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Abstract 

Background:  Genomic data analyses such as Genome-Wide Association Studies (GWAS) or Hi-C studies are often 
faced with the problem of partitioning chromosomes into successive regions based on a similarity matrix of high-
resolution, locus-level measurements. An intuitive way of doing this is to perform a modified Hierarchical Agglomera-
tive Clustering (HAC), where only adjacent clusters (according to the ordering of positions within a chromosome) are 
allowed to be merged. But a major practical drawback of this method is its quadratic time and space complexity in 
the number of loci, which is typically of the order of 104 to 105 for each chromosome.

Results:  By assuming that the similarity between physically distant objects is negligible, we are able to propose 
an implementation of adjacency-constrained HAC with quasi-linear complexity. This is achieved by pre-calculating 
specific sums of similarities, and storing candidate fusions in a min-heap. Our illustrations on GWAS and Hi-C datasets 
demonstrate the relevance of this assumption, and show that this method highlights biologically meaningful signals. 
Thanks to its small time and memory footprint, the method can be run on a standard laptop in minutes or even 
seconds.

Availability and implementation:  Software and sample data are available as an R package, adjclust, that can be 
downloaded from the Comprehensive R Archive Network (CRAN).
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Background
Genetic information is coded in long strings of DNA 
organised in chromosomes. High-throughput sequencing 
such as RNAseq, DNAseq, ChipSeq and Hi-C makes it 
possible to study biological phenomena along the entire 
genome at a very high resolution [32].

In most cases, we expect neighboring positions to be 
statistically dependent. Using this a priori information 
is one way of addressing the complexity of genome-
wide analyses. For instance, it is common practice to 
partition each chromosome into regions, because such 
regions hopefully correspond to biological relevant or 

interpretable units (such as genes or binding sites) and 
because statistical modelling and inference are simpli-
fied at the scale of an individual region. In simple cases, 
such regions are given (for example, in RNAseq analy-
sis, only genic and intergenic regions are usually con-
sidered and differential analysis is commonly performed 
at the gene or transcript level). However, in more com-
plex cases, regions of interest are unknown and need to 
be discovered by mining the data. This is the case in the 
two leading examples considered in this paper. In the 
context of Genome Wide Association Studies (GWAS), 
region-scale approaches taking haplotype blocks into 
account can result in substantial statistical gains [17]. 
Hi-C studies [12] have demonstrated the existence of 
topological domains, which are megabase-sized local 
chromatin interaction domains correlating with regions 
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of the genome that constrain the spread of heterochro-
matin. Hence, the problem of partitioning a chromosome 
into biologically relevant regions based on measures of 
similarity between pairs of individual loci has been exten-
sively studied for genomic applications.

Recovering the “best” partition of p loci for each pos-
sible number, K, of classes is equivalent to a segmenta-
tion problem (also known as “multiple changepoint 
problem”). In the simplest scenario where the signals to 
be segmented are piecewise-constant, such as in the case 
of DNA copy numbers in cancer studies, segmentation 
can be cast as a least squares minimization problem [23, 
30]. More generally, kernel-based segmentation meth-
ods have been developed to perform segmentation on 
data described by a similarity measure [3, 22]. Such seg-
mentation problems are combinatorial in nature, as the 
number of possible segmentations of p loci into K blocks 
(for a given K = 1 . . . p ) is 

(p
K

)

= O(pK ) . The “best” seg-
mentation for all K = 1 . . . p can be recovered efficiently 
in a quadratic time and space complexity using dynamic 
programming. As discussed in Celisse et  al. [7], in the 
case of kernel-based segmentation, this complexity can-
not be improved without making additional assumptions 
on the kernel (or the corresponding similarity). Indeed, 
for a generic kernel, even computing the loss (that is, the 
least square error) of any given segmentation in a fixed 
number of segments K has a computational cost of O(p2).

The goal of this paper is to develop heuristics that can 
be applied to genomic studies in which the number of 
loci is so large (typically of the order of p = 104 to 106 ) 
that algorithms of quadratic time and space complexity 
cannot be applied. This paper stems from a modifica-
tion of the classical hierarchical agglomerative cluster-
ing (HAC) [26], where only adjacent clusters are allowed 
to be merged. This simple constraint is well-suited to 
genomic applications, in which loci can be ordered along 
chromosomes provided that an assembled genome is 
available. Adjacency-constrained HAC can be seen as a 
heuristic for segmentation; it provides not only a single 
partition of the original loci, but a sequence of nested 
partitions.

