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Abstract 

Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. 
Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medi-
cines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling 
evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for 
neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in 
the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the poten-
tial underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies 
and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclu-
sion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This 
review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of 
neuropathic pain.
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Background
Neuropathic pain is a type of chronic pain directly caused 
by the injuries or dysfunction of the somatosensory 
nervous system [1], which further triggers anxiety and 
depression symptoms via worsening sleep, essential daily 
functioning, and quality of life of the patients. Chronic 
neuropathic pain has aroused a severe public health 
concern due to its heavy burden on families and soci-
ety. The population prevalence of chronic neuropathic 
pain has been estimated to range from 6.9 to 10% [2–4]. 

It is noteworthy that the incidence of neuropathic pain is 
likely to escalate due to the improved survival rate of can-
cer patients, the aging population, and the aggressively 
growing incidence of diabetes mellitus.

Generally, neuropathic pain is further subdivided 
into central and peripheral neuropathic pain. Central 
neuropathic pain includes central lesions [5] and dis-
eases (e.g., stroke [6], multiple sclerosis [7]), whereas 
peripheral nerve injuries or pathological changes 
induce peripheral neuropathic pain [8]. Besides, chem-
otherapy drugs- and diabetes-induced neuropathy are 
usually classified as peripheral neuropathic pain [9, 
10]. So far, there has not been enough evidence that 
interventional management is safe and effective for 
neuropathic pain. Hence, Drug treatment remains a 
common route for pain relief. The first-line medica-
tion recommended by the International Association for 
the Study of Pain (IASP) includes pregabalin, gabapen-
tin, and tricyclic antidepressants (TCAs), and topical 
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application of lidocaine can relieve pain conditions in 
30–50% of the patients [11–13]. However, some clinical 
overviews reported that review articles and guidelines 
tend to overstate gabapentin effectiveness [14]. More 
importantly, those agents generally are accompanied 
by serious side effects, such as cardiovascular events, 
sedation, and syncope [15]. A meta-analysis showed 
that pregabalin significantly increased the risks of 
adverse events (e.g., somnolence, dizziness, peripheral 
edema, visual disturbances, ataxia, and euphoria) [16]. 
Morphine, with the most satisfactory analgesic effect, 
shall be restricted in the routine clinical management 
of neuropathic pain due to its abuse risks and the short-
comings of analgesic tolerance [17, 18].

With the difficulties of finding new compounds and the 
safety-related drug recall, which makes the approval of 
new analgesic drugs more conservative, the global phar-
maceutical industry is currently experiencing a new drug 
crisis of lacking of promising drug candidates, especially 
heavyweight drugs. Natural products remain impor-
tant drug candidates in the development of novel medi-
cines for neuropathic pain [19]. The increasing demand 
for alternative therapies, such as bioactive components 
with effective and safe antinociceptive properties in 
treating neuropathic pain, has been growing throughout 
the world [20–23]. The alkaloids derived from Chinese 
herbal medicines, as valuable sources of pharmaceuti-
cal products and leading compounds, have been of great 
significance in the research and development of anti-
neuropathic pain drugs. More and more studies have 
demonstrated that low-dose alkaloids possess potential 
analgesic effects in various neuropathic pains models 
[24–30]. The present review focuses on the alkaloids, 
mainly quinolizidine alkaloids, isoquinoline alkaloids, 
indole alkaloids, diterpenoid alkaloids, and their analge-
sic effects on peripheral neuropathic pain.

Alkaloids chemical structure, classification, 
and sources of Chinese herbal medicines
Alkaloids are the largest class of organic compounds 
containing nitrogen atom with the homophylic proper-
ties of alkali [31]. Many classic analgesics, such as mor-
phine, codeine, and aspirin, are isolated from natural 
products. Therefore, the studies on the analgesic effect 
and mechanisms of active components and the discover-
ies of new analgesic drugs from plants provide grounds 
for innovative researches on analgesic drugs. Upon a lit-
erature survey, we identified 20 compounds with signifi-
cant analgesic activities on peripheral neuropathic pain. 
The structures of these compounds are shown in Table 1. 
A compound may exist in various Chinese herbal medi-
cines, and we have summarized all its sources (Table 2). 

Effects of alkaloids on diabetic peripheral 
neuropathy (DPN)
Diabetic peripheral neuropathy (DPN) is one of the most 
common and refractory chronic complications of diabe-
tes mellitus [32]. It is accompanied by burning, prickling, 
numbness, tingling sensation, allodynia, and hyperesthe-
sia [33], which will affect 366 million individuals world-
wide by 2030 [34]. Hyperglycemia mediated metabolic 
disorder is the primary pathogenesis for DPN. Hyper-
glycemia disturbs several metabolic pathways, such as 
advanced glycation end products (AGEs) [35, 36], hex-
osamine [37], polyol [38], protein kinase C (PKC) [39], 
and poly-ADP ribose polymerase (PARP) pathways [40] 
in the nervous system.

Koumine dose-dependently attenuated mechanical 
allodynia. The half-effective dose  (ED50) of koumine (i.e., 
0.063  mg/kg) is lower than the reported median lethal 
dose  (LD50) of 99  mg/kg [27]. Berberine [41, 42] and 
palmatine [43] reduced streptozotocin (STZ)-induced 
mechanical allodynia and thermal hyperalgesia in a dose-
dependent manner. Sinomenine [44] and Bullatine A 
[45] significantly upregulated the mechanical withdrawal 
threshold (MWT) and thermal withdrawal latency 
(TWL) of STZ mice.

Neuroprotective effects of alkaloids on the sciatic nerve 
in DPN rodents
A study has reported that STZ could cause significant 
alterations in C-fibers and Aδ-fibers; alterations in these 
motor and sensory fibers caused a reduction in noci-
ceptive threshold toward the mechanical and thermal 
receptors [46]. Also, peripheral nerve axon injuries and 
myelin degeneration can lead to abnormal sensory nerve 
conduction velocity (SNCV), which is an early character-
istic of neuronal dysfunction in both diabetic neuropa-
thies [47, 48]. SNCV directly reflects the change of axon 
caliber and myelin integrity induced by hyperglycemia 
[49], and establishes normal glycemia can be restored 
[47]. Berberine improved motor nerve conduction 
velocity (MNCV) and SNCV, which correlated with the 
upregulated expression of brain-derived neurotrophic 
factor (BDNF) and insulin-like growth factors I (IGF-I). 
It is reported that STZ administration caused significant 
downregulation in both IGF-I messenger ribonucleic acid 
(mRNA) and protein expression, whereas treatment with 
insulin significantly upregulated IGF-I mRNA in the sci-
atic nerve [42]. To sum up, the establishment of normal 
blood glucose is essential for the recovery of neurologi-
cal function in diabetic mice, but berberine treatment 
of NP is not only through establishing normal blood 
glucose levels, which will be pointed out later. Interest-
ingly, although koumine significantly improved SNCV 
and decreased myelinated nerve fibers’ demyelination in 



Page 3 of 24Zhu et al. Chin Med          (2020) 15:106  

the sciatic nerve, the blood glucose level of STZ-induced 
rats is not influenced [27]. The number and open charac-
teristics of ion channels are likely to participate in which 
koumine restored SNCV in DPN mice [50].

