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AMPA-ergic regulation of amyloid-β levels
in an Alzheimer’s disease mouse model
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Abstract

Background: Extracellular aggregation of the amyloid-β (Aβ) peptide into toxic multimers is a key event in
Alzheimer’s disease (AD) pathogenesis. Aβ aggregation is concentration-dependent, with higher concentrations of
Aβ much more likely to form toxic species. The processes that regulate extracellular levels of Aβ therefore stand to
directly affect AD pathology onset. Studies from our lab and others have demonstrated that synaptic activity is a
critical regulator of Aβ production through both presynaptic and postsynaptic mechanisms. AMPA receptors
(AMPA-Rs), as the most abundant ionotropic glutamate receptors, have the potential to greatly impact Aβ levels.

Methods: In order to study the role of AMPA-Rs in Aβ regulation, we used in vivo microdialysis in an APP/PS1 mouse
model to simultaneously deliver AMPA and other treatments while collecting Aβ from the interstitial fluid (ISF).
Changes in Aβ production and clearance along with inflammation were assessed using biochemical approaches. IL-6
deficient mice were utilized to test the role of IL-6 signaling in AMPA-R-mediated regulation of Aβ levels.

Results: We found that AMPA-R activation decreases in ISF Aβ levels in a dose-dependent manner. Moreover, the
effect of AMPA treatment involves three distinct pathways. Steady-state activity of AMPA-Rs normally promotes higher
ISF Aβ. Evoked AMPA-R activity, however, decreases Aβ levels by both stimulating glutamatergic transmission and
activating downstream NMDA receptor (NMDA-R) signaling and, with extended AMPA treatment, acting independently
of NMDA-Rs. Surprisingly, we found this latter, direct AMPA pathway of Aβ regulation increases Aβ clearance, while Aβ
production appears to be largely unaffected. Furthermore, the AMPA-dependent decrease is not observed in IL-6
deficient mice, indicating a role for IL-6 signaling in AMPA-R-mediated Aβ clearance.

Conclusion: Though basal levels of AMPA-R activity promote higher levels of ISF Aβ, evoked AMPA-R signaling
decreases Aβ through both NMDA-R-dependent and -independent pathways. We find that evoked AMPA-R
signaling increases clearance of extracellular Aβ, at least in part through enhanced IL-6 signaling. These data
emphasize that Aβ regulation by synaptic activity involves a number of independent pathways that together
determine extracellular Aβ levels. Understanding how these pathways maintain Aβ levels prior to AD
pathology may provide insights into disease pathogenesis.
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Background
Alzheimer’s disease (AD) follows a protracted course
with pathology detected years, even decades before clin-
ical symptoms manifest. The preclinical stage of AD
appears to be initiated by the aggregation of the peptide
amyloid-β (Aβ) into toxic oligomers and plaques within

the brain extracellular space, thereby triggering a host of
biochemical and cellular pathological events [1–3]. The
shift from normal production of soluble Aβ to its patho-
genic aggregation is heavily influenced by the concentration
of Aβ. Consequently, the rate at which Aβ is produced and
secreted from the neuron, as well as its clearance from the
extracellular space, appears to be directly linked to the for-
mation of toxic amyloid species [4–6].
Our lab and others have shown that an important

regulator of extracellular Aβ levels is synaptic activity
[7, 8]. Elevated synaptic activity drives clathrin-
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mediated endocytosis at the presynaptic membrane,
thereby increasing endocytosis of the amyloid precur-
sor protein (APP) and subsequent Aβ generation [9].
At the systems level, the regional distribution of amyloid
plaque deposition in AD brains correlates with default
mode network connectivity, suggesting that chronic high
levels of network activity contribute to plaque formation
[10, 11]. However, not all increased neuronal activity
results in increased Aβ concentrations. Indeed, a number
of postsynaptic receptors have been shown to decrease Aβ
production. Stimulation of serotonin receptors activates
the extracellular regulated kinase (ERK) signaling pathway,
which enhances α-secretase activity and non-amyloidogenic
APP processing [12, 13]. NMDA receptor (NMDA-R) acti-
vation regulates Aβ levels bidirectionally – low concentra-
tions of NMDA elevate Aβ levels through increased
presynaptic membrane endocytosis, while higher concen-
trations of NMDA decrease Aβ production through
dendritic, calcium-dependent signaling and increased α-
secretase activity [12]. These experiments show that the re-
lationship between neuronal activity and Aβ production is
complex, with even the same receptors in some cases hav-
ing opposing effects depending on the extent of activation.
AMPA receptors (AMPA-Rs) are the predominant

postsynaptic glutamate-gated ion channels and are re-
sponsible for the majority of fast excitatory transmission
in the CNS, making them well positioned to impact the
relationship between Aβ levels and synaptic activity. Fur-
thermore, growing evidence suggests AMPA-Rs can act
as independent activators of second messenger signaling
in addition to their well-established role as the primary
agents of postsynaptic depolarization [14–18]. Most of
the research involving AMPA-Rs and AD has focused
on the deleterious effect of pathological amyloid species
on AMPA-Rs [19–21], while the inverse relationship,
that of AMPA-R’s effects on Aβ, has received much less
attention. A notable exception is a compelling study by
Hoey and colleagues, which reported increased non-
amyloidogenic processing of APP following calcium-
permeable AMPA-R activation in primary cortical neu-
rons [22]. Given the AMPA-R’s dominant role in synap-
tic transmission and its active signaling capabilities, we
hypothesized that AMPA-Rs regulate Aβ metabolism.
Using in vivo microdialysis, we found that baseline

AMPA-R activity maintains higher levels of Aβ, whereas
evoked activation of AMPA-Rs leads to reduced Aβ
levels in the interstitial fluid (ISF) of the mouse hippo-
campus. Interestingly, the effect of exogenous AMPA
treatment resolves into two phases. Initially, AMPA-Rs
decrease Aβ levels through synaptic release of glutamate
and downstream activation of NMDA-Rs. After pro-
longed treatment with AMPA, however, Aβ levels are
reduced through an NMDA-R-independent pathway that
does not rely on presynaptic transmission. Surprisingly,

we found that AMPA-Rs directly influence Aβ levels by
altering Aβ clearance, implicating synaptic activity with
clearance mechanisms. Moreover, data collected from
IL-6 deficient mice indicate a critical role for IL-6 signal-
ing in this pathway. These findings highlight the
complexity behind the overlapping pathways regulating
extracellular Aβ levels.

Methods
Animals
The mice used for these studies were hemizygous APPswe/
PS1ΔE9 (APP/PS1) and bred on a wild-type C3H/B6 back-
ground, C57BL/6j-IL-6tm1Kopf mice (hereafter referred to as
IL-6−/− mice), or littermate controls (WT) [23, 24].
Original APP/PS1 transgenic breeders as well as IL-6−/

− mice were purchased from Jackson Laboratory (Bar
Harbor, Maine), and colonies were maintained at
Washington University. Equal numbers of male and
female mice were used in each study at 2–4 months
of age. All studies were performed in accordance with
the guidelines of AAALAC and the IACUC at
Washington University.

