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Abstract

Background: Secondary use of data collected in Electronic Health Records opens perspectives for increasing our
knowledge of rare diseases. The clinical data warehouse (named Dr. Warehouse) at the Necker-Enfants Malades
Children’s Hospital contains data collected during normal care for thousands of patients. Dr. Warehouse is oriented
toward the exploration of clinical narratives. In this study, we present our method to find phenotypes associated
with diseases of interest.

Methods: We leveraged the frequency and TF-IDF to explore the association between clinical phenotypes and rare
diseases. We applied our method in six use cases: phenotypes associated with the Rett, Lowe, Silver Russell, Bardet-Biedl
syndromes, DOCK8 deficiency and Activated PI3-kinase Delta Syndrome (APDS). We asked domain experts to evaluate
the relevance of the top-50 (for frequency and TF-IDF) phenotypes identified by Dr. Warehouse and computed the
average precision and mean average precision.

Results: Experts concluded that between 16 and 39 phenotypes could be considered as relevant in the top-50
phenotypes ranked by descending frequency discovered by Dr. Warehouse (resp. between 11 and 41 for TF-IDF).
Average precision ranges from 0.55 to 0.91 for frequency and 0.52 to 0.95 for TF-IDF. Mean average precision was 0.79.
Our study suggests that phenotypes identified in clinical narratives stored in Electronic Health Record can provide rare
disease specialists with candidate phenotypes that can be used in addition to the literature.

Conclusions: Clinical Data Warehouses can be used to perform Next Generation Phenotyping, especially in the context
of rare diseases. We have developed a method to detect phenotypes associated with a group of patients using medical
concepts extracted from free-text clinical narratives.
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Background
The global trend toward digital health in the US and in
Europe has led to an unprecedented adoption of Electronic
Health Records (EHRs). By the end of 2014, 83% of US
physicians [1] and 75% of hospitals [2] used some form of
EHRs. The increasing number of EHRs opens strong per-
spectives for the secondary use of data collected during

the care process. Many hospitals are now equipped with
Clinical Data Warehouses (CDW) integrating all the data
produced during the care of the patients for research
purposes [3–5]. CDWs gather a large variety of informa-
tion, ranging from structured data (e.g. diagnosis codes, la-
boratory test results…) to free-text clinical narratives and
images. Structured data include coded data using
terminologies like the International Classification of
Diseases, and questionnaires that provide precise, stan-
dardized but somehow limited information. Conversely
free-text reports are produced without constraints and
may be used to express nuanced, unexpected, and unex-
plained signs or symptoms regarding the patient case.
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Clinical narratives collect information from all aspects of
the patient care that might not be collected anywhere else
in clinical information system including history of the
disease, family history, fine-grained description of all the
symptoms, hypothesis of diagnosis or treatment, informa-
tion from treatments received outside of the hospital, and
so forth. Previous studies in different contexts showed the
importance of free-text in EHRs. For example Raghavan et
al. identified that unstructured data were essential to solve
trial criteria from two studies. [6]. The value of text data is
even more important to detect phenotypes in specialized
hospitals treating patients with rare diseases and for outpa-
tients, for whom clinical information is barely coded [7].
Rare diseases represent a large group of heterogeneous

conditions and some cases remain undiagnosed for a long
time. A precise phenotypic description of such diseases can
be problematic given the small number of cases and the
heterogeneity of the phenotypes. Leveraging large CDWs,
could be helpful to enrich this description. While struc-
tured (standardized) questionnaires exist for several rare
diseases (e.g., in France [8, 9]), part of the clinical descrip-
tion is still present only in free text in EHRs. We hypothe-
sized that mining large collections of clinical texts in
hospitals specialized in rare diseases could offer interesting
perspectives to enrich the descriptions provided by dedi-
cated knowledge bases. We investigated this hypothesis at
the Necker Enfants Malades Hospital (Necker Children
Hospital), a children’s hospital in Paris that is associated
with the Imagine research institute, specialized in genetic
diseases, and hosts 15 national reference centers for rare
diseases. We illustrate our approach on six rare diseases:
DOCK8 deficiency, the Activated PI3-kinase Delta Syn-
drome (APDS), Rett, Lowe, Silver Russell and Bardet Biedl
syndromes. The combined immunodeficiency due to
DOCK8 deficiency (prevalence less than 1/1,000,000) is a
form of autosomal recessive combined immunodeficiency
(T, B and NK cells), characterized by recurrent lung infec-
tions, cutaneous viral infections, allergy, severe skin inflam-
mation and susceptibility to cancer with a high level of IgE
[10]. DOCK8 deficiency is caused by homozygous or com-
pound heterozygous mutations in DOCK8 gene [11].
The activated phosphoinositide 3-kinase-δ (PI3Kδ)