Regulation of alkaloids on oxidative stress 
and neuroinflammation in DPN rodents
Numerous researches have confirmed that hyperglyce-
mia activates ROS that induces oxidative stress in the 

nervous system [51, 52]. The mechanism that contrib-
utes to increased oxidative stress includes alteration in 
PKC activity of, decreases  Na+K+-ATPase activity, over-
production of prostaglandin, and accumulation of AGEs 
[53, 54]. The 40 mg/kg dose of berberine treatment sig-
nificantly reversed STZ-induced oxidative stress and 
 Na+K+-ATPase alteration. Berberine and palmatine 
are isoquinoline alkaloids stem from Coptis chinensis, 
which have been widely used to treat intestinal infection 

Table 1 Chemical structures formula of different sub-groups of alkaloids

Lysine-derived Alkaloids 

Matrine Oxymatrine 

Isoquinoline alkaloids 

Berberine Dehydrocorydaline Palmatine 

Levo-Tetrahydropalmatine Levo-Corydalmine Sinomenine 

Indole alkaloids 

Evodiamine Dehydrocrenatidine Brucine 
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[55]. Liu et al. [41] recently revealed that berberine sup-
pressed STZ-induced neuropathic pain via reducing 
satellite glial cells (SGCs) activation mediated neuro-
inflammation. The 20 and 40  mg/kg doses of berberine 
significantly decreased tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) pro-
tein levels compared with STZ group rats. It is reported 
that the activation of adenosine 5′-monophosphate 
(AMP)-activated protein kinase (AMPK) and peroxi-
some proliferator-activated receptors-γ (PPAR-γ) can 
reduce the release of inflammatory cytokines [56, 57]. 
Treatment with berberine remarkably downregulated 
the protein expression of phosphatase 2Cα (PP2Cα) and 

upregulated the expression of Thr-172 protein(the site of 
AMPK phosphorylation) in dorsal root ganglia (DRG) as 
compared with STZ control rats [42] (Fig. 1). Substantial 
experimental evidence has supported that the activation 
of P2X receptors on glial cells are involved in the occur-
rence and maintenance of chronic pain by stimulating 
the production and release of TNF-α and IL-1β [58–61]. 
Besides,  P2X7 receptors may be related to the comor-
bidity of DNP and depression [62]. Palmatine treatment 
ameliorated the comorbidity of DNP and depression 
via reducing the expression of TNF-α, IL-1β mRNA, 
and phosphorylation of extracellular regulates protein 
kinases 1/2(ERK1/2) protein in the hippocampus of 

Table 1 (continued)

Gelsenicine Koumine Gelsemine 

Isorhynchophylline 

Diterpenoid alkaloids 

Lappaconitine Bulleyaconitine A Bullatine A 

Guan-fu base A Isotalatizidine 
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Table 2 Alkaloids with analgesic activity isolated from Chinese herbal medicines

Alkaloids Sub-groups Example CAS Molecular formula Sources Latin name References

Quinolizidine alkaloids Matrine 519-02-8 C15H24N2O Baicihua Sophora davidii [156]

Kudouzi Sophora alopecuroides [156–158]

Kushen Sophora flavescens [156, 159]

Shandougen Sophora subprostrata [156]

Oxymatrine 16837-52-8 C15H24N2O2 Baicihua Sophora davidii [156]

Kudouzi Sophora alopecuroides [157, 158]

Kushen Sophora flavescens [159]

Shashenhuai Sophora moorcroftiana [156]

Shandougen Sophora subprostrata [156]

Isoquinoline alkaloids Berberine 2086-83-1 C20H18NO4
+ Baiqucai Chelidonium majus [160]

Baiyaozi Stephania cepharantha [160]

Banruitangsongcao Thalictrum petaloideum [160]

Huangbai Phellodendron amurense [161]

Huanglian Coptis chinensis [162]

Maweilian Thalictrum foliolosum [160]

Yanguocao Thalictrum minus [160]

Yanhusuo Corydalis yanhusuo [163]

Levo-Tetrahydro-
palmatine

10097-84-4 C21H25NO4 Yanhusuo Corydalis yanhusuo [156]

Xiatianwu Corydalis decumbens [156]

Juhuahuanglian Corydalis pallida [156]

Chibanyanhusuo Corydalis remota [164]

Sinomenine 115-53-7 C19H23NO4 Bianfugegen Menispermum dauricum [160]

Qingfengteng Sinomenium acutum [160, 165]

Dehydrocorydaline 30045-16-0 C22H24NO4
+ Yanhusuo Corydalis yanhusuo [160]

Levo-Corydalmine 30413-84-4 C20H23NO4 Yanhusuo Corydalis yanhusuo [160]

Palmatine 3486–67-7 C21H22NO4
+ Banruitangsongcao Thalictrum petaloideum [164]

Yanguocao Thalictrum minus [164]

Huangbai Phellodendron amurense [164]

Huanglian Coptis chinensis [164]

Haisongzi Pinus koraiensis [164]

Maweilian Thalictrum foliolosum [164]

Xiatianwu Corydalis decumbens [164]

Huanglian Coptis teetoides [164]

Yanhusuo Corydalis yanhusuo [164]

Alishanshidagonglao Mahonia oiwakensis [166]

Qingniudan Tinospora sagittata [167]

Indole alkaloids Evodiamine 518-17-2 C19H17N3O Wuzhuyu Evodia rutaecarpa [168]

Dehydrocrenatidine 65236-62-6 C15H14N2O2 Kumu Picrasma quassioides [101]

Brucine 57-24-9 C23H26N2O4 Maqianzi Strychnos nux-vomica [169]

Koumine 1358-76-5 C20H22N2O Gouwen Gelsemium elegans [170]

Gelsenicine 82354-38-9 C19H22N2O3 Gouwen Gelsemium elegans [170]

Gelsemine 509-15-9 C20H22N2O2 Gouwen Gelsemium elegans [137, 170]

Isorhynchophylline 6859-01-4 C22H28N2O4 Gouteng Uncaria rhynchophylla [171]
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DPN rats [43]. ATP-induced activation of  P2X3 recep-
tors might collaborate with the phosphorylation of P38 
mitogen-activated protein kinase (P38MAPK) in DRG, 

causing mechanical and heat hyperalgesia [63]. Sinome-
nine alleviated high glucose-induced DPN and reduced 
the mRNA expression of  P2X3 and the phosphorylation 

Table 2 (continued)

Alkaloids Sub-groups Example CAS Molecular formula Sources Latin name References

Diterpenoid alkaloids Isotalatizidine 7633-68-3 C23H37NO5 Chuanwu Aconitum carmichaeli [172]

Bulleyaconitine A 107668-79-1 C35H49NO9 Caowu Aconitum bulleyanum [173]

Bullatine A 1354-84-3 C21H31NO2 Xueshangyizhihao Aconitum brachypodum [45]

guan-fu base A 1394-48-5 C24H31NO6 Guanbaifu Aconitum coreanum [174]

Lappaconitine 32854-75-4 C32H44N2O8 Ganwanwutou Aconitum finetianum [156]

Gaowutou Aconitum sinomontanum [156]

Niubian Aconitum barbatum [156]

Fig. 1 The main pharmacological mechanisms of alkaloids on treating DPN. Alkaloids alleviate DPN via inhibiting Nav channels-mediated ectopic 
discharge in afferent nerve fibers, suppressing purinergic signals in SGC and DRG neurons, and decreasing P38- and NF-κB-mediated peripheral 
neuroinflammation in DRG
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P38MAPK in DRG (Fig.  1). Furthermore, a molecular 
docking test revealed that sinomenine had an intense 
binding with  P2X3 receptors [44, 64].