The idea of incorporating such constraints was pre-
viously mentioned by Lebart [27] to incorporate geo-
graphical (two-dimensional) constraints to cluster 
socio-economic data, and by  Michel et al. [28] to cluster 
functional Magnetic Resonance Imaging (fMRI) data into 
contiguous (three-dimensional) brain regions. The totally 
ordered case that is the focus of this paper has been stud-
ied by Grimm [19], and an R package implementing this 
algorithm, rioja [25], has been developed.1 However, the 

algorithm remains quadratic in both time and space. Its 
time complexity cannot be improved because all of the 
p2 similarities are used in the course of the algorithm. To 
circumvent this difficulty, we assume that the similarity 
between physically distant loci is zero, where two loci are 
deemed to be “physically distant” if they are separated 
by more than h other loci. The main contribution of this 
paper is to propose an adjacency-constrained clustering 
algorithm with quasi-linear complexity [namely, O(ph) in 
space and O(p(h+ log(p))) in time] under this assump-
tion, and to demonstrate its relevance for genomic 
studies. This algorithm is obtained by combining (i) con-
stant-time calculation of Ward’s likage after a pre-calcu-
lation step of linear time and space complexity, and (ii) 
storage of candidate fusions in a binary heap.

The rest of the paper is organized as follows. In 
“Method” section we describe the algorithm, its time and 
space complexity and its implementation. The resulting 
segmentation method is then applied to GWAS datasets 
(“Linkage disequilibrium block inference in GWAS” sec-
tion) and to Hi-C datasets (“Hi-C analysis” section), in 
order to illustrate that the above assumption makes sense 
in such studies, and that the proposed methods can be 
used to recover biologically relevant signals.

Method
Adjacency‑constrained HAC with Ward’s linkage
In its unconstrained version, HAC starts with a trivial 
clustering where each object is in its own cluster and 
iteratively merges the two most similar clusters accord-
ing to a distance function δ called a linkage criterion. We 
focus on Ward’s linkage, which was defined for cluster-
ing objects (xi)i taking values in the Euclidean space 
R
d . Formally, Ward’s linkage between two clusters C 

and C ′ defines the distance between two clusters as the 
increase in the error sum of squares (or equivalently, 
as the decrease in variance) when C and C ′ are merged: 
δ(C ,C ′) = ESS (C ∪ C ′)− ESS (C)− ESS (C ′) , where 
ESS (C) := 1

|C|

∑

i∈C �xi − C̄�2
Rd is the Error Sum of 

Squares of cluster C (also known as “inertia of C”) and 
C̄ = 1

n

∑

i∈C xi . It is one of the most widely used linkages 
because of its natural interpretation in terms of within/
between cluster variance and because HAC with Ward’s 
linkage can be seen as a greedy algorithm for least square 
minimization, similarly to the k-means algorithm. In 
this paper, the p objects to be clustered are assumed to 
be ordered by their indices i ∈ {1, . . . p} . We focus on a 
modification of HAC where only adjacent clusters are 
allowed to be merged. This adjacency-constrained HAC 
is described in Algorithm 1.

1  Available on CRAN at https​://cran.r-proje​ct.org/packa​ge=rioja​.

https://cran.r-project.org/package=rioja
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been studied in Miyamoto et  al. [29]. Noting that (i) 
for a large enough � , the matrix S� = S + �Ip is posi-
tive definite and that (ii) δS�(C ,C

′) = δ(C ,C ′)+ � , Miy-
amoto et  al. [29, Theorem  1] concluded that applying 
Ward’s HAC to S and S� yields the exact same hierar-
chy, only shifting the linkage values by +� . This result, 
which a fortiori holds for the adjacency-constrained 
Ward’s HAC, justifies the use of Eq. (1) in the case of a 
general similarity matrix.