Aβ microdialysis
In vivo microdialysis was performed in awake and be-
having APP/PS1 mice as previously described [12, 25].
Briefly, guide cannulas (BR-style, Bioanalytical Systems,
West Lafayette, IN) were stereotaxically implanted above
the left hippocampus, coordinates bregma − 3.1 mm, 2.
5 mm lateral to midline, and 1.2 mm below dura at a 12°
angle. The cannulas were securely affixed to the head
with dental cement, and microdialysis probes (BR-2,
2 mm, 38 kDa MWCO, Bioanalytical Systems) were
inserted into the hippocampus through the guide
cannula. In APP/PS1 mice, probes were perfused with
artificial cerebrospinal fluid (aCSF; 1.3 mM CaCl2, 1.
2 mM MgSO4, 3 mM KCl, 04 mM KH2PO4, 25 mM
NaHCO3, and 122 mM NaCl, pH 7.35) with 0.15%
bovine serum albumin (BSA; Sigma-Aldrich, St. Louis,
MO) at a rate of 1.0 μL/min with samples of hippocam-
pal ISF collected every 90 min during basal collection or
every 60 min during treatment. Because WT murine Aβ
concentrations are lower than in amyloidogenic trans-
genic mice, microdialysis was run at 0.5 μL/min and
samples collected every 3 h to increase concentration of
each sample. Murine Aβ was also analyzed in the experi-
ment using IL-6−/− mice. For this experiment,
microdialysis was run at 1.0 μL/min and samples were
collected every 2.5 h. Basal sampling began at least 16 h
following surgery. These experiments took place under
constant light conditions to diminish circadian-related
fluctuation in Aβ levels. At the conclusion of the experi-
ment, all ISF samples were analyzed for either human or
murine Aβx-40 or Aβx-42 levels by sandwich ELISA.
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Compounds
Reverse microdialysis was used to administer com-
pounds directly into the hippocampus. Drugs were
diluted into the perfusion buffer of artificial CSF and 0.
15% BSA, allowing the drugs to diffuse into the brain
continuously for the duration of the experiment at the
same time that Aβ is collected. Due to the complexity of
determining the final concentration of compound deliv-
ered to the brain, only the starting concentrations of
drugs in the perfusion buffer are given. We estimate
approximately 10% of the drug is delivered across the
probe membrane where it is further diluted in the brain
CSF. AMPA (0.5, 2, 5, 7.5, and 10 μM), MK801
(100 μM), NMDA (40 μM), and thiorphan (10 μM) were
purchased from Sigma. Cyclothiazide (CTZ; 300 μM),
tetrodotoxin (TTX; 5 μM), NBQX (100 μM), and
GM6001 (25 μM) were purchased from Tocris Bio-
science (Ellisville, MO). LY411575 (Sigma-Aldrich)
was diluted in corn oil and administered subcutane-
ously at 5 mg/kg.

Aβ sandwich ELISAs
ISF samples were analyzed for Aβx-40 or Aβx-42 concen-
tration using methods previously described (Fisher et al.,
2016). A mouse monoclonal anti-Aβ40 capture antibody
(mHJ2) or anti-Aβ42 capture antibody (mHJ7.4) made
in-house was used in conjunction with a biotinylated
central domain detection antibody (mHJ5.1) and
streptavidin-poly-HRP-40 (Fitzgerald Industries, Acton,
MA). Super Slow ELISA TMB (Sigma-Aldrich) was then
used to develop, and absorbance was read by a BioTek
Epoch plate reader at 650 nm. The same assay can be
used for both human and murine Aβx-40. Standard
curves for ELISAs were generated using synthetic
human Aβ40 or Aβ42 (American Peptide, Sunnyvale,
CA). Basal levels of ISF Aβ levels were calculated by
averaging the Aβ concentrations taken every 90 min for
9 h prior to drug treatment. All Aβ levels for each
mouse were then normalized by calculating percent of
basal for each point. Mean ± SEM per group are shown.

Western blotting
Guide cannula implantation and microdialysis were per-
formed as described above using 2–4 month old APP/
PS1 mice. 5 μM AMPA or vehicle was administered to
APP/PS1 mice via reverse microdialysis for 8 or 14 h.
Immediately following treatment, perfusion buffer was
changed to aCSF containing 0.1% Evans Blue dye for
30 min. During this period, the area of the hippocampus
directly surrounding the microdialysis probe was dyed
blue, approximating the area of tissue affected by reverse
microdialysis drug delivery. Following the 30-min of
Evans Blue administration, the mice were sacrificed and
the dyed tissue surrounding the probe was microdissected

and snap frozen on dry ice, generating approximately 5-
7 mg of tissue per mouse. The collected hippocampal
tissue was homogenized by sonication at a 10:1 volume:
wet weight in 150 mM NaCl, 50 mM Tris, pH 7.4, 0.5%
deoxycholic acid, 0.1% SDS, 1% Triton X-100, 2.5 mM
EDTA, and protease inhibitors. Gel electrophoresis of
20 μg protein samples was performed under reducing
conditions using 4–12% Bis-Tris NuPAGE gels (Thermo-
Fisher Scientific, Waltham, MA) and then transferred to
nitrocellulose membrane. Blots were probed for glial
fibrillary acidic protein (GFAP; 1:500; ThermoFisher), low
density lipoprotein receptor-related protein 1 (LRP1; 1:
5000; Abcam, Cambridge, MA), insulin-degrading enzyme
(IDE; 1μg/mL; Abcam), neprilysin (1:1000; Millipore, Bil-
lerica, MA), matrix metalloproteinase-9 (MMP-9; 1:1000;
Millipore), C-terminal fragments of APP (1:1000; Sigma-
Aldrich), total soluble APP (22C11; 1:5000; Millipore),
soluble APP-α (poly18268; BioLegend, San Diego, CA),
soluble APP-β (poly8134; 1:1000; BioLegend), β-amyloid
1–16 (6E10; 1:500; BioLegend), glutamate receptor 2
(GluR2; 1:1000; Millipore), tubulin (1:2500; Sigma), and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:
10,000; Sigma). HRP-conjugated goat anti-rabbit IgG (1:
1000; Cell Signaling Technology, Danvers, MA) and HRP-
conjugated Amersham ECL sheep anti-mouse IgG (1:
1000; GE Healthcare, Chicago, IL) were used as secondary
antibodies. Membranes were developed using SuperSignal
West Pico Substrate (ThermoFisher) or Lumigen-TMA6
(GE Healthcare) and imaged using the Kodak ImageSta-
tion 440CF (Rochester, NY). Band intensity was quantified
using the Kodak 1D Image Analysis software, and normal-
ized using tubulin or GAPDH signals as loading controls.
Values shown are these normalized band intensities rela-
tive to the experimental control group. Mean ± SEM per
group are shown.

Quantitative real-time PCR (qPCR)
Using the same tissue preparation as used for Western
blotting (described above), APP/PS1 mice were treated
with 5 μM AMPA for 8 or 14 h, followed by 30 min of
0.1% Evans Blue solution via reverse microdialysis. Dyed
tissue around the probe was microdissected and frozen.
Quantitative PCR was performed as described previously
(Fisher et al., 2016). The RNeasy Mini Kit (Qiagen, Val-
encia, CA) was used to extract RNA, which was then re-
verse transcribed with a High Capacity cDNA Reverse
Transcription kit (ThermoFisher). The Harvard Medical
School Primer Bank was used to design primers [26–28].
Real-time detection of PCR product was performed
using the Fast SYBR Green Master Mix (Applied Biosys-
tems, Foster City, CA) in ABI 7900HT (Applied Biosys-
tems) with the default thermal cycling program. cFos
was used as a positive control due to its established role
as a mark of neuronal activity [29]. Gapdh was used as a
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reference gene for relative expression calculations. Rela-
tive mRNA levels were calculated using the comparative
Ct method using the formula 2-ΔΔCt. Mean ± SEM per
group are shown.