In conclusion, alkaloids attenuated diabetic neuropa-
thy (Table  3) via restoring nerve function, inhibiting 
oxidative stress, and decreasing neuroinflammatory. In 
traditional Chinese medicine (TCM), Coptis chinensis 
have been employed to treat emaciation-thirst disease 
since ancient China. Berberine and palmatine are the 
main alkaloids in Coptis chinensis, which can treat many 
complications of STZ-induced diabetes [65, 66], includ-
ing diabetic nephropathy [67]. As mentioned above, ber-
berine and the other alkaloids had sound relieving effects 
on STZ-induced neuropathic pain and had a protective 
impact on sciatic nerves. Interestingly, berberine pro-
moted axonal and myelin recovery by reversing the high 
glucose induced-downregulation of BDNF and IGF-I 
while restoring normal blood glucose levels in DM ani-
mals. In contrast, koumine exerted a neuroprotective 
effect by promoting neurosteroids in the sciatic nerve but 
did not affect the hyperglycemia level of diabetic animals. 
Similarly, a previous study that repeated koumine could 
significantly reduce the elevated total blood cholesterol 
levels in STZ-induced diabetic rats without affecting 
blood glucose. Thus, koumine could control cholesterol 
homeostasis, elevate neurosteroids levels and protect 
diabetic neuropathy by activating the liver X receptor 
[68], which may provide a potential novel therapeutic tar-
get for diabetic-induced NP. The potencies of koumine on 
mechanical allodynia, SNCV, and sciatic nerve morphol-
ogy are different [27], which also suggests that koumine 
may exert anti-allodynic and neuroprotective effects by 
different mechanisms. The analgesic effect of berber-
ine is a consequence of etiological treatment; in other 
words, berberine completely restored the hyperglycemia-
induced neuropathic pain by hyperglycemia. Decreasing 
blood glucose can alleviate the signal activation induced 
by blood glucose and may be beneficial to the other com-
plications caused by diabetes. Therefore, berberine is an 
excellent potential drug candidate for DPN. However, 
berberine should be applied at the appropriate phase of 
DPN, and the recovery of nerve function is most signifi-
cant in the initial stage of DPN. In the future, it will be 
necessary to find out the hypoglycemic mechanism of 
berberine. Moreover, palmatine and koumine are also 
advantageous to diabetic-induced peripheral neuropathic 
pain.

Effects of alkaloids chemotherapy-induced 
peripheral neuropathy (CIPN)
CIPN is one of the most common complications caused 
by chemotherapy agents. The typical sensory impair-
ment of CIPN includes numbness, paresthesias, evolving 

spontaneous hyperalgesia and allodynia to mechanical 
and thermal stimuli in extremities [69], and motor symp-
toms such as reduced balance control and distal weakness 
[70]. Generally, CIPN symptoms arise after repeating 
chemotherapy for three or four cycles of, mainly depend 
on the chemotherapeutic agent that is used and the 
cumulative dose of these drugs; however, the onset of 
CIPN symptoms has also been observed immediately in 
some patients after chemotherapy; these symptoms may 
become permanent and will continue for years [70, 71]. 
CIPN is suspected to be a complex phenomenon result-
ing from the interrelation of different mechanisms. It 
has been observed that anticancer drugs may cause neu-
ronal damage in various ways, such as nuclear and mito-
chondrial DNA damages, ion channel disturbances (i.e., 
calcium, sodium, and potassium), impairment of axonal 
transport, and inflammatory process [72–74]. The effects 
of alkaloids on CIPN are shown in Table 4.

Neuroprotective effects of alkaloids on intraepidermal 
nerve fibers and sciatic nerve in CIPN rodents
The loss of intraepidermal nerve fibers (IENFs) is primar-
ily responsible for paclitaxel-induced neuropathic pain in 
rodent models [75, 76]. Moreover, prevention of the loss 
of IENFs can effectively ameliorate the sensory distur-
bance induced by paclitaxel [77]. Evodiamine ameliorated 
paclitaxel-induced peripheral neuropathy by attenuat-
ing IENFs injury [78]. All in all, evodiamine ameliorated 
paclitaxel-induced peripheral neuropathy by attenuat-
ing intraepidermal nerve fiber injuries. The mechanisms 
might involve the inhibition of peripheral neuroinflam-
mation and activation of mitochondrial antioxidant 
functions. Corydalis Saxicola Bunting. Total Alkaloids 
(CSBTA) inhibit cisplatin-induced mechanical hyperal-
gesia, thermal hyperalgesia, and cold hyperalgesia. The 
significant loss of small-diameter myelinated or unmy-
elinated nerve fibers in the epidermis, including Aδ- and 
C-fibers, plays indispensable roles in cold allodynia, ther-
mal hyperalgesia, and mechanical hyperalgesia in early 
CIPN [69, 77, 79, 80]. IENFs density is increased at 60 
and 120  mg/kg doses of CSBTA, which result has been 
further confirmed by the histopathological experiments 
of DRG, revealing that CSBTA ameliorates cisplatin-
induced vacuoles, neuron shrinkage, disordered satellite 
cells, and generally decreased Schwann cells [81].

The peripheral neuropathy model induced by chemo-
therapy agents is also accompanied by sciatic nerve 
function changes, such as SNCV and SNAP. However, 
our previous studies showed that chemotherapy drugs’ 
application could not significantly reduce the sciatic 
nerve function index (SFI) of mice [82]. Matrine reversed 
vinorelbine-induced the decrease of SNCV and sensory 
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nerve action potential (SNAP) amplitudes [82], and mor-
phological evidence further support this notion.

