In our cohort, 1.5% (40/2718) of samples were
found to have a fully penetrant clinically significant sub-
microscopic (<10 Mb) CNV, whilst 0.3% (9/2718) were
found to have a neurosusceptibility CNVs (nsCNV)
>1 Mb in size. Other published cohorts found clinically

significant submicroscopic imbalance in 0.6% [6], 0.8%
[10], 1.6% [8] of samples, although the Levy study [10] in-
cluded nsCNV and CNVs of unknown significance in this
group. The patient vs patient aCGH strategy provides a
significant cost reduction compared with patient vs con-
trol testing.
Use of the aCGH analysis and reporting strategy de-

scribed here minimises some of the reporting and coun-
selling complexities caused by CNVs of uncertain
significance, and unexpected or incidental findings of in-
complete penetrance. Relatively little is known about the
genes and pathways involved in miscarriage; many CNVs
identified will therefore be classed as of unknown signifi-
cance and even those that are found to contain genes
involved in fetal development will not be useful diagnos-
tically or clinically without further evidence and studies
[19]. If reported, CNVs of uncertain significance may re-
quire follow-up studies and raise complex counselling
and ethical issues particularly regarding recurrence risks.
Giving a definitive assessment of clinical significance is
not possible and it is important that these results are not
over-interpreted. In addition, CNVs that are linked to
postnatal phenotypes may be problematic to interpret in
the context of fetal abnormalities and recurrent miscar-
riage; for many genes more data is needed.
Neurosusceptibility CNV (nsCNV) pose further inter-

pretation and ethical issues. As these are associated
with neurodevelopmental phenotypes with incomplete

Table 2 Imbalance >10 Mb identified by array CGH

Imbalance No of samples Size (Mb) Parental follow-up

Trisomy 136 Whole chromosome NA

Mosaic aneuploidy 9 Whole chromosome NA

Monosomy 21 4 Whole chromosome 4 DN

>1 chromosome aneuploidy 6 NA

Aneuploidy plus additional imbalance 4 1.445-whole chromosome NR

Unbalanced translocations 18 1.125–120.448 all inherited from carrier parent

Tetrasomy 18p OMIM 614290 1 14.749 NR

Wolf-Hirschhorn syndrome OMIM 194190 1 39.147 NR

Pallister-Killian OMIM 601803 1 34.387 NA

6pter-p24 deletion syndrome OMIM 612582 1 11.433 NR

18p deletion syndrome OMIM 146390 1 14.749 NR

16q22 deletion syndrome OMIM 614541 1 14.560 NR

Complex imbalance 5 1.019–156.491 2 DN 3 NR

Ring/marker 3 23.215–35.232 NR

Terminal deletion 2 14.714, 23.215 NR

Interstitial deletion 1 11.218 DN

Monosomy 18p trisomy 18q 1 Whole arm NA

2 imbalances 2 5.721–63.218 DN

NR not received (parental samples were requested but were not received). NA not applicable (parental samples were not requested as there was no indication for
follow-up studies). DN de novo
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Table 3 Imbalances <10 Mb identified by array CGH. Imbalance considered to be the cause of pregnancy loss or fetal abnormality
are shown in normal text