syndrome (APDS) (estimated prevalence < 1 /1,000,000)
is characterized by immunodeficiency and recurrent
respiratory tract infections, lymphoproliferation and
hypogammaglobulinemia. APDS is caused by activating
heterozygous mutations in PIK3CD (APDS1) or in
PIK3R1 (APDS2) [11, 12].
Rett syndrome (estimated prevalence 1/15,000) is charac-

terized by a rapid regression in language and motor skills
(i.e. repetitive, stereotypic hand movements) after six to
eighteen months of normal psychomotor development [13].
The Lowe syndrome or Oculocerebrorenal syndrome

(estimated prevalence 1 to 9 /1,000,000) is a multisystem

disorder characterized by congenital cataract, intellectual
disabilities, glaucoma, postnatal growth retardation and
renal tubular dysfunction [14].
The Silver-Russell syndrome (prevalence 1–9 /1,000,000)

is characterized by growth retardation with antenatal onset,
characteristic facies and limb asymmetry [15].
The Bardet-Biedl syndrome (prevalence estimated at 1

to 9 /1,000,000) is a ciliopathy characterized by a combin-
ation of clinical signs including obesity, pigmentary retin-
opathy, post-axial polydactyly, polycystic kidneys [16].
From now on, we will refer to as phenotype any sign or

symptom, disease, defects, and so forth, affecting a patient.
In this study, we present the methods that we devel-

oped to extract phenotypes associated with rare diseases
from clinical texts in Dr. Warehouse® (DrWH), the clin-
ical data warehouse of the Necker Children’s hospital.
Then, we evaluate the scalability of our approach in the
context of high throughput phenotyping.

Material
All data were collected from the Necker Enfants Malades
Hospital (Necker Children Hospital), a pediatric Univer-
sity hospital belonging to the Assistance Publique Hôpi-
taux de Paris group (400 pediatric beds, 200 adult beds).
The Necker hospital is a national reference center for
rare and undiagnosed diseases. The hospital hosts the
Imagine Institute, a research institute focused on genetic
diseases. Imagine institute has been developing since
2015 a document-based open-source clinical data ware-
house oriented toward free-text: Dr. Warehouse®
(DrWH). DrWH includes a full text search engine, and
contains, as of August 2017 more than 3.9 million clin-
ical free-text documents for more than 446,000 patients.
In Table 1, we describe the demographic characteris-

tics of the patients included in DrWH. We used all the
clinical narratives, ranging from hospitalization to out-
patient visits reports, available in DrWH to perform this
study. The heterogeneity of the records is illustrated in
Table 2 with the distribution of these records by hospital
departments and type of reports.
A demonstration version of DrWH is publicly available at

the URL: https://imagine-plateforme-bdd.fr/dwh_pubmed/.
Note that for privacy reasons, this demo version has been

Table 1 Description of the population of the data warehouse at
Necker hospital

DrWH

Nb patients 446,481

Sex ratio (M) 47%

Median Nb reports excluding biological
reports per patient

2 [1–6]

Median follow up (years) per patient 0.06 [0–2]

In brackets lower and upper quartile
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populated with data from PubMed abstracts and not with
patient data.
To represent the phenotypes, we used the terminolo-

gies from the Unified Medical Language System® (UMLS
[17]). The UMLS is considered the lingua franca of med-
ical vocabularies. The UMLS has a large coverage of bio-
medical vocabularies mostly in English. The UMLS is
assembled by integrating 153 medical vocabularies, in-
cluding generalist terminologies (e.g. MeSH or
SNOMED CT), or specialized ones (e.g. the Human
Phenotype Ontology - HPO, OMIM, the Gene Ontol-
ogy). The UMLS Metathesaurus® contains about 3.2 mil-
lion concepts identified by their unique identifier (the
Concept Unique Identifier: CUI). A concept is a cluster
of synonymous terms coming from various source