Regulation of alkaloids on oxidative stress in CIPN rodents
It must be considered that mammalian nerves are espe-
cially susceptible to free radicals, including reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS), 
due to their high content in phospholipids and axonal 
mitochondrion; besides, neuronal antioxidant defenses 
are weak [83]. Superoxide dismutase (SOD), catalase 
(CAT), and glutathione (GSH) are the major compo-
nents of the antioxidant system, which maintains sta-
bility in DRG by scavenging excessive free radicals [84]. 
Uncoupling protein 2 (UCP2) on the mitochondrial 
inner membrane can reduce the electrochemical pro-
ton gradient and inhibit ROS generation [85]. Peroxi-
some proliferator-activated receptor-gamma coactivator 
1-α (PGC-1α) can regulate the antioxidant system, and 
PGC-1 α can increase the level of antioxidant enzymes to 
protect neurons from the damages of ROS while decreas-
ing glutathione in cells [86]. The treatment of evodiamine 
remarkably improved paclitaxel-induced mitochondrial 
dysfunction, evidenced by the restoration of PGC-1α, 
UCP2, and manganese superoxide dismutase (MnSOD). 
In  vitro, studies found that evodiamine prevented the 
paclitaxel-induced loss of mitochondrial membrane 
potential and PGC-1α, UCP2, and MnSOD expression in 
DRG cells (Fig. 2) [78]. Singh et al. [87] found that ber-
berine was effective in ameliorating the heat hyperalge-
sia and cold allodynia. Morphometric analysis of sciatic 
nerves revealed that berberine treatment significantly 

increased axon diameter and myelin thickness, but the 
axon number did not be increased compared with the 
paclitaxel group. Berberine prevented the increase in 
malondialdehyde level, the decreased GSH, and SOD in 
the sciatic nerve tissue. In oxidative stress, genes encod-
ing antioxidant defending enzymes are activated, espe-
cially the nuclear erythroid 2-related factor 2 (Nrf2) gene, 
which increases the expression of SOD, glutathione per-
oxidase (GSH-Px), and catalase genes [88]. Berberine 
exerted analgesic and neuroprotective effects via upreg-
ulating Nrf2 mRNA and further enhancing antioxidant 
capacity in the sciatic nerve [87].

Regulation of alkaloids on central and peripheral 
neuroinflammation in CIPN rodents
Administration of levo-corydalmine (L-CDL) combined 
with vincristine significantly reduced pain hypersensi-
tivity and pro-inflammatory factors, such as TNF-α and 
IL-1β. In association with these changes, chemokine 
CXCL1 and its receptor CXCR2 were decreased by 
L-CDL in spinal astrocytes and neurons. Moreover, 
nuclear factor kappa-B (NF-κB) was involved in the 
production of CXCL1 in spinal astrocytes. In cultured 
astrocytes and primary neurons, CXCL1 was blocked 
by NF-κB small interfering RNA (siRNA) and was dose-
dependently reduced by L-CDL, thus indirectly reduc-
ing the increase in CXCR2. (Fig.  2) [89]. Therefore, 
L-CDL has potential as an analgesic targeting the NF-κB-
dependent CXCL1/CXCR2 signaling pathway to relieve 
vincristine-induced neuropathic pain. p38 is activated in 
DRG by peripheral inflammation and participates in the 

Fig. 2 The main pharmacological mechanisms of alkaloids on treating CIPN. Alkaloids alleviate DPN via inhibiting oxidative stress and 
neuroinflammation in DRG
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maintenance of heat hyperalgesia by regulating levels of 
the transient receptor potential channel family (TRPV1) 
[90, 91]. CSBTA also significantly reduced the expression 
of p38, p-p38, and TRPV1.

Repetitive administration of bulleyaconitine A (BAA) 
after treatment with paclitaxel produces a long-lasting 
inhibitory effect on thermal hyperalgesia, but not on 
mechanical allodynia. Consistently, the spinal synaptic 
transmission mediated by C-fibers but not by A-fibers 
is potentiated in paclitaxel-treated rats, and the effect is 
attenuated by either spinal or intravenous application of 
BAA. The frequency but not the amplitude of both spon-
taneous excitatory postsynaptic currents (sEPSCs) and 
miniature excitatory postsynaptic currents (mEPSCs) 
recorded in lamina II neurons was enhanced in pacli-
taxel-treated rats indicates that increase in presynaptic 
neurotransmitter release may contribute to the effect 
[92]. Furthermore, BAA could prevent and depress spi-
nal LTP in both naive and paclitaxel-treated rats, but the 
inhibitory effect was more powerful in paclitaxel-treated 
animals than that in naïve animals. Treatment of BAA 
reduced the frequency of sEPSCs and mEPSCs in pacli-
taxel-treated rats but did not in naïve ones [92]. Taken 
together, BAA attenuated paclitaxel-induced neuropathic 
pain and depressed LTP at C-fiber synapses in the spinal 
dorsal horn, and inhibition of presynaptic transmitter 
release may be involved in the effect.

Effects of alkaloids on Sciatic nerve chronic 
constriction injury (CCI) model
CCI-induced neuropathic pain includes several symp-
toms, such as spontaneous pain (tingling, burning, and 
electric-shock like), dysesthesia, paresthesias, allodynia, 
and hyperalgesia [93]. In addition, CCI results in intra-
neural edema, which produces a more significant reduc-
tion of Aβ-fibers, and a vast majority of Aδ-fibers are 
axotomized while large numbers of C-fibers are intact 
[94].

Table  5. summarized the effects of alkaloids in allevi-
ating CCI-induced neuropathic pain. Alkaloids matrine 
[95] reduced among mechanical allodynia, cold allodynia, 
and thermal hyperalgesia, whereas guanfu base A [96] 
reduced mechanical and thermal hyperalgesia. Sinome-
nine [97], levo-tetrahydropalmatine [98], berberine [99], 
brucine [100], dehydrocrenatidine [101], koumine [102] 
and isotalatizidine [25] reduced mechanical allodynia. 
Besides, brucine, koumine, gelsenicine [26], and iso-
rhynchophylline [103] inhibited CCI-induced thermal 
hyperalgesia. It is reported that matrine [95], levo-tet-
rahydropalmatine [98], berberine [99], and sinomenine 
[97] could not affect the ability of spontaneous activity 
and motor coordination of CCI mice. In other words, 
these alkaloids did not induce sedation in CCI mice. 

Sinomenine dose-dependently reversed the increased 
immobility time in rats receiving CCI but did not affect 
the duration of immobility in the forced swimming test in 
healthy animals, suggesting that sinomenine attenuated 
chronic pain-induced depressive-like behaviors.