Band similarity assumption
In the case described in “Adjacency-constrained HAC 
with Ward’s linkage” section where the p objects to be 
clustered belong to Rd , with d < p , the computation 
of Ward’s linkage between two clusters can be done in 
O(d) by exploiting its explicit alternative formulation as 
the distance between centers of gravity. In such cases, it 
is possible to obtain unconstrained HAC in O(p2 log2 p) 
in time [14], and lower complexities could possibly be 
achieved for adjacency-constrained HAC. However, we 
focus in this paper in the situation described in “Exten-
sion to general similarities” section, where the input 
objects are represented by pairwise similarities. In such 
cases there is generally no explicit or finite-dimensional 
representation of the centers of gravity, and the time 
complexity of adjacency-constrained HAC (e.g. in rioja) 
is intrinsically quadratic in p because all of the p2 simi-
larities are used to compute all of the required linkage 
values (Algorithm 1, line 3).

Note that the implementation provided in rioja is also 
quadratic in space, as it takes as an input a p× p (dense) 
dissimilarity matrix. However, Algorithm 1 can be made 
sub-quadratic in space in  situations where the similar-
ity matrix is sparse (see Ah-Pine and Wang [1] for simi-
lar considerations in the unconstrained case) or when 
the similarities can be computed on the fly, that is, at the 
time they are required by the algorithm, as in Dehman 
et al. [11].

An implementation in Fortran of this algorithm was 
provided by Grimm [19]. This implementation has been 
integrated in the R package rioja [25].

Extension to general similarities
HAC and adjacency-constrained HAC are frequently 
used when the objects to be clustered do not belong to 
R
d but are described by pairwise dissimilarities that are 

not necessarily Eulidean distance matrices. This case has 
been formally studied in Székely and Rizzo [35], Strauss 
and von Maltitz [34], Chavent et  al. [8] and generally 
involves extending the linkage formula by making an 
analogy between the dissimilarity and the distance in Rd 
(or the squared distance in some cases). These authors 
have shown that the simplified update of the linkage at 
each step of the algorithm, known as the Lance-Williams 
formula, is still valid in this case and that the objective 
criterion can be interpreted as the minimization of a so-
called “pseudo inertia”. A similar approach can be used to 
extend HAC to data described by an arbitrary similarity 
between objects, S = (sij)i,j=1,...,p , using a kernel frame-
work as in [1, 31]. More precisely, when S is positive defi-
nite, the theory of Reproducing Kernel Hilbert Spaces 
[4] implies that the data can be embedded in an implicit 
Hilbert space. This allows to formulate Ward’s linkage 
between any two clusters in terms of the similarity using 
the so-called “kernel trick”: ∀C , C ′ ⊂ {1, . . . , p},

where S(C) =
∑

(i,j)∈C2 sij only depends on S and not on 
the embedding. This expression shows that Ward’s Link-
age also has a natural interpretation as the decrease in 
average intra-cluster similarity after merging two clus-
ters. Equation (1) is proved in Section S1.1 of Additional 
file 1.

Extending this approach to the case of a general (that 
is, possibly non-positive definite) similarity matrix has 

(1)δ(C ,C ′) =
S(C)

|C|
+

S(C ′)

|C ′|
−

S(C ∪ C ′)

|C ∪ C ′|
,
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In applications where adjacency-constrained cluster-
ing is relevant, such as Hi-C and GWAS data analysis, 
this quadratic time complexity is a major practical bot-
tleneck because p is typically of the order of 104 to 105 for 
each chromosome. Fortunately, in such applications it 
also makes sense to assume that the similarity between 
physically distant objects is small. Specifically, we assume 
that S is a band matrix of bandwidth h+ 1 , where 
h ∈ {1 . . . p} : sij = 0 for |i − j| ≥ h . This assumption is not 
restrictive, as it is always fulfilled for h = p . However, we 
will be mostly interested in the case where h ≪ p . In the 
next section, we introduce an algorithm with improved 
time and space complexity under this band similarity 
assumption.

Algorithm
Ingredients
Our proposed algorithm relies on (i) constant-time cal-
culation of each of the Ward’s linkages involved at line 3 
of Algorithm 1 using Eq. (1), and (ii) storage of the candi-
date fusions in a min-heap. These elements are described 
in the next two subsections.