Imbalance No Size (Mb) Parental follow-up

Williams del OMIM 194050 1 1.442 NR

Di-George del OMIM 188400 3 2.544–2.901 3 DN, 1 NR

Williams del OMIM 194050 and Di-George del OMIM 188400 1 1.416, 0.365 DN/pat

Cat Eye and VOUS OMIM 115470 1 0.524, 2.588 mat/pat

Miller-Dieker del OMIM 247200 1 6.500 mat

Mowat-Wilson del OMIM 235730 1 1.048 NR

Wolf-Hirschhorn del OMIM 194190 1 1.807 NR

RCAD del OMIM 137920 2 1.723 DN

1q21.1 dup syndrome OMIM 612475 1 1.746 NR

Saethre-Chotzen del OMIM 101400 1 5.590 NR

Translocation 5q35.3 15q26.3 1 3.083, 3.088 pat

Inv dup del 2q37.1 2q37.3 1 0.670, 8.726 NA

Complex imbalance 4p15.1 4q12 4q21.1 1 1.810, 7.528, 1.456 DN

Complex imbalance 22q12.3q13 1 0.931, 5.332 1.789 DN

ring/marker X and Y chromosomes 1 0.256 NR

20p13x1 1 4.670 NR

SRY deletion 1 4.105 DN

1q21.1 duplication syndrome OMIM 612475 1 3.776 mat

Xq28x3,14q13.1x3 1 2.239, 1.171 DN

21q21.3q22.11x1 1 5.030 DN

17p13.3p13.2x3 Including PAFAH1B1 gene OMIM 601545 1 1.375 NR

Xp22.2x1 Including HCCS gene OMIM 300056 1 0.301 mat

Imbalance likely to be the cause of the pregnancy loss or fetal abnormality are shown in italics. NR not received (parental samples were requested but were not
received). NA not applicable (parental samples were not requested as there was no indication for follow-up studies). DN de novo, VOUS variant of
unknown significance

Table 4 Imbalances <10 Mb identified by array CGH which are not the cause of the pregnancy loss and or fetal abnormalities but
are clinically significant

Region No. Size (Mb) Parental follow-up

Charcot Marie Tooth del OMIM 118200 1 1.380 NR

STS del OMIM 300747 1 1.481 NR

Sotos del OMIM 117550 1 3.594 NR

SHOX del OMIM 312865 2 0.877 1.420 NR

22q dup syndrome OMIM 608363 3 1.492–3.157 Pat, NR, NR

MSH2 OMIM 609309 1 0.103 NR

nsCNV 8p23.3, 15q13.2q13.3, 16p13.11, 16p11.2, 16p13.11 9 0.365–3.643 3 pat, 2 mat, 2 DN, 2 NR

4p16.3x3 including the ZNF141 gene OMIM 194648 1 0.469 NR

15q25.2q25.3x3 1 3.018 DN

4q27x1 including the ANXA5 gene OMIM 131230 1 0.551 Mat

Unbalanced translocation between X and Y 1 3.505, 8.460 NA

STS dup OMIM 300747 2 1.575 NR, pat

Mosaic XXX and VOUS 1 1.211 NR

nsCNV neurosusceptibility locus with reduced penetrance, NR not received (parental samples were requested but were not received). NA not applicable (parental
samples were not requested as there was no indication for follow-up studies). DN de novo. VOUS variant of unknown significance
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penetrance they are unlikely to be the cause of the mis-
carriage and are therefore unexpected findings. How-
ever, as many are inherited, these findings may have
clinical implications, unrelated to fetal demise, for the
family and any future offspring [20]. Nondisclosure of
nsCNVs is widely practised when reporting prenatal re-
sults in Europe. Our reporting policy similarly aims to
minimise the disclosure of all ambiguous findings;
CNVs <1 Mb are only reported if the imbalance causes
a known phenotype of complete penetrance or is linked
to the pregnancy loss and/or fetal abnormalities.
Imbalances associated with a well-defined and fully

penetrant clinical phenotype but which are unrelated to
the pregnancy loss or fetal abnormalities are further ex-
amples of unexpected findings. These are identified at
low frequency; fifteen in this study. For prenatal samples
there is a general consensus that if associated with a se-
vere early onset phenotype or late onset treatable condi-
tion then these CNVs should be disclosed. A similar
strategy could be applied for fetal tissue/POC samples
where there is a possible recurrence risk; prenatal diag-
nosis may be available for future pregnancies. Given the
possibility of unexpected findings, pre-test information,
counselling and informed consent for aCGH testing is
an essential part of the testing process; patients must be
provided with information regarding both unexpected
and uncertain findings and, if appropriate, nondisclosure
of results.

Conclusions
A combined QF-PCR aCGH approach is a cost-effective
strategy with a higher diagnostic yield than other ap-
proaches; in more cases the cause of the miscarriage is
identified and future reproductive risk determined.
These outcomes are welcome developments for couples
with recurrent miscarriages.
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