Histology
2–4 month-old wild-type mice (n = 6 per group) or
APP/PS1 mice (n = 3 per group) were treated with 8 h
or 14 h, respectively, of AMPA or artificial CSF via re-
verse microdialysis then immediately transcardially per-
fused with ice-cold phosphate buffer saline (PBS) with 0.
3% heparin. Brains were removed, fixed in 4% parafor-
maldehyde for 24 h at 4 °C, then placed in 30% sucrose
prior to freezing and sectioning. Coronal brain sections
50 μm wide were sliced in 300 μm intervals using a
freezing sliding microtome. Sections were then immuno-
stained to visualize astrocytes or microglia using anti-
bodies against glial fibrillary acidic protein (GFAP; 1:500,
ThermoFisher) as an astrocytic marker or against
ionized calcium-binding adaptor molecule 1 (Iba1; 1:500;
Wako Laboratory Chemicals, Richmond, VA) as a micro-
glial marker. Biotinylated secondary antibody, horserad-
ish peroxidase-conjugated streptavidin, and DAB
reaction (Sigma) were used to develop. Brain sections
were imaged with a Nanozoomer slide scanner (Hama-
matsu Photonics, Bridgewater, NJ). Staining density was
qualitatively evaluated by blinded observers and vehicle-
and AMPA-treated groups were compared. Images
shown are representative.

Aβ elimination half-life
Half-life of ISF Aβ was measured using methods de-
scribed previously [25]. Microdialysis was performed as
detailed above and basal ISF Aβ levels were collected.
Reverse microdialysis was then used to treat APP/PS1
mice with either 5 μM AMPA or vehicle for 14 h,
followed by co-administration with LY411575, a potent
and selective γ-secretase inhibitor (Sigma-Aldrich; 5 mg/
kg in corn oil, subcutaneous injection) to block Aβ pro-
duction. ISF Aβ levels were measured using sandwich
ELISA, and the half-life was calculated using the slope of
the semi-log plot of percent change in Aβ levels ver-
sus time. The slope was calculated based only on Aβ
values that were continually decreasing, excluding
points at which levels plateaued. Mean ± SEM per
group are shown.

MesoScale discovery (MSD) multiplex cytokine assay
Hippocampal tissue was collected from APP/PS1 mice
treated with either vehicle (n = 7) or AMPA (n = 9) for
14 h via reverse microdialysis. Only tissue directly sur-
rounding the probe was used. Tissue was homogenized
following the manufacturer protocol in 500 mM NaCl,
50 mM Tris, pH 7.4, 0.5% deoxycholic acid, 0.1% SDS,

1% Triton X-100, 2 mM EDTA, and protease inhibitors
(MesoScale Discovery, Rockville, MD, USA). Samples
were assayed for interleukin(IL)-1β, IL-6, and tumor
necrosis factor (TNF)-α using a custom MSD Proinflam-
matory Panel multiplex assay using the manufacturer’s
protocol. Samples were assayed duplicate. Data analysis
was performed using MSD Workbench software.

Experimental design and statistical analysis
Littermate mice were randomly assigned into treatment
groups, with equal numbers of male and females. Based
on power analyses for detecting changes in ISF Aβ in
microdialysis experiments, we used n = 4–8 mice per
treatment group. A full description of statistical tests
and the number of mice used can be found in the figure
legends. Two-tailed unpaired t-tests were used to com-
pare between two groups. One-way or two-way ANOVA
was used when comparing one or two independent vari-
ables, respectively, between multiple groups. The appro-
priate correction for multiple comparisons was used
(Sidak, Tukey, or Bonferroni; refer to figure legends).
Analysis of microdialysis experiments was performed by
averaging the final three data points of a specific treat-
ment period and using one-way or two-way ANOVA
with an appropriate correction for multiple comparisons.
Values were accepted as significant is p ≤ 0.05. Data in
figures are presented as mean ± SEM. Prism 6.0b for
Mac OS X (GraphPad, San Diego, CA) was used for all
statistical analyses.

Results
Local administration of AMPA decreases ISF Aβ in a dose-
dependent manner
Both synaptic activity and NMDA-Rs have distinct,
established roles in regulating Aβ, but the involvement
of AMPA-R signaling in Aβ regulation has been largely
unexplored. To address this, we used in vivo microdialy-
sis to measure the concentration of ISF Aβ in the hippo-
campus of mice [9, 25]. Crucially, this technique allows
us to monitor changes in ISF Aβ levels over time in
freely moving mice with functional glutamatergic synap-
ses and intact neuronal networks. Through reverse
microdialysis, we are also able to locally and continu-
ously deliver small-molecule compounds, such as
AMPA, into the hippocampus without needing to cross
the blood-brain barrier.
Using microdialysis in the hippocampus of young,

plaque-free (2–4 month old) APPswe/PS1Δe9 hemizy-
gous (APP/PS1) mice [23, 24], we collected hourly
samples of ISF while infusing AMPA in increasing con-
centrations from 0.5 μM to 10 μM for 8 h each (Fig. 1a).
AMPA delivered at 0.5 μM or 2 μM had no effect on
ISF Aβ. However, beginning with the 5 μM AMPA con-
centration, ISF Aβ levels gradually decreased over time
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before stabilizing at a 32% decrease from baseline levels.
An even greater decrease is seen following 10 μM
AMPA treatment, with levels of Aβ stabilizing at a 75%
decrease from baseline levels (Fig. 1a). In the following
experiments, we used 5 μM AMPA in order to observe
further increases and decreases in ISF Aβ levels after
they are already lowered by AMPA treatment. In this
study, we focus primarily on ISF Aβ40 because it is pro-
duced in much higher quantities than Aβ42 in our
mouse model and therefore simpler to detect using
microdialysis. To determine if AMPA treatment acts on
both species of Aβ similarly, ISF samples from 5 μM
AMPA-treated mice were measured for Aβ42. We found
that AMPA decreases ISF Aβ42 similarly to Aβ40, indicat-
ing that it acts on both species of Aβ in the same
manner (Fig. 1b). Next, wild-type (WT) mice were
treated with 5 μM AMPA to eliminate potential con-
founds due to the transgenes in APP/PS1 mice. Murine
ISF Aβ levels in WT animals reacted to 5 μM AMPA
treatment similarly to APP/PS1 mice with a 45%
decrease from baseline levels (Fig. 1c).
AMPA-Rs rapidly desensitize following AMPA or

glutamate exposure [30]. One possible explanation for
the observed effect on ISF Aβ, therefore, could be

reduced activity due to decreased AMPA-R signaling. To
test this possibility, we treated the APP/PS1 mice with
cyclothiazide (CTZ), a thiazide diuretic, which inhibits
desensitization and potentiates AMPA-mediated glutam-
ate currents [31]. The mice were pre-treated with
CTZ for 4 h before and then during treatment with
increasing doses of AMPA (0.5 μM–5 μM) lasting 4 h
each (Fig. 1d). Potentiated AMPA-R signaling en-
hanced the suppression in ISF Aβ levels with AMPA
treatment starting at just 0.5 μM, a dose that has no
effect on ISF Aβ without CTZ. This decrease is dose-
dependent, with a maximal decrease in ISF Aβ of
83% from basal levels (Fig. 1d). These data indicate
that the observed decrease in ISF Aβ is due to
AMPA-R activity and not desensitization.