Ward’s linkage as a function of pre‑calculated sums
The key point of this subsection is to show that the sums of 
similarities involved in Eq. (1) may be expressed as a func-
tion of certain pre-calculated sums. We start by noting that 
the sum of all similarities in any cluster C = {i, . . . , j − 1} 
of size k = j − i can easily be obtained from sums of ele-
ments in the first min(h, k) subdiagonals of S. To demon-
strate that this is the case we define, for 1 ≤ r, l ≤ p , P(r, l) 

as the sum of all elements of S in the first l subdiagonals of 
the upper-left r × r block of S. Formally,

and symmetrically, P̄(r, l) = P(p+ 1− r, l) . This nota-
tion is illustrated in Fig. 1, with r ∈ {i, j} . In the left panel, 
l = k ≤ h , while in the right panel, l = h ≤ k . In both 
panels, P(j, min(h, k)) is the sum of elements in the yel-
low and green regions, while P̄(i, min(h, k)) is the sum of 
elements in the green and blue regions. Because P and 
P̄ are sums of elements in pencil-shaped areas, we call 
P(r, l) a forward pencil and P̄(r, l) a backward pencil.

Figure 1 illustrates that the sum SCC of all similarities in 
cluster C can be computed from forward and backward 
pencils using the identity:

where hk := min(h, k) and P(p, hk) is the “full” pencil of 
bandwidth hk (which also corresponds to P̄(1, hk) ). The 
above formula makes it possible to compute δ(C ,C ′) in 
constant time from the pencil sums using Eq. (1). By con-
struction, all the bandwidths of the pencils involved are 
less than h. Therefore, only pencils P(r, l) and P̄(r, l) with 
1 ≤ r ≤ p and 1 ≤ l ≤ h have to be pre-computed, so that 
the total number of pencils to compute and store is less 
than 2ph. These computations can be performed recur-
sively in a O(ph) time complexity. Further details about 
the time and space complexity of this pencil trick are 
given in Section S1.2 of Additional file 1.

(2)P(r, l) =
∑

1≤i,j≤r,|i−j|<l

sij

(3)P(j, hk)+ P̄(i, hk) = S(C)+ P(p, hk),

P (j, k)

P̄ (i, k)

k

h

S(C)

i

i

j

j

P (j, h)

P̄ (i, h)

k

h

S(C)

i

i

j

j

Fig. 1  Example of forward pencils (in yellow and green) and backward pencils (in green and blue), and illustration of Eq. (3) for cluster 
C = {i, . . . , j − 1} . Left: cluster smaller than bandwidth ( k ≤ h ); right: cluster larger than bandwidth k ≥ h
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Storing candidate fusions in a min‑heap
Iteration t of Algorithm  1 consists in finding the mini-
mum of p− t elements, corresponding to the candi-
date fusions between the p− t + 1 clusters in Ct−1 , and 
merging the corresponding clusters. Storing the candi-
date fusions in an unordered array and calculating the 
minimum at each step would mean a quadratic time 
complexity. One intuitive strategy would be to make use 
of the fact that all but 2 to 3 candidate fusions at step t 
are still candidate fusions at step t − 1 , as illustrated by 
Fig.  2 where candidate fusions are represented by hori-
zontal bars above the clusters. However, maintaining a 
totally-ordered list of candidate fusions is not efficient 
because the cost of deleting and inserting an element in 
an ordered list is linear in p, again leading to a quadratic 
time complexity. Instead, we propose storing the candi-
date fusions in a partially-ordered data structure called a 
min heap  [36]. This type of structure achieves an appro-
priate tradeoff between the cost of maintaining the struc-
ture and the cost of finding the minimum element at each 
iteration, as illustrated in Table 1.

A min heap is a binary tree such that the value of 
each node is smaller than the value of its two children. 
The advantage of this structure is that all the operations 
required in Algorithm  1 to create and maintain the list 
of candidate fusions can be done very efficiently. We pro-
vide a detailed description of the method, which is imple-
mented in the adjclust package. We also give illustrations 
of the first steps of this algorithm when applied to the 
RLGH data set provided in the package rioja, that are rel-
ative abundances of 41 taxa in p = 20 stratigraphic sam-
ples. A detailed description of this data set is provided in 
the help of the RLGH data set.