vocabularies (13+ million of synonymous terms). In the
UMLS the creation of concepts is semi-automatic. For
example, the Rett Syndrome CUI is C0035372, this con-
cept is made of terms provided by 145 terms from 50
terminologies. Hierarchical relations or other types of re-
lations are extracted from the source terminologies and
included in the UMLS. The UMLS Semantic Network is
a much smaller network of 133 semantic types (e.g. Dis-
ease or Syndrome, Anatomical Abnormality…). Each
Metathesaurus concept is assigned at least one semantic
type. The UMLS integrates mostly terms in English, but
other language such as French have a non-negligible
coverage (397,203 terms).
Our source for reference data was Orphanet, an on-

line resource gathering and integrating knowledge on
rare diseases. Orphanet was established in France in
1997 and became a European initiative now involving
a consortium of 40 countries in Europe and the rest
of the world. Orphanet data are organized using on-
tologies and structured data [18]. Orphadata is a par-
tial extraction of the data stored in Orphanet freely
accessible and organized as XML files [19]. Orphanet
proposes a vocabulary for rare diseases. Experts and
terminologists have identified synonymous terms asso-
ciated with disease. Orphanet also provides mappings
between Orphanet concepts and a variety of other
terminologies (e.g. HPO) to enable interoperability.
Orphanet is dedicated to a specific domain, much

narrower than the UMLS but highly specialized and
manually curated. In addition, the Orphanet vocabu-
lary has been translated into other languages (includ-
ing French). The HPO is integrated with the UMLS
(as terms of UMLS concepts), and is mapped to
Orphanet concepts. Therefore, HPO can serve as a
pivot between the two vocabularies.
All the terminologies described above are mainly

constituted of English terms, see the related work
section of the discussion for further comments on
non-English text processing.

Methods
In this study, we aim at using automated methods to ex-
tract phenotypes from the narrative reports. For this
purpose, we mined the large body of text documents
available in the CDW. This section describes the
free-text document processing to automatically extract
phenotypes from the narrative reports, and details the
exploration of phenotypes associated with six use cases.

Processing text-documents.
In a nutshell, we leveraged the UMLS to extract pheno-
typical terms from patients’ text reports. We selected the
397,203 terms (including synonyms) available in French in
the UMLS Metathesaurus (version 2017AA) and filtered

Table 2 Number of documents per Hospital department and
per type of records

Hospital departments #
Documents

Types of records #
Documents

Gyneco-Obstetrics 433,698 Laboratory 1,563,450

Pediatric Cardiology 253,474 Consultation 834,619

Adult Clinical
Hematology

227,520 Imaging 379,538

Metabolism-Pediatric
Neurology

207,804 Discharge letter 293,342

Nephrology
Transplantations Adult

187,388 Diagnostic Related
Group

255,312

Pediatric Nephrology 175,041 Hospitalization 226,723

Pediatric Immuno-
Hematology

152,226 surgery 111,598

Pediatric Radiology 151,811 Day hospital 88,244

Adult Radiology 150,612 Emergency 41,515

Pediatric Cardiac Surgery 136,272 Exams 31,042

Pediatric Visceral Surgery 121,758 Prescription 24,859

Pediatric Orthopedic
Surgery

120,287 Medical certificate 24,222

Adult Nephrology 116,602 Pathology report 24,215

Anesthesia intensive care
unit Adult And Pediatric

114,773 Foetopathology 8858

Pediatric
Gastroenterology

113,857 Multidisciplinary
consultation
meeting

6605

Emergency 108,367 Other 5786

General Pediatrics 97,831 Staff meeting
reports

3669

Physiology 88,981 Total 3,923,597

Pediatric ear nose and
throat

82,717

Pediatric Intensive Care
Unit

77,599

Other 804,979

Total 3,923,597
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out terms having less than three characters, or more than
80 characters. To limit the concepts extraction to a
phenotypic description, we considered only the concepts
assigned to one of the following semantic types: ‘Sign or
Symptom’, ‘Disease or Syndrome’, ‘Finding’, ‘Pathologic
Function’, ‘Congenital Abnormality’, ‘Physiologic Function’,
‘Anatomical Abnormality’, ‘Neoplastic Process’, ‘Acquired
Abnormality’ and ‘Mental or Behavioral Dysfunction’.
Finally, we obtained 91,533 terms. In the remainder of the
manuscript, we will refer to these terms as phenotypical
concepts or UMLS concepts.
We extracted the phenotypes from every text reports