AMPA decreases Aβ levels through multiple distinct
pathways
The exogenous application of AMPA through reverse
microdialysis allows us to directly and selectively target
AMPA-Rs. However, infusion of AMPA does not neces-
sarily reproduce endogenous AMPA-R signaling. To ad-
dress this, we treated mice with NBQX, a competitive
AMPA-R antagonist (Fig. 2a). When baseline levels of
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Fig. 1 AMPA treatment decreases levels of ISF Aβ levels. a Varying doses of AMPA or vehicle (artificial CSF) were administered to 2–4 month-old APP/
PS1 mice via reverse microdialysis (rev md), and changes in interstitial fluid (ISF) Aβ40 were measured using ELISA. AMPA has a dose-dependent effect
on ISF Aβ levels. Though treatment with 0.5 μM and 2 μM AMPA did not alter ISF Aβ levels significantly (n = 3, n = 5 respectively), treatment with
5 μM AMPA decreased levels 31.7 ± 9.5% (p = 0.015, n = 4, one-way ANOVA, Dunnet’s post hoc test), and 10 μM AMPA decreased levels by 73.8 ±
12.2% (p < 0.0001, n = 2, one-way ANOVA, Dunnet’s post hoc test). b APP/PS1 mice (n = 4) were treated with 5 μM AMPA for 24 h and ISF Aβ42 levels
decreased by 37.0 ± 9.4% (p < 0.0043, two-tailed t-test). c Wild-type, littermate C3H/B6 mice were dosed with 5 μM AMPA using rev md and levels of
murine ISF Aβ40 levels decreased by 49.4 ± 8.4% (p < 0.0001, n = 6, two-tailed t-test). d APP/PS1 mice were treated with 300 μM cyclothiazide (CTZ) for
4 h (n = 6), after which increasing doses of AMPA (0.5, 2, and 5 μM) were added to the perfusion buffer. CTZ administered alone did not change ISF
Aβ levels. Aβ levels decreased 31.9 ± 11.1% (p = 0.030, one-way ANOVA, Dunnet’s post hoc test) by 0.5 μM AMPA, 63.6 ± 11.1% (p < 0.0001, one-way
ANOVA, Dunnet’s post hoc test) by 2 μM, and maximally decreased 83.2 ± 11.1% (p < 0.0001, one-way ANOVA, Dunnet’s post hoc test) when treated
with 5 μM AMPA. Data plotted as mean ± SEM
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AMPA-R signaling were blocked, ISF Aβ levels
decreased by 32%, suggesting that AMPA-R activation
increases Aβ during normal activity.
Next, we treated mice with tetrodotoxin (TTX) for

16 h to prevent the production of action potentials and
therefore block evoked presynaptic release of glutamate
(Fig. 2b). Following 16 h of TTX treatment, we co-
infused TTX with NBQX. As previously reported, treat-
ment with TTX alone decreases ISF Aβ levels by about
40% from basal levels [8]. Blocking AMPA-Rs in
addition to TTX treatment leads to a further decrease in
Aβ levels of 33% despite the cessation of presynaptic
activity (Fig. 2b). Thus, AMPA-Rs activated during
steady-state, tonic levels of activity appear to drive
higher ISF Aβ levels independently of evoked gluta-
matergic signaling. Interestingly, antagonizing basally
active AMPA-Rs induces a full effect on ISF Aβ levels
regardless if action potentials are intact or blocked with
TTX, suggesting that basal AMPA-ergic regulation of
Aβ is driven by spontaneous glutamate release via mini-
ature EPSCs (“minis”) as opposed to evoked activity.

We next determined the extent to which AMPA-
mediated Aβ regulation relies on presynaptic activity. As
before, mice were pre-treated with TTX followed by co-
treatment with TTX and AMPA. During the initial 8 h
of TTX and AMPA treatment, the decrease in Aβ levels
caused by AMPA treatment (Fig. 2c) is abolished.
However, a longer AMPA treatment of 14 h significantly
decreased ISF Aβ levels by 30% of post-TTX levels
(Fig. 2b). These results imply that, initially, evoked
glutamatergic transmission is necessary for AMPA
treatment to decrease ISF Aβ. With longer treatment,
however, ISF Aβ levels are reduced through postsynaptic
AMPA-R signaling alone, without the need of action po-
tentials or further glutamatergic activity stimulation.
Given that high levels of NMDA-R activation result in

decreased Aβ levels through calcium–dependent ERK
signaling [32, 33], we hypothesized that AMPA treat-
ment might reduce ISF Aβ levels through the indirect
activation of NMDA-Rs expressed on downstream post-
synaptic neurons. To determine the contribution of
NMDA-Rs to the changes in Aβ levels following AMPA
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Fig. 2 AMPA treatment alters Aβ levels through multiple pathways. a APP/PS1 mice (n = 6) were treated with 100 μM NBQX, an AMPA receptor
antagonist, for 8 h then co-treated with either 40 μM NMDA (n = 6), 5 μM AMPA (n = 7), or vehicle (n = 12). After 6 h of co-treatment with NBQX,
the addition of AMPA had no effect on Aβ levels, though NMDA still reduced Aβ by 37.5 ± 3.3% (p < 0.0001, one-way ANOVA, Bonferroni post
hoc test). b Animals (n = 6 per group) were treated with 5 μM tetrodotoxin (TTX) for 16 h then co-treated with TTX and either 5 μM AMPA,
100 μM NBQX, or vehicle for an additional 14 h. After 8 h of co-treatment, ISF Aβ levels remained unchanged in all groups. 14 h co-treatment with
AMPA reduced Aβ levels by 34.6 ± 9.9% (p = 0.0027, two-way ANOVA, Sidak post hoc test) and co-treatment with NBQX reduced levels by 32.8 ± 9.3%
(p = 0.0027, two-way ANOVA, Sidak post hoc test). c APP/PS1 mice were treated with either 5 μM AMPA (n = 7) or vehicle (n = 5) for 14 h, leading to a
decrease in ISF Aβ levels of 66.3 ± 11.8% (p = 0.0001, two-way ANOVA, Sidak post hoc test). d 100 μM MK801 or vehicle was administered by
reverse microdialysis for 6 h to APP/PS1 mice followed by co-administration with 5 μM AMPA or vehicle. After 8 h, mice treated with AMPA alone had
significance decreases in ISF Aβ as compared to vehicle-treated mice, but mice receiving both MK801 and AMPA showed no change (p = 0.996,
two-way ANOVA, Sidak post hoc test). After 14 h, however, AMPA treatment significantly decreased ISF Aβ levels to the same extent regardless of the
presence of MK801 (p = 0.384, two-way ANOVA, Sidak post hoc test). Data plotted as mean ± SEM
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treatment, mice were pre-treated with MK801, a
NMDA-R open channel blocker, via reverse microdialy-
sis for 6 h before co-treatment with MK801 and 5 μM
AMPA (Fig. 2d). Within the first 8 h of treatment, co-
application of MK801 and AMPA does not effect an
AMPA-related change in Aβ levels. The ability of AMPA
to alter ISF Aβ is therefore dependent on NMDA-R acti-
vation at this time point. By hour 14 of AMPA treat-
ment, however, Aβ levels began to decline regardless of
the presence of MK801 (Fig. 2d). These data imply that
AMPA’s effects on ISF Aβ levels are dependent on
NMDA-R signaling for only a limited period. After
prolonged treatment with AMPA, Aβ levels decrease
through an NMDA-R-independent mechanism.
In consideration of these results, we questioned if

AMPA-R signaling might be responsible for any part of
NMDA-Rs’ effect on Aβ levels. To test this, we first
treated the mice with 100 μM NBQX, a competitive
AMPA-R antagonist, through reverse microdialysis then
co-treated with NMDA (Fig. 2a). As observed in previ-
ous experiments [32], 40 μM NMDA reduced ISF Aβ
levels to approximately 50% of basal levels within 6 h of
treatment, even in the presence of an AMPA-R antagon-
ist (Fig. 2a). Though the effect of AMPA treatment on
ISF Aβ in part relies on NMDA-R involvement, the
opposite does not appear true; NMDA treatment
decreases Aβ levels independently from AMPA-R activa-
tion. To ensure the specificity of AMPA treatment, ani-
mals were treated with NBQX to block AMPA-Rs prior
to the addition of AMPA. As was expected, NBQX com-
pletely blocked the effect of AMPA-Rs on Aβ (Fig. 2a).