Proposed algorithm
Description and illustration
Our proposed algorithm is summarized by Algorithm 2. 
It is best expressed in terms of candidate fusions, con-
trary to Algorithm  1 which was naturally described in 
terms of clusters.

The initialization step (lines 1 to 3) consists in build-
ing the heap of p− 1 candidate fusions between the p 
adjacent items. At the end of this step, the root of the 
heap contains the best such fusion. This is illustrated in 
Fig. 3 for the RLGH data set. The best candidate fusion, 
which is by definition the root of the tree, consists in 
merging {4} and {5} . It is highlighted in violet and the 
two “neighbor fusions”, i.e., the fusions that involve 
either {4} or {5} , are highlighted in pink. The initializa-
tion step has a O(p log(p)) time complexity because the 
complexity of inserting each of the p− 1 elements in 
the heap is upper bounded by the maximal depth of the 
heap, that is, log2(p).

As stated in the previous section, the merging step 
consists in finding the best candidate fusion (line 5), 
removing it from the heap (line 6) and inserting (up 
to) two possible fusions (lines 11–12). The other lines 
of the algorithm explain how the information regard-
ing the adjacent fusions and clusters are retrieved and 
updated. The notation is illustrated in Fig. 4, elaborat-
ing on the example of Fig. 2.

C1
t−1 Cut

t−1 Cut+1
t−1 Cp−t+1

t−1

Fig. 2  The tth merging step in adjacency-constrained HAC in 
Algorithm 1. The clusters are represented by rectangular cells. 
Candidate fusions are represented by horizontal bars: above the 
corresponding pair of clusters at step t and below it at step t + 1 , 
assuming that the best fusion is the one between the clusters of 
indices ut and ut + 1 . Gray bars indicate candidate fusions that are 
present at both steps

Table 1  Time complexities ( ×O(1) ) of  the  three 
main elementary operations required by  one step 
of  adjacency-constrained clustering (in columns), for  three 
implementation options (in rows), for a problem of size p 

Find min Insert Delete min Total

Unordered array p 1 p p

Min heap 1 log(p) log(p) log(p)

Ordered array 1 p p p
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The state of the heap after the first fusion is illus-
trated by Fig.  5, where the two new candidate fusions 
are highlighted in yellow. The two fusions highlighted 
in grey are the neighbors of the first fusion.

In Algorithm  2, we have omitted several points for 
simplicity and conciseness of exposition. For a more 
complete description, the following remarks can be 
made:

1.	 The calculation of the linkage is not mentioned 
explicitly in the calls to Heap.Insert. As explained 
in “Ward’s linkage as a function of pre-calculated 
sums” section, the linkage between any two clusters 
can be calculated in constant time from pre-calcu-
lated pencil sums.

2.	 Algorithm  2 should take appropriate care of cases 
when the best fusion involves the first or last clus-
ter. In particular, only one new fusion is defined and 
inserted in such cases. This is taken care of in the 
adjclust package, but not in Algorithm 2 for simplic-
ity of exposition.

3.	 At each merging step the algorithm also tags as inac-
tive the fusions involving the merged clusters (13). 
Indeed, once a cluster is fused with its left neighbor 
it can no longer be fused with its right neighbor and 
vice-versa. These fusions are highlighted in pink in 
Fig. 3 and in gray (once tagged) in Fig. 5. In order to 
avoid invalid fusions, each candidate fusion has an 
active/inactive label (represented by the gray high-
light in Fig. 5), and when retrieving the next best can-
didate fusion (line 5), the min heap is first cleaned by 

deleting its root as long as it corresponds to an inac-
tive fusion. In the course of the whole algorithm, this 
additional cleaning step will at worst delete 2p roots 
for a total complexity of O(p log(p)).

4.	 The insertion instructions in Algorithm  2 indicate 
that the heap not only contains the value of the can-
didate fusions, but also the left and right clusters of 
each fusion, and the preceding and next candidate 
fusions in the order of the original objects to be clus-
tered. In practice this side information is not actually 
stored in the heap, but in a dedicated array, together 
with the values of the corresponding linkage and the 
validity statuses of each candidate fusion. The heap 
only stores the index of each fusion in that array. The 
state of this array before and after the first fusion for 
the RLGH data set are given in Tables 2 and 3.