through simple terms matching, case insensitive, and
insensitive to non-alphanumerical characters (e.g.
spaces, parenthesis, dash etc.). In the context of rare
and undiagnosed diseases, clinical narratives are likely
to contain many sentences expressing the absence of
phenotypes (e.g. “Clinical examination does not support
a finding of lupus”, “absence of diabetes”) or describing
the family history of the patient (e.g. “the mother has
asthma”). Therefore, detecting negation and family his-
tory context was essential to exclude these phenotypes
from the high throughput phenotyping. We used trig-
ger terms to determine if a phenotype was associated to
negated meaning (e.g. “none”, “absence” etc.) or family
history context (e.g. “cousin”, “brother”, “sister” etc.).
To compute this extraction, we developed an algorithm
similar to Context [20, 21], and adapted to French [22]
(see Fig. 1).
In this study, we considered exclusively the not ne-

gated phenotypes associated with the patients (i.e. not
associated with their family).

Use cases: Exploring phenotypes of rare disease patients
We created six groups of patients associated with a
specific disease. We queried DrWH at Necker hos-
pital using Rett Syndrome (and not atypical Rett syn-
drome), Lowe, Silver Russell, Bardet Biedl, DOCK8
deficiency and APDS as search criteria. We obtained
six sets of patients and their associated corpora of
clinical documents (RETT set, LOWE set, SILVER
RUSSELL set, BARDET BIEDL set, DOCK8 deficiency
set, and APDS set). For each patient set, we extracted
all the phenotypes as detailed in the previous section
(see Fig. 2).
To rank the extracted phenotypical concepts in

terms of relevance, we used two metrics (the
frequency and the “term frequency–inverse document
frequency” - TF-IDF) classically used in the context
of information retrieval. For example, our method
identified 1022 distinct phenotypical concepts in the
“RETT syndrome” set.
Computing Frequency and TF-IDF:

– The frequency: the frequency of the phenotypical
concept of interest in the results. For example, the
frequency of the term stereotypy in the “Rett
syndrome” set is 150 (number of patients having at
least one mention of stereotypy in at least one
document) / 209 (number of patients in the set)
= 71.8%.

– The TF-IDF (term frequency – inverse document
frequency) is intended to reflect how important a
phenotypical concept is to a patient set in the
entire data warehouse. The intuition is that the

Text Certainty Context 

Not 
negated 

Patient 

Negated Patient 

Not 
negated 

Family 

Narrative record 

Concept Certainty Context 

Bruxism 1 Patient 

Ataxia -1 Patient 

End-stage renal failure 1 Family 

Classification of parts of speech 

UMLS 
Metathesaurus 

For each term 
French 

phenotypic 
terms 

Selection of 
terms using 

semantic types 
and language 

Fig. 1 Overview of the method applied to extract phenotypes from the narrative reports
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more frequent is a phenotype in the population,
the less specific it is for a given patient set.
Conversely finding several occurrences of a rare
phenotypical concept in a single patient set
highlights the potential interest of this term for
this data set. For example, the TF-IDF of the
concept stereotypy in the “Rett syndrome” result
set is 0.081 and is computed as follows:

TF−IDF cð Þ ¼ Nc

Ntot
� log

Ptot

Pc

� �

Nc: Number of times this phenotypical concept c is
used in the set.
Ntot: Number of not distinct phenotypical concepts in

the set.
Ptot: Total number of patients in the DWH with

phenotypical concepts extracted.
Pc: Number of patients with phenotypical concept c in

the set

TF−IDF Stereotypyð Þ ¼ 649
18; 538

� log
446; 481
2; 233

� �
¼ 0:081

Evaluation
Manual evaluation
We considered six use cases. For each of them, a
domain expert was asked to browse the highest
ranked phenotypes (top-50 phenotypical concepts)
found by DrWH and evaluate their relevance with
regard to the disease of interest. We presented each
expert with two lists of top-50 phenotypes: (i) the
top-50 phenotypes ranked by descending frequency
and (ii) the top-50 phenotypes ranked by descending
TF-IDF. The experts classified the phenotypes as rele-
vant or not relevant to the disease.
We stored the number of relevant phenotypes, and

their associated ranks. Based on the experts’ feedbacks,
we computed the Average Precision for each query, and
the overall Mean Average Precision. The average preci-
sion expresses the correctness of the top ranked results
for a query. The Mean Average Precision evaluates the
average precision across a series of queries [23].