Regulation of alkaloids on excitatory and inhibitory 
synaptic transmission in CCI rodents
Following a nerve injury, both peripheral and central 
sensitization act as important pathogenesis of neuro-
pathic pain, including sensitization and hyperexcitability 
of primary sensory neurons as well as the enhancement 
of excitatory synaptic transmission or the reduction of 
inhibitory synaptic transmission in the neurons of the 
central nervous system [104, 105]. The change of neu-
rotransmitters (e.g., Glutamate and γ-aminobutyric acid 
(GABA)) within the SDH plays a vital role in the patho-
genesis of chronic neuropathic pain [106]. In normal 
conditions, painful stimuli evoke action potentials in pri-
mary afferent neurons (Aδ- or C-fibers) and excite pain 
transmission in SDH neurons. SDH inhibitory interneu-
rons containing GABA or glycine repress the excitatory 
interneurons that innervate SDH pain transmission neu-
rons [107]. CCI decreases the inhibitory tone of GABA or 
glycine interneurons, which results in a relative enhance-
ment of excitatory interneurons activity. The resulting 
hyperexcitability of pain transmission in neurons contrib-
utes to mechanical hypersensitivity. Chemically, although 
sinomenine is a morphinan analog, its antinociceptive 
effects are not abolished by an opioid receptors antago-
nist naloxone [108]. On the contrary, GABAA receptors 
antagonist bicuculine blocked the antinociceptive effects 
of sinomenine [97]. Taken together, these shreds of evi-
dence reveal that sinomenine exerts significant antino-
ciceptive effects on CCI-induced neuropathic pain via 
the GABAA-mediated mechanism. Previous studies in 
our laboratory found that oxymatrine [109] prevents the 
development of mechanical allodynia, thermal hyperal-
gesia, and cold allodynia in CCI mice by reversing CCI-
induced the downregulation of GABAARα2 (Fig. 3). The 
spinal N-methyl-D-aspartate receptors (NMDARs) are 
known to contribute to the excitatory synaptic trans-
mission within the spinal cord when they are evoked by 
nociceptive primary afferent stimuli, which plays impor-
tant roles in the central sensitization of neuropathic pain 
[110]. Sigma-1 receptor (Sig-1R) is a unique transmem-
brane receptor that resides in the mitochondria-associ-
ated endoplasmic reticulum membrane (MAM) in the 
nervous system and has been found to play a pronocic-
eptive role in neuropathic pain models [111, 112]. Sig-1R 
uncouples with immunoglobulin heavy chain binding 
protein (BiP) and translocates from the MAM to lipid 
rafts of the cell membrane when the concentration of 
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 Ca2+ decreases in MAM, and then modulates NMDAR 
responses (Fig. 2) [113, 114]. Previous studies have shown 
that levo-corydalmine alleviated vincristine-induced 
neuropathic pain. Levo-corydalmine and levo-tetrahy-
dropalmatine are isoquinoline alkaloids isolated from 
Yanhusuo, levo-tetrahydropalmatine is an analog of levo-
corydalmine (L-CDL) in which a methoxy group replaces 
the phenol hydroxyl group at the  C10 position. The pre-
treatment of levo-tetrahydropalmatine (L-THP) remark-
ably suppressed mechanical allodynia and upregulated 
phosphorylation of NR1 in the spinal cord. Then, intrath-
ecal treatment with L-THP combined with BD1047 
(Sig-1R antagonist) synergistically reverse CCI-induced 
mechanical allodynia, indicating that L-THP alleviates 
CCI-induced neuropathic pain through modulating spi-
nal Sig-1R activation (Fig.  3) [98]. It has been proposed 
that NMDA activation-induced  Ca2+ influx can trigger 
an early phase of cAMP response element-binding pro-
tein (CREB) phosphorylation. However, delayed ERK 
signal cascade mediates a persistent phase of CREB 
phosphorylation, which is vital to the development and 

maintenance of chronic pain. Our study has shown that 
oxymatrine restores nerve injury-induced neuropathic 
pain, which could attribute to the inhibition of NR2B and 
ERK/CREB signaling pathway (Fig. 3) [115].

Regulation of alkaloids on peripheral and central 
neuroinflammation in CCI rodents
In parallel to the changes in the activity of neurons, non-
neurons cells, especially glial cells, are increasingly being 
recognized as essential contributors to the development 
and maintenance of neuropathic pain [116]. Microglia are 
activated in response to nerve injuries and then release 
pro-inflammatory cytokines such as TNF-α, IL-1β, and 
IL-6, thus initiating the neuropathic pain process [117]. 
Microglia are known to promote neuroinflammation not 
only by interacting with neurons but also by activating 
adjacent astrocytes [118]. The long-term subcutaneous 
administration of koumine decreased the fluorescence 
density of ionized calcium-binding adaptor molecule-1 
(IBA-1) (microglia marker) and glial fibrillary acidic pro-
tein (astrocyte marker) in the ipsilateral spinal horn of 

Fig. 3 The main pharmacological mechanisms of alkaloids on treating CCI. Alkaloids attenuate mechanical allodynia in the CCI model via 
upregulating GABA receptor, inhibiting glia-mediated neuroinflammation, and inhibiting the activation of NMDAR
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CCI rats. Koumine downregulated the protein expres-
sion of IBA-1, Glial fibrillary acidic protein (GFAP), IL-6, 
IL-1β, and TNF-α by western blot analysis of spinal cord 
tissues [102]. Schwann cells and SGCs play fundamen-
tal and extensive roles in the primary treatment of nerve 
injuries in the peripheral nervous system. SGCs enwrap 
primary neurons in the DRG, where the  P2Y12 recep-
tor is highly expressed, which is involved in the nocic-
eptive transmission. SGCs activation is characterized by 
increased expression of GFAP and the increased produc-
tion of pro-inflammatory substances, such as ATP, ADP 
cytokines [119, 120], after which P2Y receptors are acti-
vated [8]. Guan-fu base A (GFA) decreases the expression 
of  P2Y12 mRNA and protein in the DRG. The decreased 
co-expression of  P2Y12 and GFAP is also observed in the 
DRG sections, which confirms the inhibitory effect of 
GFA on  P2Y12 [96].

Regulation of alkaloids on other pathological 
and physiological processes in CCI rodents
DRG modulates noxious stimuli and no-noxious stimuli 
from the peripheral nervous system through multiple 
ion channels expressed in DRG. Voltage-gated sodium 
channels (VGSC) contribute to generating the ectopic 
action potential in DRG neurons in various peripheral 
neuropathic pain conditions [121]. It should be noted 
that CCI-injured DRG neurons display altered expres-
sion levels of sodium channel subtypes, such as Nav1.3, 
Nav1.8, and Nav1.9 [122]. Dehydrocrenatidine (DHCT) 
is a β-carboline alkaloid from Picrasma quassioides, 
which suppress both tetrodotoxin-resistant (TTX-R) and 
sensitive (TTX-S) VGSC currents in DRG neurons with 
the half-maximal inhibitory concentration  (IC50) values 
of 12.36 µM and 4.87 µM. Furthermore, DHCT prefers to 
interact with an inactivated state of VGSCs and prolongs 
the repriming time in both TTX-S and TTX-R VGSCs, 
transiting the channels into a slow inactivated state from 
a fast-inactivated state [101]. These data demonstrated 
that the analgesic effect of DHCT was possibly through 
inhibition of VGSCs. DHCT suppresses AP generation, 
suggesting that DHCT could inhibit the neuronal excit-
ability. It shall be noted that various β-carboline alkaloids 
produce either a sedative, tremorgenic, anxiogenic, or 
convulsant effect by binding to benzodiazepine recep-
tors acting as full, partial agonists, antagonists, or inverse 
agonists [123–127]. Whether DHCT interacts with ben-
zodiazepine receptors and contributes to the neuronal 
excitability is currently unknown. The antinociceptive 
effect of brucine is related to the inhibition of TTX-R and 
TTX-S sodium channel directly, but the activation kinet-
ics of Nav channels could not be changed [100].