 

Complexity of the proposed algorithm
By pre-calculating the ph initial pencils recursively 
using cumulative sums, the time complexity of the pre-
computation step is ph and the time complexity of the 
computation of the linkage of the merged cluster with 
its two neighbors is O(1) (see Section S1.2 of Additional 
file  1 for further details). Its total time complexity is 
thus O(p(h+ log(p)) , where O(ph) comes from the pre-
computation of pencils, and O(p log(p)) comes from the 
p iterations of the algorithm (to merge clusters from p 
clusters up to 1 cluster), each of which has a complexity 
of O(log(p)) . The space complexity of this algorithm is 
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O(ph) because the size of the heap is O(p) and the space 
complexity of the pencil pre-computations is O(ph) . 
Therefore, the method achieves a quasi-linear (linearith-
mic) time complexity and linear space complexity when 
h ≪ p , which in our experience is efficient enough for 
analyzing large genomic datasets.

Implementation
Our method is available in the R package adjclust, using 
an underlying implementation in C and available on 
CRAN.2 Additional features have been implemented to 
make the package easier to use and results easier to inter-
pret. These include:

•	 Plots to display the similarity or dissimilarity together 
with the dendrogram and a clustering corresponding 
to a given level of the hierarchy as illustrated in Addi-
tional file 1: Figure S2;

4|5
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5|6
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7|8
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8|9
.105

11|12
.113

12|13
.111

15|16
.110

2|3
.106

19|20
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10|11
.145

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

16|17
.118

17|18
.157

18|19
.153

9|10
.119

Fig. 3  Min heap after the initialization step of the RLGH data set. Each node corresponds to a candidate fusion, and is represented by a label of the 
form i|i + 1 giving the indices of the items to be merged, and (ii) the value of the corresponding linkage δ({i}, {j}) . The nodes corresponding to the 
best fusion and the two neighbor fusions are highlighted

Cl Cl* Cr* Cr

P
P*

H*
N*

N

P
i
i + 1

N

Fig. 4  Illustration of the result of a merging step in Algorithm 2

2  https​://cran.r-proje​ct.org/packa​ge=adjcl​ust.

https://cran.r-project.org/package=adjclust


Page 8 of 14Ambroise et al. Algorithms Mol Biol           (2019) 14:22 

•	 Wrappers to use the method with SNP data or Hi-C 
data that take data from standard bed files or outputs 
of the packages snpStats and HiTC respectively;

•	 A function to guide the user towards a relevant cut of 
the dendrogram (and thus a relevant clustering). In 
practice the underlying number of clusters is rarely 
known, and it is important to choose one based on 
the data. Two methods are proposed in adjclust: the 
first is based on a broken stick model [6] for the dis-
persion. Starting from the root of the dendrogram, 
the idea is to iteratively check whether the decrease 
in within-cluster variance corresponding to the next 
split can or cannot be explained by a broken stick 
model and to stop if it can. To the best of our knowl-
edge this broken stick strategy is ad hoc in the sense 
that it does not have a statistical justification in terms 
of model selection, estimation of the signal, or con-
sistency. The second method is based on the slope 
heuristic that is statistically justified in the case of 
segmentation problems [3, 18], for which HAC pro-

5|6
.095

4:5|6
.101

7|8
.095

2|3
.106

8|9
.105

12|13
.111

15|16
.110

16|17
.118

19|20
.118

11|12
.113

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

9|10
.119

17|18
.157

18|19
.153

3|4:5
.119

10|11
.145

Fig. 5  Min heap after the first merging step for the RLGH data set. The nodes corresponding to the fusion that have changed since initialization 
(Fig. 3) are highlighted

Table 2  State of  the  array after  initialization 
of the clustering for the RLGH data set, as in Fig. 3

Left Right Prev Next Linkage Valid

1 2 NA 2 0.121 1

2 3 1 3 0.106 1

3 4 2 4 0.115 1

4 5 3 5 0.095 1

5 6 4 6 0.095 1
.
.
.

.

.

.
.
.
.