AMPA treatment results in long-lasting changes in ISF Aβ
levels
Previous data show that activation of NMDA-R signaling
rapidly decreases ISF Aβ levels by approximately 50%
[32]. Once NMDA is no longer administered, ISF Aβ
gradually returns to baseline levels within 30 h. AMPA
treatment, however, results in a longer-lasting change in
Aβ levels. APP/PS1 mice were perfused with 5 μM
AMPA for 8 h. After this period, AMPA treatment
ended and Aβ levels were monitored every 1–2 h for an
additional 44 h (Fig. 3a). Levels of ISF Aβ decreased
steadily during the AMPA treatment and continued to
decrease for 3 h into the washout period to reach a max-
imal decrease of 60% from basal levels. From this lowest
point, Aβ levels significantly increased from the trough
to reach a level only 35% decreased from basal levels
after 44 h of recovery (Fig. 3a). The washout study was
terminated after a total of 60 h of ISF collection due to
limitations in the reliable duration of microdialysis
experiments, so it is possible that Aβ levels may com-
pletely recover from AMPA treatment with a longer
washout period. A recovery in ISF Aβ suggests that

AMPA treatment does not cause major cell death and
that the area surrounding the microdialysis probe con-
tinues to function normally following treatment.
APP/PS1 mice were treated with AMPA for 8 h

followed by co-administration with NBQX (Fig. 3b). The
decrease in Aβ levels following AMPA application did
not recover to baseline levels with the addition of NBQX
despite the cessation of AMPA-R activation. Because the
Aβ decrease was preserved without AMPA-ergic trans-
mission, the effect on Aβ is likely due to a long-lasting
intracellular event and not a feed-forward increase in
continued glutamatergic transmission. This observed
long-lived change in Aβ levels was initiated by an AMPA
treatment period of only 30 min, which resulted in a
30% decrease in ISF Aβ (Fig. 3c).

Transcription of APP processing-related genes and the
levels of APP fragments are unchanged following AMPA
treatment
We demonstrated above that extended treatment with
AMPA influences ISF Aβ levels without the need for
NMDA-R activation. NMDA-Rs receptors are often as-
sociated with intracellular signaling and transcriptional
regulation, while AMPA-Rs are generally thought of in
terms of neuronal depolarization. However, there is
growing evidence to suggest that AMPA-Rs may also
play an active role in cellular signaling. For example,
Plant et al. (2006) found that transient calcium signaling
through calcium-permeable AMPA-Rs promotes the
maintenance of long-term potentiation (LTP) [34]. Add-
itionally, AMPA-R signaling, independent of depolarization,
is sufficient to activate the transcription factor CREB as well
as to initiate ERK signaling [17, 18, 35]. Given these results,
the AMPA-R-dependent decrease in ISF Aβ that we
observe could be due to the initiation of a signaling cascade
by AMPA-Rs. First, we tested if AMPA-Rs affect the
transcription of genes related to APP processing or Aβ
clearance (Fig. 4a, b). APP/PS1 mice were administered
5 μM AMPA for 8 or 14 h by reverse microdialysis. At the
end of treatment, probes were infused with Evans Blue for
30 min to mark the surrounding tissue reached by reverse
microdialysis. The dyed hippocampal tissue was lysed and
used for quantitative real-time PCR (qPCR) for a selection
of genes involved in Aβ metabolism. Expression of the
immediate early gene, cFos, was used as a control due to its
increased expression following glutamatergic transmission
[29]. As expected, AMPA treatment increased the expres-
sion of cFos in both the 8- and 14-h groups. However, we
found no significant changes in the expression of APP, in
genes related to α-secretase (ADAM10 and ADAM17), in
genes related to β-secretase (BACE1), nor in genes related
to ϒ-secretase (PS1, PS2, PSEN2, APH1, BSG, and NIC)
following 8 or 14 h of AMPA treatment (Fig. 4a, b). Further,
AMPA treatment did not change expression in ERK1 or
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ERK2 or in genes associated with Aβ clearance (LRP1,
LRPR, AQP4, NEP, MMP2, and MMP9). Finally, none of
the AMPA-R subunits genes (GRIA1–4) were altered by
AMPA treatment (Fig. 4a, b).

Extended treatment with AMPA promotes increased ISF
Aβ clearance
To the best of our knowledge, all previous studies inves-
tigating the relationship between synaptic signaling and
alterations in Aβ levels, including several from our la-
boratory, have found that synaptic signaling primarily af-
fects Aβ production [4, 6–8, 25, 36]. However, after 14 h
of AMPA administration, we found no change in full-
length APP levels or in the cleavage products β-C-
terminal fragment (β-CTF), soluble APP-α (sAPP-α),
and sAPP-β as determined by Western blot (Fig. 5a). In
combination with the lack of transcriptional changes in
production-related genes (Fig. 4a, b), these data suggest
that extended treatment with AMPA does not have a
pronounced effect on Aβ production. It is important to
note, however, that small changes in gene or protein
levels, such that occur when only a subpopulation of
cells is affected, can be masked when total brain lysates
are analyzed. Considering the large effect that AMPA
has on ISF Aβ levels, though, we hypothesized that
AMPA-Rs act on ISF Aβ through a different mechanism,
namely by altering its clearance.
Aβ is eliminated from the ISF through five main path-

ways: receptor-mediated transport across the blood brain
barrier (BBB), enzymatic degradation, cellular uptake,
glymphatic-mediated clearance, or passive bulk-flow
clearance for (reviews see [37–39]). If any of these path-
ways is targeted by AMPA treatment, the rate of ISF Aβ
clearance could increase. To test this possibility, we
measured half-life of ISF Aβ in mice treated with ei-
ther 5 μM AMPA or vehicle using reverse

microdialysis (Fig. 5b). AMPA treatment leads to a
rapid decrease in Aβ that stabilizes by 6–8 h of treat-
ment. After 14 h, mice were subcutaneously injected
with LY411575, a potent γ-secretase inhibitor that
rapidly inhibits Aβ production. LY411575 enters the
brain and within 15 min reaches a concentration ap-
proximately 200-fold in excess of its IC50 for γ-
secretase inhibition [25]. Once γ-secretase is inhibited,
all new production of Aβ is precluded and microdial-
ysis is used to monitor the levels of remaining ISF Aβ
over time. The rate at which Aβ in the ISF is elimi-
nated can be measured by calculating the slope of the
semi-log plot of percentage baseline Aβ levels versus
time. This elimination rate was determined for both
groups, and the Aβ half-life calculated. Interestingly,
the half-life of ISF Aβ was significantly shorter by
over 30% in mice receiving AMPA treatment (t1/
2 = 0.93 h) than those in the control group (t1/2 = 1.
38 h), indicating that AMPA treatment increases the
clearance of ISF Aβ (Fig. 5c). It is important to note
that 6 of 12 AMPA-treated mice had ISF Aβ levels
decrease so much that a reliable half-life could not be
calculated. If this greater decrease following AMPA
treatment was also due to enhanced clearance, then
the observed effect of AMPA on Aβ would be even
greater so, we could be underestimating the effect of
AMPA on Aβ clearance. Next, we measured the levels
of key proteins involved in Aβ clearance in the hippo-
campal tissue surrounding the microdialysis probe for
mice treated with 14 h of AMPA or vehicle (Fig. 6a).
Similar to the qPCR experiments (Fig. 4b), only the
positive control cFos showed a significant change in
protein levels with AMPA treatment (Fig. 6a). Though
these data suggest that none of the Aβ clearance-
related proteins selected is involved in AMPA-
mediated regulation of Aβ, Western blots do not
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Fig. 3 AMPA treatment results in potent, long-lasting decreases in ISF Aβ levels that slowly recover. a APP/PS1 mice (n = 5) were treated with
5 μM AMPA using reverse microdialysis for 8 h resulting in a decrease in ISF Aβ levels of 32.7 ± 3.0% from baseline. After 8 h, AMPA was removed
from the microdialysis perfusion buffer. Aβ levels continued to decline for 3 h post-treatment to reach a maximum reduction of 56.7 ± 1.7% from
baseline. For the next 40 h, ISF Aβ levels gradually increased. When the experiment was ended at 52 h, ISF Aβ levels had increased 23.5 ± 3.0% to
reach 64.8 ± 3.0% of basal levels, which was a significant increase from the lowest Aβ levels post-treatment (p = 0.0245, two-way ANOVA,
Sidak post hoc test). b APP/PS1 mice (n = 3) were treated with 5 μM AMPA followed by co-treatment with AMPA and 100 μM NBQX for
14 h. The addition of NBQX did not alter the decrease in Aβ levels caused by AMPA treatment (one-way ANOVA, Sidak post hoc test).
c 5 μM AMPA was infused by rev md into APP/PS1 mice for a 30-min period, after which the perfusion buffer was changed to artificial
CSF for 24 h. AMPA treatment caused a 41.30 ± 9.45% decrease in ISF Aβ levels in the 22–24 h after 30-min dosage (n = 3, p = 0.035,
two-tailed t-test). Data plotted as mean ± SEM
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detect cell type-specific changes in protein levels,
alterations in protein function, or changes in protein
localization. To test if AMPA treatment increases
protease activity and thus Aβ degradation, we pre-
treated APP/PS1 mice with the neprilysin inhibitor,
thiorphan, or with the broad-spectrum metallopro-
teinase (MMP) inhibitor, GM6001, before co-treating
with AMPA. Inhibition of neprilysin and all MMP
family members both blocks Aβ clearance pathways
and potentially inhibits α-secretase, which increases
ISF Aβ levels when those agents are administered
singly (Fig. 6b). Importantly, the addition of AMPA
still decreased Aβ by a comparable amount as
observed without the protease inhibitors, indicating