Health records 

UMLS Concepts Context   Certainty  Frequency    
Lupus Patient 1    3  
Anemia Patient -1    2 
Renal Insufficiency Family 1    1 
Fever Patient 1    5 
Asthenia Patient 1    4 

Concepts extraction 

UMLS Metathesaurus 
French terms 

Data warehouse 
446,000 patients 

Subset of patients 
 UMLS Concepts Freq TF-IDF 

Stereotypy 71.8 8.06 

Seizures 55 8.37 

Scoliosis 51.2 6.71 

Epilepsy 50.7 2.96 

Pyramidal syndrome 42.6 2.87 

Osteoporosis 42.6 2.79 

1022 concepts 

Concepts 
aggregation and 
ranking 

For each patient 
of the DWH 

Phenotype associations: 

Fig. 2 Overview of the method applied to perform next generation phenotyping
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Comparison to Orphadata
For each disease set we compared the phenotypical
concepts obtained by our method with those in Orpha-
data with the following steps. We leveraged HPO to
map Orphadata and the UMLS (Orphanet is mapped to
HPO, and HPO is integrated in the UMLS). We calcu-
lated the number of equivalent phenotypical concepts
and the number of phenotypical concepts present in
only one of the data sources (i.e. DrWH or Orphadata).
The phenotypical concepts were considered equivalent
(i) in case of exact mapping (same identifier) or (ii)
when a broader phenotype was found (in Orphadata:
Arrhythmia, in our extraction: Cardiac flutter).
The steps are illustrated with the example of Rett

syndrome in Fig. 3.

Results
Document processing in DrWH
We extracted a total of 18.7 million phenotypical terms
from 3.9 million medical records, representing 446,481
distinct patients. Among these terms, 4% were related to
family history. Among the 96% of the remaining terms,
72% were classified into as not negated expression
(12.99 million of phenotypes) (Table 3).

Detailed expert evaluation
The description of the data available in each cohort and
the evaluation by the experts are detailed in Table 4. The

Fig. 4 is a screenshot of the graphical user interface of
Dr. Warehouse for Rett syndrome. The automated phe-
notyping identified an average of 768 phenotypical con-
cepts associated to each disease. In contrast, the number
of UMLS concepts found in Orphadata ranges from 16
for the Silver-Russell syndrome to 120 for the Lowe syn-
drome. APDS was not documented in Orphanet at the
time of redaction of this article. Overall, the experts clas-
sified between 11 (SILVER-RUSSELL set, ranked by
TF-IDF) and 41 (LOWE set, ranked by TF-IDF) of the
top-50 results as relevant to the disease. The number of
phenotypical concepts identified by the union of results
obtained through ranking by frequency and ranking by
TF-IDF ranges from 16 (SILVER-RUSSELL set) to 52
(DOCK8 deficiency and APDS sets).
The Mean Average Precision was 0.79 for results

ranked by Frequency and 0.75 for results ranked by
TF-IDF. An additional file shows in detail the Top50
phenotypical concepts extracted for each cohort [see
Additional file 1].

Comparison with Orphadata
The comparison with Orphadata is detailed in Table 5.
The limitation to French terms resulted in a reduction of
an average of 16 phenotypes, corresponding to an average
of 39% of the UMLS concepts (max: 63%, min 21%).
We obtained the best coverage for the SILVER RUSSEL

set with 100% of the Orphadata phenotypes present in the
phenotypes of the patient set. The lowest coverage was

Rett syndrome patients Orphadata Rett syndrome 

CUI detection with HPO - UMLS 

39 concepts 

Filtering on French language 

31 concepts DWH Phenotype association : 1022 concepts 

Coverage of Orphadata by automated 
phenotyping 

Concepts mapping :  
Exact match  
Or Hierarchical distance using UMLS.MRHIER 

Orphanet Phenotype association 
Stereotyped Behaviors 
Epilepsy 
Scoliosis 
Developmental regression 