18 19 17 19 0.153 1

19 20 18 NA 0.118 1
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vides an approximate solution. This later approach is 
implemented using the capushe package [2], with a 
penalty shape of 

(p−1
K−1

)

.

Clustering with spatial constraints has many different 
applications in genomics. The next two sections illus-
trate the relevance of our adjacency constraint cluster-
ing approach in dealing with SNP and Hi-C data. In both 
cases samples are described by up to a few million vari-
ables. All simulations and figures were performed using 
the R package adjclust, version 0.5.7.

Linkage disequilibrium block inference in GWAS
Genome-Wide Association Studies (GWAS) seek to 
identify causal genomic variants associated with rare 
human diseases. The classical statistical approach for 
detecting these variants is based on univariate hypoth-
esis testing, with healthy individuals being tested against 
affected individuals at each locus. Given that an individ-
ual’s genotype is characterized by millions of SNPs this 
approach yields a large multiple testing problem. Due to 
recombination phenomena, the hypotheses correspond-
ing to SNPs that are close to each other along the genome 
are statistically dependent. A natural way to account for 
this dependence in the process is to reduce the number 
of hypotheses to be tested by grouping and aggregating 
SNPs [11, 20] based on their pairwise Linkage Disequi-
librium (LD). In particular, a widely used measure of LD 
in the context of GWAS is the r2 coefficient, which can be 
estimated directly from genotypes measured by genotyp-
ing array or sequencing data using standard methods [9]. 
The similarity S = (r2ij)i,j induced by LD can be shown to 
be a kernel (see Section S1.3 of Additional file 1). Identi-
fying blocks of LD may also be useful to define tag SNPs 
for subsequent studies, or to characterize the recombina-
tion phenomena.

Numerical experiments were performed on a SNP 
dataset coming from a GWA study on HIV [10] based on 
317k Illumina genotyping microarrays. For the evaluation 
we used five data sets corresponding to five chromosomes 
that span the typical number of SNPs per chromosome 
observed on this array ( p = 23, 304 for chromosome 1, 
p = 20, 811 for chromosome 6, p = 14, 644 for chromo-
some 11, p = 8, 965 for chromosome 16 and p = 5, 436 
for chromosome 21).

For each dataset, we computed the LD 
using the function ld of snpStats, either for 
all SNP pairs ( h = p ) or with a reduced num-
ber of SNP pairs, corresponding to a bandwidth 
h ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000}. 
The packages rioja [25] (which requires the full matrix 
to be given as a dist object3) and adjclust with sparse 
matrices of the class dgCMatrix (the default output 
class of ld) were then used to obtain hierarchical cluster-
ings. All simulations were performed on a 64 bit Debian 
4.9 server, with 512G of RAM, 3GHz CPU (192 process-
ing units) and concurrent access. The available RAM 
was enough to perform the clustering on the full dataset 
( h = p ) with rioja although we had previously noticed that 
rioja implementation could not handle more than 8000 
SNPs on a standard laptop because of memory issues.

Quality of the band approximation
First, we evaluated the relevance of the band approxima-
tion by comparing the dendrogram obtained with h < p 
to the reference dendrogram obtained with the full band-
width ( h = p ). To perform this comparison we simply 
recorded the index t of the last clustering step (among 
p− 1 ) for which all the preceding fusions in the two den-
drograms are identical. The quantity t/(p− 1) can then 
be interpreted as a measure of similarity between den-
drograms, ranging from 0 (the first fusions are different) 
to 1 (the dendrograms are identical). Figure  6 displays 
the evolution of t/(p− 1) for different values of h for the 
five chromosomes considered here. For example, for all 
five chromosomes, at h = 1000 , the dendrograms differ 
from the reference dendrogram only in the last 0.5% of 
the clustering step. For h ≥ 2000 the dendrograms are 
exactly identical to the reference dendrogram. We also 
considered other criteria for evaluating the quality of the 
band approximation, including Baker’s Gamma correla-
tion coefficient [5], which corresponds to the Spearman 
correlation between the ranks of fusion between all pairs 
of objects. The results obtained with these indices are 

Table 3  State of  the  array after  the  first merge 
in the clustering for the RLGH data set, as in Fig. 5

3  The time needed to compute this matrix was 50-1000 times larger than the 
computation of the LD matrix itself. However, we did not include this in the 
total computation time required by rioja because we have not tried to opti-
mize it from a computational point of view.
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not shown here because they were consistent with those 
reported in Fig. 6.