Growing evidence suggests that endogenous neuro-
steroids are involved in the modulation of chronic pain. 

The endogenous biosynthesis of neurosteroids, such 
as allopregnanolone and pregnenolone, is upregulated 
in the spinal cord during neuropathic pain [128, 129]. 
Koumine increased allopregnanolone, but not pregne-
nolone in the spinal cord of CCI rats. The anti-neuro-
pathic pain activity of koumine is mediated by further 
upregulation of allopregnanolone to an adequate 
level against neuropathic pain [130]. The decrease of 
allopregnanolone attributes to the fact that the key 
synthetase of allopregnanolone, 3α-hydroxysteroid 
oxidoreductase (3α-HSOR), is significantly upregu-
lated by koumine [131]. It is worth mentioning that 
repeated subcutaneous administration of koumine is 
not associated with adverse effects commonly associ-
ated with opioids, such as physical and psychological 
dependence.

Single or consecutive administration of isorhyncho-
phylline produces an analgesic effect lasting for 1 day or 
3 days. Moreover, isorhynchophylline barely induce the 
change of motor function in the process of pain-related 
behavior tests. The analgesic effect is relatively rapid 
while reinitiating 10  days following interruption, indi-
cating that the analgesic effect of isorhynchophylline 
seems to design neural plasticity changes. The descend-
ing monoaminergic projection is a vital pathway of 
endogenous pain modulation. Isorhynchophylline anal-
gesia attributes to the escalated 5-hydroxytryptamine 
(5-HT) and the decreased 5-hydroxyindole acetic acid 
(5-HIAA)/5-HT ratio in the spinal cord. Pharmaco-
logical inhibition of spinal 5-HT corroborates that the 
escalated monoamine tone is responsible for the antin-
ociceptive action of isorhynchophylline. Additionally, 
isorhynchophylline dose-dependently ameliorates the 
depressive and anxious conditions in neuropathic mice.

Activated MAPKs induce different intracellular sig-
nals and are also involved in maintaining neuropathic 
pain via regulating downstream cascade responses 
[132, 133]. Being consistent with this, MAPKs and 
microglial inhibitors remarkably attenuated neuro-
pathic pain [134]. Shao et  al. [25] found that isotala-
tizidine stimulated p38 and ERK1/2 in a cultured BV-2 
cell line or primary microglia, which was completely 
inhibited by the respective inhibitors. Moreover, iso-
talatizidine induced phosphorylation of CREB is spe-
cifically mediated by the ERK1/2 pathway but not the 
p38 pathway. Interestingly, isotalatizidine induced the 
secretion of dynorphin A in the spinal cord tissue in 
CCI rat and ameliorated neuropathic pain, which can 
be reversed by the selective ERK1/2 inhibitor or selec-
tive CREB inhibitor. Therefore, the antinociception 
action of isotalatizidine in CCI-induced neuropathic 
pain was mediated via the activation of the ERK1/2/
CREB/dynorphin A axis.
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Effects of alkaloids on sciatic nerve ligation (SNL) 
models
Table 6. summarized the effects of alkaloids in alleviating 
SNL-induced neuropathic pain. SNL-induced mechani-
cal allodynia and thermal hyperalgesia have been reduced 
by lappaconitine, bullatine A (BA), bulleyaconitine A 
(BAA), gelsemine, koumine, and dehydrocorybulbine 
(DHCB). Lappaconitine antinociceptive activities are 
similar in mechanical allodynia and thermal hyperalgesia, 
with cumulative  ED50 values of 1.1 mg/kg vs. 1.6 mg/kg 
and maximum effect  (Emax) values of 53 vs. 58% in SNL-
induced neuropathic pain, respectively [29]. Moreover, 

subcutaneous administration of BA refreshed MWT and 
TWL in the cumulative dose range of 0.3 to 30  mg/kg, 
and dose–response analysis of BA at one hour after injec-
tion showed that  Emax is 56.6% and 66.1% on MWT and 
TWL, respectively, and  ED50 is 1.9  mg/kg and 0.7  mg/
kg [135]. Both subcutaneous injection and intrathecal 
injection of BAA could effectively inhibit mechanical 
pain and thermal radiation pain in rats with  Emax val-
ues of 60–100% and  ED50 values of 42–59  μg/kg (s.c.), 
94–126  ng (i.t.) [136]. Gelsemine [137] and koumine 
[130] can reverse SNL-induced mechanical allodynia and 
thermal hyperalgesia, and gelsemine at one hour after 

Table 6 Effects of alkaloids on sciatic nerve ligation (SNL) models

↑: Enhanced/Increased/Upregulate↓: Attenuate/Downregulate/Decrease/Suppress/Inhibit/Prevent

Alkaloids Animal/cell Dose mg/kg (route of
administration)

Effects/mechanisms of action Biochemical/
molecular 
parameters/mRNA

References

behavioral 
evaluation

histopathological
observation

Electrophysiology 
parameters

Lappaconi-
tine

Male adult 
Wistar rats

Primary 
neurons, 
astrocytes, 
and micro-
glia

0.3/1/3/10 mg/kg s.c
0.3/1/3/10 μg
i.t

↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

– – →The mRNA 
expression of 
dynorphin A, 
prodynorphin in 
microglia

↓LPS-induced the 
increase of TNF-α, 
IL-1β and IL-6 in 
microglia

[29]

koumine Male adult 
Sprague–
Dawley rats

0.28/1.4/7 mg/kg
s.c
Twice per day for 

7 days

↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

– – – [130]

Bulleyaconi-
tine A

Male 
Sprague–
Dawley rats

0.4 mg/kg
i.g

↓Mechani-
cal and 
thermal 
sensitivity

– ↓Morphine 
induced-the 
potentiation 
of spinal LTP at 
C-fiber synapses

↓p-PKCγ in SDH [136]

Bullatine A Male adult 
Swiss mice

0.1/0.3/1/3/10/30 mg/
kg

s.c

↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

– – – [135]

Bulleyaconi-
tine A

Male 
Sprague–
Dawley rats

Primary DRG 
neurons

– ↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

– ↓  Na+ channels 
in the uninjured 
neurons

– [151]

Bullatine A Male adult 
Wistar rats

0.3/1/3/10/30 mg/kg
s.c
0.3/1/3/10/30 μg
i.t

↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

↑Dynorphin A 
immunofluores-
cence staining 
in the ipsilateral 
SDH

– → LPS-induced the 
mRNA expression 
of TNF-α, IL-1β and 
IL-6 in microglia

[45]

Gelsemine Male Wistar 
rats

0.03/0.1/0.3/1/3/10 μg
i.t

↓Mechanical 
allodynia

– – ↓The level of Gly α3 
mRNA and protein

[137]

Dehydrocory-
bulbine

Male 129/sv 
mice

10 mg/kg
i.p

↓Mechanical 
allodynia 
and ther-
mal hyper-
algesia

– – – [138]
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intrathecal injection exhibited its  Emax of 51.2% and  ED50 
of 0.5  μg. DHCB can effectively reduce SNL-induced 
neuropathic pain at doses that do not induce sedation 
[138].