that AMPA does not affect degradation of Aβ
through these proteases.

AMPA-R activation does not induce broad inflammation
A potential concern is that AMPA treatment decreases
ISF Aβ by causing cellular toxicity and/or creating a le-
sion through increased glutamatergic activity [40]. If
AMPA does cause cellular damage, an inflammatory
response would involve the recruitment and activation
of microglia and astrocytes [41–43]. To monitor inflam-
matory responses, mice were treated with 5 μM AMPA
or with vehicle for 8 or 14 h before brains were collected
and fixed in 4% formaldehyde. The brains were stained
for Iba1, a marker of microglia [44], and GFAP, a marker

a

b

Fig. 4 8 and 14 h AMPA treatment does not alter expression of genes related to Aβ metabolism. 5 μM AMPA or vehicle was given to 2–4 month
old APP/PS1 mice for 8 h (a) or 14 h (b; n = 6 per group) before the hippocampal tissue surrounding the microdialysis probe was collected and
analyzed with quantitative PCR. a qPCR analysis revealed no differences in expression for major genes involved in Aβ production and clearance
between mice treated with AMPA or vehicle. Expression of cFos, a marker for neuronal activity, increased 7.5 ± 3.7 fold (p < 0.0001, two-way
ANOVA, Sidak post hoc test) for the AMPA-treated group over cFos expression in controls. b After 14 h of AMPA treatment, expression of
genes involved in Aβ processing was not changed as shown by qPCR analysis. AMPA-treated animals showed a 14.4 ± 1.8 fold increase in
cFos expression over controls (p < 0.0001, two-way ANOVA, Sidak post hoc test). Data plotted as mean ± SEM

Hettinger et al. Molecular Neurodegeneration  (2018) 13:22 Page 9 of 17



for astrocytes [42, 45]. As expected, we found increased
Iba1 and GFAP staining around the microdialysis probe
tract, but no change in staining density between the
AMPA- and vehicle-treated tissue at either time point
(Fig. 7a). For confirmation, we measured protein levels
of GFAP and CD45, another microglial marker [46],
using hippocampal lysates from APP/PS1 mice treated
with either 5 μM AMPA or vehicle for 14 h (Fig. 7b). In
agreement with the immunostaining results, AMPA
treatment did not increase GFAP or CD45 protein levels,
indicating a lack of glial recruitment (Fig. 7b). In
addition to monitoring the glial response, we measured
pro-inflammatory cytokines levels in the hippocampal
lysates of mice following AMPA treatment. Though IL-
1β and TNF-α levels were unchanged, the levels of IL-6
showed a dramatic increase of over 500% (Fig. 7c). IL-6
is a neuropoietic cytokine with both neuromodulatory
and neuroprotective roles, known to be induced by

neuronal activity [47–49]. Without a visible increase in
gliosis and with no significant increase in IL-1β or TNF-
α, there does not appear to be a broad inflammatory
response. These data, along with the partial recovery of
ISF Aβ in the 44 h sampled following AMPA treatment
(Fig. 3a), strongly suggest AMPA is not causing
widespread toxicity accounting for the effects on Aβ
observed in this study.
IL-6 is a neuropoietic cytokine with both neuromodu-

latory and neuroprotective roles, known to be induced
by neuronal activity [47–49]. Intriguingly, IL-6 has previ-
ously been linked to enhanced Aβ clearance [50, 51]. Be-
cause levels of IL-6 increased greatly following AMPA
treatment, we tested the possibility that enhanced IL-6
signaling is involved in the decrease in ISF Aβ levels
following AMPA-R stimulation. To do this, we utilized
3-month-old IL-6-deficient mice (IL-6−/− mice). These
mice develop normally and produce normal levels of

a

b c

Fig. 5 Extended treatment with AMPA decreases Aβ levels through clearance. a 2–4 month old APP/PS1 mice were treated with either 5 μM AMPA
(n = 6) or aCSF (n = 8) via reverse microdialysis for 14 h. Tissue surrounding the microdialysis probe was analyzed via Western blot for full-length APP,
CTF-β, sAPPα, sAPPβ, and total sAPP, and no significant change was observed between treatment groups (two-way ANOVA, Sidak post hoc test). Bands
were normalized to GAPDH and displayed relative to control. Blot images are representative examples. b APP/PS1 mice were treated with 14 h of
AMPA (n = 6) or vehicle (n = 7). With microdialysis collection ongoing, animals were administered a 4 mg/kg subcutaneous injection (s.c.) of LY411575,
a γ-secretase inhibitor, or vehicle (corn oil). c ISF Aβ half-life for each treatment group was calculated by taking the slope of the semi-log plot of
concentration versus time for the time points between drug delivery and the plateauing of Aβ concentrations. Mice treated with 5 μM AMPA had an
Aβ half-life of 0.9 ± 0.1 h compared to a half-life of 1.5 ± 0.2 h for the mice treated with aCSF (p = 0.0298, two-tailed t-test)
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murine Aβ in the ISF. We treated IL-6−/− and WT mice
with MK801 to block NMDA-R signaling for 6 h, then
added 7.5 μM AMPA into the perfusion buffer for an
extended period (Fig. 8). Because murine Aβ levels are
much lower in these mice than in our amyloidosis
models, samples were collected every 2.5 h. Similar to
our observations in APP/PS1 mice, AMPA treatment led
to a decrease in ISF Aβ by approximately 67% in WT
mice. Conversely, AMPA failed to produce a significant
change in ISF Aβ levels in IL-6−/− mice, suggesting that
IL-6 signaling is necessary for AMPA-R regulation of Aβ.