Muscle spasticity 
Autism 
Decreased head circumference 
Enlarged liver 

Concepts aggregation 
and ranking 

 UMLS Concepts Freq TF-IDF 
Stereotypy 71.8 8.06 

Seizures 55 8.37 

Scoliosis 51.2 6.71 

Epilepsy 50.7 2.96 

Pyramidal syndrome 42.6 2.87 

Osteoporosis 42.6 2.79 

1022 concepts 

Evaluation by experts 

Average precision 

Fig. 3 Evaluation procedure for the RETT set
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found for the LOWE set with 66% of the 76 Orphadata
phenotypes present in the phenotypes of the patient set.
The average coverage for all the patient sets was 78%.
In the six diseases studied, 2.8% of Orphadata con-

cepts do not belong to the semantic types used for the
automated phenotyping. For example, “Dislocated hips”
(HP:0002827) is part of the description of Lowe syn-
drome in Orphadata and is assigned to the semantic
type “Injury or Poisoning” in the UMLS.
Among the phenotypical concepts in Orphadata, 41

are not represented in the patient sets phenotypical
concepts.

Discussion
Findings and practical significance
Our method of automated extraction of phenotypes
from narrative reports in a clinical data warehouse can
be useful even in the context of rare disease with a low
number of patients. Indeed, 4 of the 6 examples showed
results above 83% in terms of Average Precision in the
top-50 phenotypes based on the experts’ evaluation. It
was above 49% for the 2 remaining examples. It means
that the extracted phenotypes are meaningful and can be
used as baseline in diverse situations: enrichment of the
phenotypic description of diseases, rapid exploration of

the phenotypes in a population, or assisting the experts
in the identification of phenotypes of interest.
Our approach can be used to enrich existing pheno-

typic description of rare diseases. For example, osteopor-
osis was significantly associated with Rett syndrome in
the Necker data warehouse. The association is present
neither in Orphanet nor in OMIM. It is however de-
scribed in six articles in Medline [24–29].
Moreover, this method enables a quick exploration of

phenotypes in a population. This feature is especially
meaningful in the context of rare diseases for which the
information may be scarce. In a research context, we
have shown with the six examples, that our method was
able to automatically display the phenotypes associated
with rare diseases in a cohort of patients. The same ap-
proach could be used to look for undescribed pheno-
types associated with new mutations (using gene names
as a query for example or a series of patients selected
manually). The Necker hospital and Imagine Institute
collaborate actively to increase the knowledge on rare
diseases and the phenotype explorer from the CDW is
used on a daily basis by the staff to support translational
research: When a geneticist discovers a new mutation,
the exploration of the documents gathered from patients
presenting the mutation in the CDW can support the
description of the associated phenotypes. For example,
the phenotypes associated to APDS 1 and 2 could pro-
vide basis for the description of the syndrome.
DrWH may also be used to assist experts in the identi-

fication of phenotypes of interest. After a careful review
and comparison with other cohorts, such associations
could be used to enrich online reference resources.
Moreover, the method is easily reproducible, and the

Table 3 Number of phenotypical terms extracted per context
and certainty

Context / Certainty Negated Not negated

Family history 179,938 522,009

Patient 5,007,517 12,988,474

Total number of terms 5,187,455 13,510,483

Table 4 Description and evaluation of the 6 sets of patients

Sets RETT DOCK8 deficiency LOWE SILVER RUSSELL BARDET BIEDL APDS 1 and 2

Median age at visit (years) 8.2 [4.8–12.6] 11.4 [9.3–14.1] 12.8 [5.8–20.3] 2.4 [0.8–5.4] 15.7 [10.1–41.5] 12.8 [7.7–18.6]

Median follow up (years) 2.6 [0–4.9] 3.1 [0.3–9] 6.6 [3–10.3] 2 [0.8–4.7] 2 [0.1–6.6] 7.5 [4.8–8.6]