Regulation of alkaloids on endogenous opioid peptides 
in SNL rodents
The analgesic effects of lappaconitine might attribute 
to the upregulation of dynorphin A in the central nerv-
ous system. The results support that the antinociceptive 
effects of lappaconitine are entirely blocked by intrath-
ecal injection of the specific dynorphin A antibody and 
κ-opioid receptor antagonist [29]. Interestingly, it seems 
that the alkaloids bioactive components from the medici-
nal plants of Ranunculus can induce the production of 
dynorphin A in the spinal cord [25, 135, 139]. Huang et al. 
explored the analgesic mechanism of BA by studying the 
release of inflammatory factors and microglia dynor-
phin A. The results showed that BA could not inhibit the 
expression of inflammatory factors, including TNF-α, 
IL-1β, and IL-6 induced by SNL. However, it could signif-
icantly increase the expression and release of dynorphin 
A in the spinal cord and primary cultured microglia [45]. 
BAA’s analgesic effects on neuropathic pain rats could 
be blocked by initial intrathecal injection of microglial 
activation inhibitor minocycline, dynorphin A antibody, 
and specific κ-opioid receptors antagonist nor-BNI. At 
the same time, BAA increased the expression of dynor-
phin A, which was inhibited by minocycline in primary 
cultured microglia (not neurons and astrocytes). There-
fore, Li et al. believed that BAA’s analgesic effect was pro-
duced by stimulating microglia in the spinal dorsal horn 
to release dynorphin A, which then acted on the κ-opioid 
receptors on the postsynaptic membrane [140].

Comparing with the  ED50 of these alkaloids (bulleya-
conitine A > Lappaconitine = bullatine A) in neuropathic 
pain rats to  EC50 of these diterpenoid alkaloids effects on 
promoting dynorphin A expression in primary microglia, 
we found that the analgesic activity is proportional to the 
effect of dynorphin expression, which further supports 
that the analgesic activity of these diterpenoid alkaloids 
is to promote dynorphin A expression. In addition, pre-
vious studies have also shown that aconitum extract has 
analgesic effects by affecting the release of dynorphin 
A in the spinal cord and acting on κ-opioid receptors 
[141–143]. Therefore, the molecular basis of diterpenoid 
alkaloids might stimulate the expression of dynorphin 
A in spinal cord microglia and further activate κ-opioid 
receptors on postsynaptic to produce an analgesic effect. 
The further study of Li et  al. found that BAA can pro-
mote cAMP production, which could be blocked by G 
protein-coupled receptors (GPCRs) inhibitors. BAA can 
activate cAMP-dependent protein kinase A (PKA). PKA 

specifically upregulated p38 MAPK (not ERK MAPK 
or JNK MAPK) activity, thus promoting the phospho-
rylation of CREB and increasing the expression levels of 
prodynorphin and dynorphin A, further producing an 
analgesic effect [140]. It is worth noting that p38 activa-
tion mediates the release of inflammatory pain induced 
factors such as TNF-α, IL-1β, and IL-6 by microglia, but 
BAA also promoted the release of dynorphin A through 
p38 activation, which seems to be contradictory. In fact, 
p38 has four subtypes, including α, β, δ, and γ subtypes 
[144]. Furthermore, p38β siRNA could completely block 
the release of BAA-induced dynorphin A from microglia, 
but p38α siRNA did not affect it. These results suggested 
that p38β activation might be a common mechanism of 
opioid peptide released from microglia. Based on the 
above results, it is speculated that the analgesic molecu-
lar mechanism of lappaconitine, bullatine A (BA), and 
even other aconitine analogs are the same as that of BAA, 
and the expression of dynorphin A is mediated by acti-
vating the GPCRs/cAMP/PKA/p38β/CREB signaling 
pathway of microglia (Fig. 4) [140].

Regulation of alkaloids on other pathological 
and physiological processes in SNL rodents
The specific antinociception of gelsemine in neuro-
pathic pain was blocked by the glycine receptor antago-
nist strychnine with an apparent half-maximal inhibitory 
dose  (ID50) value of 3.8  μg [170]. In addition, siRNA of 
glycine receptor α3 subunit was administered intrath-
ecally for seven consecutive days, which completely 
blocked gelsemine induced-analgesia in neuropathic 
pain [170]. The results showed that gelsemine produced 
potent and specific antinociception in chronic neuro-
pathic pain conditions without induction of apparent tol-
erance by activation of spinal glycine receptor α3 subunit 
[130]. LTP is abnormal electrical activity in neuropathic 
pain and morphine tolerance in the spinal cord. L5-SNL 
and continuous use of morphine can induce LTP lasting 
for 10 days in the spinal cord [145]. Previous studies have 
shown that activated protein kinase C-γ (PKCγ) is essen-
tial for LTP [146] and morphine tolerance [147] in neu-
ropathic pain. Oral administration of BAA could relieve 
neuropathic pain and morphine-induced analgesic toler-
ance. Molecular biology and electrophysiology confirmed 
that BAA also inhibited LTP and the activation of PKCγ 
[136]. Interestingly, it has been shown that the spinal 
PKCγ expressing interneurons is activated only by innoc-
uous inputs conducted by A-fibers [148]. The ectopic 
discharges mediated by the sodium channels in the pri-
mary afferent nerve [149] are significant for develop-
ing neuropathic pain [150]. The primary afferent fibers, 
especially A-fibers, discharge spontaneously following 
peripheral nerve injuries. BAA inhibited neuropathic 
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pain by blocking the Nav1.7 and Nav1.3 in the peripheral 
nerve (Fig.  2) [151, 152]. These suggest that the inhibi-
tion of sodium channel in A-fibers may be responsible 
for the BAA-induced analgesia and LTP decrease. It has 
been found that BA could selectively antagonize P2X7 
receptors, inhibit apoptosis of microglia induced by ATP, 
and inflammatory response mediated by P2X7 receptors 
[153].