Discussion
In this study, we provide evidence that though steady-
state levels of AMPA-Rs encourage heightened ISF Aβ
levels, evoked AMPA-R signaling decreases extracellular

Aβ concentration through two different pathways (see
Fig. 9 for model). The first of these pathways acts on Aβ
through an indirect network effect; AMPA-R stimulation
increases glutamatergic transmission, including elevated
NMDA-R signaling on the postsynaptic neuron. It has
been previously shown that NMDA-Rs regulate Aβ
levels by using calcium as a second messenger to
activate ERK and increase α-secretase activity. Second,
we found that AMPA-Rs can also influence Aβ levels in-
dependently of NMDA-Rs. This purely AMPA-R-
mediated pathway takes longer to recruit, increases the
rate of ISF Aβ clearance, and requires IL-6 signaling.
Gene expression and protein levels of many primary
clearance-related molecules remain unchanged, possibly
indicating cell-type specific changes or alterations in
protein function or localization.

a

b

Fig. 6 AMPA-mediated decrease in Aβ not due to changes in clearance-related proteins or proteases. a 2–4 month old APP/PS1 mice were
treated with either 5 μM AMPA (n = 6) or aCSF (n = 8) via reverse microdialysis for 14 h. Tissue surrounding the microdialysis probe was analyzed via
Western blot to determine levels of proteins involved in Aβ elimination and clearance. Bands were normalized to GAPDH and displayed relative to
control. Blot images are representative examples. cFos protein expression was increased 2.9 ± 0.4 fold (p < 0.0001, two-way ANOVA, Sidak post hoc test)
in the AMPA group compared to the controls. No other proteins showed a significant difference between treatment groups. b Reverse microdialysis
was used to treat APP/PS1 mice (n = 7) with 10 μM thiorphan (neprilysin inhibitor), 25 μM GM6001 (broad-spectrum MMP inhibitor), or vehicle for 6 h,
followed by 14 h of co-treatment with 5 μM AMPA. The Aβ concentrations in the last 3 h of each treatment were averaged and the differences
between the end of inhibitor/vehicle treatment and after the addition of AMPA were compared. Inhibiting protease activity with thiorphan or
GM6001 did not alter the decrease in ISF Aβ levels observed following AMPA treatment (p = 0.40, one-way ANOVA, Dunnet’s post hoc test). Data
plotted as mean ± SEM
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Exogenous application of AMPA decreases ISF Aβ
through postsynaptic signaling
We found that infusion of AMPA directly into the hippo-
campus of APP/PS1 mice through reverse microdialysis
decreases ISF Aβ levels by up to 75% following the max-
imal dose of 10 μM. Treatment with AMPA induces a
potent, long-lasting effect on Aβ levels, with even a brief
application initiating a full response. AMPA-Rs, therefore,
appear to be significant regulators of Aβ levels in the extra-
cellular space. Factors that influence extracellular levels of
Aβ have the potential to directly influence AD pathogenesis
by altering the likelihood of Aβ to aggregate [52]. That
AMPA increases activity but suppresses Aβ levels is some-
what surprising considering previous reports that synaptic
activity drives production of Aβ. Treatment with the
GABAA receptor antagonist picrotoxin, high levels of po-
tassium chloride, or electrical stimulation promotes Aβ
secretion into the extracellular space [7–9]. In a more
physiological setting, increasing activity within the barrel

cortex through vibrissal stimulation results in higher levels
of ISF Aβ in APP/PS1 mice [4, 53]. In humans, the highest
levels of amyloid deposition are found in brain regions with
the highest baseline metabolic activity [10].
Considering these findings, it would be reasonable to

hypothesize that AMPA-Rs, as excitatory channels,
should increase Aβ levels. Paradoxically, however, we
found increasing AMPA-R activation through exogenous
AMPA treatment significantly decreases ISF Aβ. Because
AMPA-Rs are susceptible to rapid desensitization, we
considered the possibility that AMPA-Rs act on Aβ
levels through induced synaptic depression [30, 31].
However, when receptor desensitization was blocked
with cyclothiazide, the decrease in Aβ in response to
AMPA was potentiated. Receptor desensitization only
limited Aβ suppression, and receptor activation is
directly responsible for the reduction of Aβ levels.
Though general increases in synaptic activity upregu-

late Aβ production, the activation of certain postsynaptic
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Fig. 7 Glial recruitment unchanged and IL-6 levels enhanced following AMPA treatment. a Wild-type C3H/B6 mice (for the 8 h treatment, n = 6
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AMPA or aCSF for 8 or 14 h. Brain sections were immunostained with DAB using anti-GFAP antibody to mark astrocytes or anti-Iba1 antibody to mark
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APP/PS1 mice were treated with either 5 μM AMPA (n = 6) or aCSF (n = 8) via reverse microdialysis for 14 h. Tissue surrounding the microdialysis probe
was analyzed via Western blot for GFAP or CD45, markers of astrocytes and microglia, respectively, and no difference was observed between treatment
groups (two-way ANOVA, Sidak post hoc test). Bands were normalized to GAPDH and displayed relative to control. Blot images are representative
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773.8 pg/mL (p = 0.0014, two-way ANOVA, Sidak post hoc test). Data plotted as mean ± SEM
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signaling systems can alter APP processing to yield
varied effects on Aβ levels, particularly when α-secretase
is targeted. As mentioned above, serotonin receptor acti-
vation decreases Aβ levels through PKA and ERK activa-
tion [12, 13]. The serotonin receptor illustrates the
specificity involved in Aβ regulation; only the Gs-linked
receptors decrease Aβ whereas the other G-protein
coupled serotonin receptors have no effect or increase
Aβ [13]. Additionally, M1 muscarinic acetylcholine
(mACh) receptor agonists decrease Aβ production, and
deleting this receptor leads to increased Aβ and amyloid
pathology [54–56]. Within the glutamate receptor
family, muscarinic glutamate receptor 5 has been shown

to trigger Aβ production [57, 58], and NMDA-Rs can
modulate Aβ levels bidirectionally [32, 33, 59]. Clearly,
postsynaptic effects on Aβ are diverse and markedly
context-specific.

Spontaneous and evoked AMPA-R activation differentially
regulate Aβ levels
In these studies we have shown that AMPA-R regulation
of Aβ is multifarious (see model Fig. 9). When basal
AMPA-R activity is antagonized, ISF Aβ decreases by
20%. The same decrease occurs even after action poten-
tials are blocked and evoked synaptic transmission is
inhibited, indicating that the basal AMPA-R signaling

Fig. 9 Model of AMPA-R-mediated Aβ regulation. a Tonic, steady-state AMPA-R activity driven by spontaneous neurotransmission increases levels
of Aβ in the ISF. b Evoked glutamatergic transmission resulting from AMPA treatment initially decreases ISF Aβ through NMDA-R activation. As
described in previous studies, NMDA-Rs lead to decreased Aβ production and release into the ISF through ERK phosphorylation and enhanced
α-secretase activity. c Extended AMPA-R activation, independent of NMDA-Rs, increases IL-6 signaling to stimulate clearance of Aβ from the ISF
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Fig. 8 IL-6 is required for AMPA-R regulation of ISF Aβ levels. Both IL-6−/− mice (n = 5) and C3H/B6 WT mice (n = 6) were treated with 100 μM
MK801 for 6 h via reverse microdialysis, then co-treated with MK801 and 7.5 μM AMPA for an additional 17 h. The last five hours of each treatment
(MK801 alone vs MK801 + AMPA) were averaged for each treatment group and compared (two-way ANOVA, Sidak post hoc test). In WT animals, ISF
Aβ levels decreased by 67.34% from MK801 alone to MK801 + AMPA (p = 0.002). In IL-6−/− animals, the addition of AMPA resulted in a non-significant
decrease in ISF Aβ levels of 23.96% (p = 0.652). Furthermore, ISF Aβ levels IL-6−/− mice following extended AMPA treatment are significantly higher
than observed in WT mice (80.26 and 23.0%, respectively; p = 0.027). Data plotted as mean ± SEM
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that increases Aβ levels is likely due to spontaneous
transmission (Fig. 9a). Conversely, application of AMPA
via reverse microdialysis causes direct AMPA-R activa-
tion as well as stimulates evoked glutamatergic transmis-
sion. In this scenario, AMPA-R activation decreases Aβ
levels. This dual effect of AMPA-Rs, depending on the
mode of transmission, has been seen in various contexts.
Sara and colleagues (2011) utilized a use-dependent
AMPA-R antagonist to show that spontaneous and
evoked transmission activate discrete populations of
AMPA-Rs [60]. Additionally, several studies found that
receptors that respond differentially to spontaneous and
evoked transmission are physically and functionally
distinct [61–66]. Intriguingly, spontaneous activity ap-
pears to suppress protein synthesis while evoked activity
stimulates translation. Another possible explanation is
that the effects of AMPA-Rs on Aβ are dependent on
relative levels of AMPA-R activation. During basal trans-
mission, a smaller set of AMPA-Rs is active compared to
the AMPA-Rs targeted by action potentials or exogenous
AMPA treatment. How endogenous AMPA-Rs promote
increased levels of ISF Aβ remains unknown, though we
speculate that basal AMPA-ergic signaling induces
amyloidogenic APP processing through increased endo-
cytosis within or near the presynaptic terminal, as
described in previous studies [7–9, 67].