# Patients 209 15 23 50 53 23

# Documents 5034 3296 1325 1133 1317 2337

Phenotypes extracted, not negated and in patient context

# Phenotypes 18,538 6886 5281 6563 6345 9716

# distinct Phenotypes 1022 706 577 738 801 710

Evaluation by experts in the Top50 phenotypes

Medical Experts NBB CP RS JA RS NM

# Phenotypes ranked by Freq 31 36 36 16 17 39

# Phenotypes ranked by TF-IDF 38 37 41 11 12 37

# Phenotypes Freq union TF-IDF 42 52 50 16 19 52

# Phenotypes Freq intersect TF-IDF 28 22 28 11 11 25

Average Precision, ranked by Freq 0.86 0.91 0.88 0.55 0.66 0.83

Average Precision, ranked by TF-IDF 0.91 0.84 0.90 0.49 0.52 0.83
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comparison of phenotypes coming from a variety of clin-
ical data warehouses can provide candidates (union of
the candidate phenotypes) or reinforce the interest on
specific candidate phenotypes (using the intersection of
different submissions).
In addition, the prevalence of signs and symptoms for

a given disorder can be estimated using the frequencies
provided by DrWH. Our method can provide the clini-
cians with an estimated prevalence of phenotypes in
addition to the associations. In our running example
Rett syndrome, “stereotypy” had a prevalence of 71.8%,
consistent with Orphanet (Very frequent 80–99%); simi-
larly “scoliosis” had a prevalence of 51.2%, vs. frequent
(30–79%) in Orphanet. Conversely, the prevalence of
“apraxia” in DrWH was 12.9%, whereas apraxia is con-
sidered very frequent (80–99%) in the Rett syndrome by
Orphanet. A more precise estimation of the frequency

would require considering not only single phenotypical
concepts but also group of semantically close
phenotypes.

Limitations
Comparison to a gold standard and, interoperability issues
It was complex to perform an automated evaluation of
phenotypes found by DrWH by comparison to a gold
standard (e.g. Orphanet with Orphadata).
(1) The extraction of the phenotypical concepts was

based on the French terms from the UMLS. However,
the coverage of French term is limited compared to the
extent of the English counterpart, knowing in particular
that the French version of HPO was not available in the
UMLS 2017AA. For example, in Orphadata the Rett
syndrome is associated with 39 phenotypical concepts, of
which only 31 exist in French in the UMLS (Table 5). The

Fig. 4 Screenshot of Dr. Warehouse and the concept tab for “Rett syndrome” query

Table 5 Comparison with Orphadata

RETT DOCK8 LOWE SILVER RUSSELL BARDET BIEDL APDS

# Concepts HPO Orphadata (English) 39 18 120 16 25 –

# Concepts HPO Orphadata (French) [A] 31 10 76 6 17 –

# UMLS distinct phenotypes extracted [B] 1022 706 577 738 801 710

# [A] intersection [B] (coverage) 22 7 50 6 14 –

% [A] intersection [B] / [A] (coverage %) 0.71 0.70 0.66 1.00 0.82 –
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difference is more dramatic with the Lowe syndrome: for
120 phenotypical concepts, only 76 have a French coun-
terpart. Our automated exploration is based on the use of
medical terminologies in French, and DrWH cannot
recognize a phenotypical concept that is not present in
French. For example, Triangular Face (HPO: HP:0000325,
UMLS: C1835884) is a sign associated to Silver-Russell
syndrome in Orphadata and is absent from the UMLS
concepts extracted from the corresponding set. Neverthe-
less, 27 patients of the SILVER-RUSSELL syndrome set
have the string “face triangulaire” in their narrative re-
cords according to a full text search, but the concept “Tri-
angular Face” does not exist in French in the UMLS.
Despite this limitation, the current version of DrWH en-
ables nonetheless relevant explorations, and allows the
discovery of phenotypes of interest. The limited coverage
of French terms compared to English limits our ability to
identify concepts in free-text, but is also a limitation
in our evaluation (which tends to underestimate the
performance of the method). The integration of new
terminologies (with a French translation) provided
with mapping to UMLS, or integrated in the UMLS
will reduce the gap between English and non-English
terms. The recent increase of interest for non-English
Natural Language Processing is a step forward in that
direction.
(2) The granularity between phenotypical concepts