Discussion and conclusion
Most alkaloids are isolated from Chinese herbal medi-
cines. The analgesic activities of various alkaloids are 
inextricably linked with the traditional application of 
Chinese herbal medicines. Yanhusuo is a kind of analge-
sic that is highly praised by Chinese medicine experts. It 
has the effects of promoting blood circulation, removing 
blood stasis, regulating qi, and relieving pain. Accord-
ing to the compendium of Materia Medica, Yanhusuo is 

specially used to treat all kinds of pains in the body. The 
main active components of Yanhusuo include dehydro-
corydaline, levo-Tetrahydropalmatine, and levo-Cory-
dalmine; these alkaloids have shown analgesic effects on 
neuropathic pain. Besides, Aconitum, such as Aconitum 
carmichaelii, Aconitum kusnezoffii, and Aconitum sino-
montanum, mainly treat rheumatic arthralgia, acute and 
chronic pain. C18, C19, C20 diterpenoid alkaloids are the 
main active components of Aconitum and have signifi-
cant analgesic effects. Previously studies indicated that 
bulleyaconitine A, lappaconitine, bullatine A, and isotala-
tizidine have good analgesic effects on neuropathic pain. 
However, Gouteng had a significant sedative effect in 
clinical application [154]. Therefore, in the study of alka-
loids on neuropathic pain, we should pay more attention 
to whether alkaloids have sedative effects to avoid the 
temporary disappearance of pain-related behavior due to 
central inhibition. Compared to traditional single-target 

Fig. 4 Proposed signal transduction pathways for diterpenoid alkaloids-induced analgesia on the SNL model. Following agonism of GPCRs, the 
cAMP/PKA, p38βMAPK, and CREB signals are successively activated, which mediate dynorphin A expression and subsequent antinociception
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drugs, bioactive natural ingredients derived from herbs 
may provide additional benefits in preventing chronic 
neuropathic pain with improved efficacy and lower toxic-
ity, and they represent an important source of drug dis-
covery. In addition, it is a feasible method for researchers 
to search effective candidate compounds for the treat-
ment of neuropathic pain by starting from the clinical 
application of traditional Chinese herbal medicines, and 
it is easier to identify the analgesic effects, toxic effects, 
and related mechanism of alkaloids.

Although previous studies have reported the phar-
macological effects and mechanisms of action of the 
alkaloids isolated from Chinese herbal medicines, there 
is no review focusing on bioactive alkaloids in the treat-
ment of peripheral neuropathic pain. Alkaloids inhibited 
peripheral and central neuroinflammation, reduced oxi-
dative stress damage, and further ameliorated peripheral 
neuropathic pain. The expression of regulatory factors, 
including PGC-1α, PPAR-γ, and UCP2, the activation 
of the Nrf2, and the downstream upregulation of anti-
oxidant enzymes, including SOD, GST, and GPx, have 
been proposed as common mechanisms underlying the 
antioxidant effects of these alkaloids. Moreover, most of 
the studies have suggested that the reversal of oxidative 
stress plays a critical role in the anti-inflammation effects 
of these alkaloids. Importantly, alkaloids’ mechanism on 
neuropathic pain is not entirely inconsistent due to the 
pathological mechanism of different types of neuropathic 
pain that is different. However, the specific and detailed 
differences are still unclear. The influence of hypergly-
cemia and chemotherapy agents on peripheral nerves 
(e.g., sciatic nerve, epidermal nerve fibers) is serious due 
to a large number of mitochondria are susceptible to 
oxygen free radicals in the mammalian nervous system. 
Therefore, besides removing the etiology, it is necessary 
to improve the function of mitochondria in the nervous 
system for the treatment of DPN and CIPN. In addition, 
alkaloids exert analgesic effects on CCI-induced neuro-
pathic pain via inhibiting the activation of microglia and 
astrocyte, regulating excitatory and inhibitory synaptic 
transmission, and regulating endogenous neuroster-
oids. Moreover, The analgesic mechanism of diterpenoid 
alkaloids on SNL-induced neuropathic pain is primarily 
to promote the release of endogenous opioid peptides. 
Fortunately, bioactive alkaloids have the characteristic 
of multi-target action on neuropathic pain. Specifically, 
koumine and berberine exerted analgesic effects on DPN 
and CCI rodents through different mechanisms. Based 
on clarifying the pathological mechanism of various neu-
ropathic pain models, it is still necessary to further study 
the analgesic mechanisms of different alkaloids.

Among the alkaloids mentioned above, diterpenoid 
alkaloids are the most studied bioactive ingredients but 

their toxicity is a cause for concern. Researchers generally 
believe that diterpenoid alkaloids have the most severe 
toxic effects, such as cardiotoxicity and neurotoxicity, 
mediated by sodium channels. However, in the previous 
studies, no similar adverse reactions were found under 
the treatment dose, and the treatment index of BAA is 
about seven times that of aconitine. A wider therapeutic 
index means that the toxic effects and analgesic effects 
can be separated. Some studies have shown that sodium 
channel blockers could not reverse the analgesic effects of 
BAA. These researches further indicated that the analge-
sic and toxic effects of BAA were separated. In addition, 
diterpenoid alkaloids can promote the release of dynor-
phin A from spinal microglia and further exert analgesic 
effects with synaptic κ-opioid receptors. Direct agonists 
of κ-opioid receptors, especially synthetic non-peptide 
agonists, can cause severe irritability and side effects 
similar to psychosis. Because endogenous dynorphin A 
produced by diterpenoid alkaloids has a higher potency 
than exogenous dynorphin A, these alkaloids have no 
obvious adverse reactions, such as sedation, analgesia tol-
erance, under the effective treatment doses. In addition, 
the investigation of the structure–activity relationship 
is a meaningful way to balance the analgesic effects and 
toxic effects of alkaloids. At present, the structure–activ-
ity relationship of diterpenoid alkaloids has been studied. 
The following groups for the analgesic effects of C18 and 
C19 diterpenoid alkaloids are essential: a ring of trivalent 
N, acetyloxy or ethoxy substitution at the  C8 position, 
aryl substitution at  C14 position, and saturation of D ring. 
In addition, a 3α-hydroxyl group or 5-hydroxy group can 
enhance the analgesic activity of these compounds [155]. 
The ester groups at  C4,  C8, and  C14 positions are active 
groups, as well as toxic groups. However, the introduc-
tion of ester groups at the  C3 position, can improve the 
analgesic index of these alkaloids, which may separate 
the pharmacological activity from the toxicity. Therefore, 
it is possible to introduce the ester group at the  C3 posi-
tion while hydrolyzing the ester groups at  C4,  C8, and 
 C14 positions to preserve the effectiveness and reduce 
toxicity.

In summary, even after taking the above-mentioned 
obstacles and concerns into account, the alkaloids are 
valuable drug candidates for treating neuropathic pain. 
Therefore, there is an urgent need to investigate their 
pharmacokinetic properties and establish the dose-
time-pharmacology-toxicology relationships of alka-
loids isolated from Chinese herbal medicines. Further 
preclinical research and clinical trials are crucial to 
demonstrate alkaloids’ efficacy in alternative analgesia 
for neuropathic pain. Therefore, future research stud-
ies must address the anti-neuropathic pain targets and 
molecular mechanisms of Chinese herbal medicines 



Page 20 of 24Zhu et al. Chin Med          (2020) 15:106 

and their monomeric compounds, combining labora-
tory anti-neuropathic pain researches with clinical 
practices, testing the reliability of Chinese herbal medi-
cines against neuropathic pain, and promoting their 
application in practical neuropathic pain treatment.
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