Extended AMPA treatment decreases ISF Aβ half-life
Adding an additional layer of complexity, exogenous
AMPA treatment appears to act on Aβ levels through
two distinct pathways. Within the first 8 h of treatment,
AMPA’s ability to modulate Aβ levels depends on
NMDA-R signaling (Fig. 9b). This pathway relies on
presynaptic activity to increase glutamatergic transmis-
sion, thus stimulating NMDA-R activation on down-
stream neurons to decrease Aβ production in these
cells [32, 33]. The reverse is not true, however;
AMPA-Rs do not appear to play a role in NMDA-R-
mediated decreases in Aβ. Following longer AMPA treat-
ment, a novel pathway by which AMPA-Rs influence Aβ
independently of both presynaptic activity and NMDA-Rs
emerges.
As detailed above, studies regarding synaptic and post-

synaptic regulation of Aβ have primarily addressed the
effects of activity on Aβ production. However, we were
unable to detect changes in APP processing-related gene
expression or in APP fragment levels in hippocampal ly-
sates following either 8 or 14 h of AMPA treatment. In-
stead, using microdialysis along with a potent γ-
secretase inhibitor, we found that treatment with AMPA
for 14 h decreased the half-life of ISF Aβ, implying that
AMPA-Rs modulate Aβ clearance (Fig. 9c). This does
not appear to involve glial recruitment, a broad inflam-
matory response, or changes in key clearance-related

proteins. We found that one proinflammatory cytokine,
IL-6, increased dramatically following AMPA treatment.
IL-6 has been shown to have both normal physiological
as well as inflammatory, pathological roles in the CNS
[49, 51, 68, 69] and has been shown to be secreted in re-
sponse to neuronal depolarization [47, 48]. Furthermore,
IL-6 signaling has been linked to increased Aβ clearance
through microglial phagocytosis [50, 51]. Given the sub-
stantial increase in IL-6 following AMPA treatment, we
propose that AMPA could be causing IL-6 release and
enhanced phagocytosis of Aβ. In support of this hypoth-
esis, mice deficient in IL-6 fail to show decreased ISF Aβ
levels in response to AMPA treatment, suggesting that
IL-6 signaling is involved in AMPA-R regulation of ISF
Aβ levels. The IL-6 receptor is expressed on neurons,
microglia, and astrocytes [70, 71], so this synaptic
activity-dependent clearance pathway could be mediated
by multiple cell types. Though we propose a connection
between neuronal IL-6 release and microglial clearance,
our data do not indicate which cell types are involved.
Furthermore, we have only tested a handful of cytokines
in response to AMPA treatment thus far, leaving open
the possibility that multiple cytokines are involved in
this pathway. Future experiments will address the mech-
anism through which AMPA-Rs affect Aβ clearance.
The finding that AMPA treatment decreases Aβ levels

is supported by a previous study by Hoey and colleagues
conducted in primary cortical neurons [22]. Unlike our
study, however, the authors conclude that Aβ production
is decreased when AMPA directly acts to increase non-
amyloidogenic APP processing. In contrast, our in vivo
studies suggest that AMPA treatment requires an inter-
mediary step of NMDA-R activation in order to increase
non-amyloidogenic processing of APP. Additionally, our
studies model a second pathway in which AMPA
directly acts on Aβ through enhanced clearance. Because
this pathway likely involves multiple cell types interact-
ing, experiments using neuronal cultures would not
recapitulate the effects we observed. Furthermore, the
discrepancies in findings could also be explained by
developmental differences between our two systems.
Hoey et al. (2013) found that AMPA-mediated alter-
ations in APP processing are at least partially due to
calcium-permeable AMPA-Rs. There is evidence that
GluA2, the receptor subunit responsible for determining
the receptor’s calcium permeability, is developmentally
regulated [72–75]. Finally, we have found that even
slight changes in AMPA concentration can change Aβ’s
response, and our two studies used very different doses.
We administered 5 μM AMPA through the microdialysis
probe of which only an estimated 10% diffuses into the
extracellular space. In contrast, Hoey et al. (2013)
administered 50 μM AMPA, potentially activating a
different pathway than we observed.

Hettinger et al. Molecular Neurodegeneration  (2018) 13:22 Page 14 of 17



Though both production and clearance determine the
steady state levels of Aβ in the extracellular space, late-
onset AD (LOAD) is primarily characterized by dysfunc-
tions in Aβ clearance [38, 76]. In 2003, we found that
ISF Aβ half-life as measured by microdialysis is doubled
in an aged APP transgenic model compared to young
animals [25]. In human studies, metabolic labeling and
CNS analysis revealed impaired clearance rates in partic-
ipants with LOAD, though Aβ production was unaltered
[76]. Furthermore, many of the genetic factors associated
with LOAD are related to clearance, including APOE,
CLU, CR1, and CD33. Given the evident prominence of
Aβ clearance in AD, our results highlight the importance
of understanding the ways in which synaptic activity im-
pinges on previous clearance-related studies.

Conclusions
There are clearly numerous mechanisms that together
regulate Aβ levels. Though the confluence of these
various synaptic-mediated pathways appears to result in
increased Aβ, we propose that certain postsynaptic sig-
naling pathways, such as those described in these stud-
ies, act as protective mechanisms that aid in maintaining
Aβ homeostasis. The failure of these Aβ-suppressing
pathways may contribute to the breakdown of homeo-
stasis that ultimately results in the build-up of pathology.
Indeed, glutamatergic transmission is one of the first
systems targeted by toxic species of amyloid as the dis-
ease progresses [77–80].
As the dominant excitatory ionotropic receptors in the

brain, AMPA-Rs have the potential to greatly influence
extracellular Aβ levels and amyloid pathology. We have
found that activation of AMPA-Rs initiates a varied and
complex response in which opposing pathways act
concurrently to regulate Aβ levels. Our results link post-
synaptic signaling through AMPA-Rs to the increased
release of IL-6 and enhanced Aβ clearance. Soluble,
monomeric Aβ production is a normal process of every
brain. Even those brains destined to develop AD path-
ology produce Aβ for decades without formation of toxic
aggregates. The point at which Aβ becomes pathogenic
is likely influenced by a number of factors, including the
loss of homeostatic pathways. Identifying and under-
standing how, early in our lives, Aβ levels are controlled
may give us clues to disease etiology or even prevention.
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