extracted from Orphadata and DrWH may differ (e.g. a
very precise term can be identified in DrWH whereas a
more general term is present in Orphadata). This issue
cannot be addressed by a simple hierarchical reasoning
given that phenotypical concepts may be related seman-
tically, but not identical nor hierarchically linked (e.g.
Hypotonia (C0026827) vs muscle weakness (C0151786)).
(3) We solely used an exact match strategy (with text

normalization) to recognize phenotypical concepts in
the reports. Our method does not handle terms present-
ing the words in a different order (e.g. renal acute injury
versus acute renal injury would not match). The pres-
ence of multiple synonyms in source terminologies
might limit the impact of this strategy to a certain ex-
tent. However we intend to upgrade our phenotype rec-
ognition strategy to allow more flexibility in the
recognition of phenotypical concepts.
(4) Some phenotypical concepts are not in the semantic

types that we used for the automated phenotyping. In
Orphadata, “autoagression” is a sign associated to Rett
syndrome. We found 10 patients in the RETT set with
“automutilation” in their narrative reports, but this con-
cept is in the semantic type “Injury or Poisoning”.

Study population
Our warehouse hosts data produced by a children hos-
pital, and therefore, phenotypes can be different from

adult patients (for example, Alzheimer disease is not
represented in pediatrics). However, patients with rare
diseases may be followed-up in our institution even dur-
ing adulthood, enabling an extended longitudinal data
collection. Longitudinal follow-up makes it possible to
observe the age of apparition of the phenotypes and re-
construct the natural history of rare diseases.

Related work
Information extraction
Several approaches have been developed to recognize
UMLS concepts, or terminology terms from free-text re-
cords. Savova et al. [30] developed cTAKES, an open
source modular system of pipelined components combin-
ing rule-based and machine learning techniques. cTAKES
aims at the extraction of information from the clinical nar-
ratives. Despite development in other languages [31, 32],
most of the open source clinical Natural Language Pro-
cessing systems have been developed for the English lan-
guage (MedLee [33], MetaMap [34], HITex [35]). Many
challenges have helped to test and assess the different
tools and methodologies. In non-English languages, less
out-of-the-box tools and less learning datasets are avail-
able to work with text. More recently a challenge was ded-
icated to the extraction of information in multiple
language medical documents (including French) [36].

Narrative reports versus coded data
We have shown that text exploration of clinical reports
can provide phenotypes of interest. Whereas structured
databases are particularly adapted for the collection of
data regarding well documented diseases, clinical report
based exploration enables the secondary use of data col-
lected during care. Such approaches allow the develop-
ment of learning health systems in which there is a
bidirectional relation between routine care data and re-
search. In addition, patient generated data could be inte-
grated and mined along with the EHRs [37].
We plan to conduct additional studies by comparing our

results with the French national rare diseases registry [38].

Scalability
The Phenotype Explorer of Dr. Warehouse enables the
exploration of millions of clinical narratives in a simple
manner. The algorithm is optimized to display the
phenotype analysis of thousands of documents quickly,
and limited expertise is needed to write and execute
queries. The queries demonstrated in this study only
took a few seconds to run, enabling a real time explor-
ation of the data. The expert user can easily sort the as-
sociated phenotypes according to their need, depending
on the use case.
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Conclusion
Clinical Data Warehouses can be used to perform Next
Generation Phenotyping, especially in the context of rare
diseases. We have developed a method to detect pheno-
types associated with a group of patients using medical
concepts extracted from free-text clinical narratives.
There are still hurdles to overcome with terminologies
in non-English languages, however experts’ evaluation
suggests that the phenotypes identified using the
Frequency and TF-IDF scores can be useful to populate
knowledge bases in addition to literature mining.

Additional file

Additional file 1: Extracted phenotypical concepts per cohort. For each
cohort, we list the top50 concepts ranked by Frequency and TF-IDF. The
first column is the UMLS code of the phenotypical concepts, the second
column is the French preferred terms, the third column is the English
preferred terms, the fourth column is the frequencies score (FREQ), the
fifth column is the TF-IDF score, the sixth column is the rank of the
concept sorted by the frequency score, the seventh column is the rank
of the concept sorted by the TF-IDF score and the eighth column is
the expert evaluation (1: relevant concept, 0: none relevant concept).
(XLS 93 kb)
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