One important conclusion that may be drawn from 
these results is that the influence of the bandwidth 
parameter is the same across chromosomes, that is, 
across values of p (that range from 5000 to 23000 in this 
experiment). Therefore, it makes sense to assume that h 
does not depend on p and that the time and space com-
plexity of our proposed algorithm, which depends on h, is 
indeed quasi-linear in p.

Scalability and computation times
Figure 7 displays the computation time for the LD matrix 
(dotted lines) and for the CHAC with respect to the size 
of the chromosome (x axis), both for rioja (dashed line) 
and adjclust (solid lines). As expected, the computation 
time for rioja did not depend on the bandwidth h, so 
we only represented h = p . For adjclust, the results for 

varying bandwidths are represented by different colors. 
Only the bandwidths 200, 1000, and 5000 are represen-
tend in Fig. 7 for clarity.

Several comments can be made from Fig.  7. First, the 
computation times of rioja are much larger than those of 
adjclust, even when h = p where both methods imple-
ment the exact same algorithm. For the largest chro-
mosome considered here (chromosome 1, p = 23304 ), 
the running time of rioja is 18900 seconds (more than 
5 h), compared to 345 seconds (less than 6 minutes). As 
expected, the complexity of adjclust with h = p is quad-
ratic in p, while it is essentially linear in p for fixed values 
of h < p . For large values of p the gain of the band approx-
imation is substantial: for p = 23304 (chromosome 1), the 
running time of adjclust for h = 1000 (which is a relevant 
value in this application according to the results of the 
preceding section) is of the order of 20 s.

We also note that regardless of the value of h, the total 
time needed for the clustering is of the order of (and gen-
erally lower than) the time needed for the computation of 
the LD.

Hi‑C analysis
Hi-C protocol identifies genomic loci that are located 
nearby in  vivo. These spatial co-locations include intra-
chromosomal and inter-chromosomal interactions. After 
bioinformatics processing (alignment, filtering, qual-
ity control...), the data are provided as a sparse square 
matrix with entries that give the number of reads (con-
tacts) between any given pair of genomic locus bins at 
genome scale. Typical sizes of bins are ∼40  kb, which 
results in more than 75,000 bins for the human genome. 
Constrained clustering or segmentation of intra-chro-
mosomal maps is a tool frequently used to search for e.g., 
functional domains (called TADs, Topologically Associat-
ing Domains). A number of methods have been proposed 
for TAD calling (see Forcato et  al. [15] for a review and 
comparison), among which the ones proposed by Fraser 
et  al. [16], Haddad et  al. [21] that take advantage of a 
hierarchical clustering, even using a constrained version 
for the second reference. In the first article, the authors 
proceed in two steps with a segmentation of the data into 
TADs using a Hidden Markov Model on the directionality 
index of Dixon, followed by a greedy clustering on these 
TADs, using the mean interaction as a similarity meas-
ure between TADs. Proceeding in two steps reduces the 
time required for the clustering, which is O(p2) otherwise. 
However, from a statistical and modeling perspective 
these two steps would appear redundant. Also, pipelin-
ing different procedures (each of them with their sets 
of parameters) makes it very difficult to control errors. 
Haddad et  al. [21] directly use adjacency-constrained 
HAC, with a specific linkage that is not equivalent to 

Fig. 6  Quality of the band approximation as a function of the 
bandwidth h for five different chromosomes

Fig. 7  Computation times versus p: LD matrices, for CHAC rioja and 
adjclust with varying values for the band h 
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Ward’s. They do not optimize the computational time of 
the whole hierarchy, instead stopping the HAC when a 
measure of homogeneity of the cluster created by the last 
merge falls below a parameter. Both articles thus high-
light the relevance of HAC for exploratory analysis of 
Hi-C data. Our proposed approach provides, in addition, 
a faster way to obtain an interpretable solution, using the 
interaction counts as a similarity and a h similar to the 
bandwidth of the Dixon index.

Data and method
Data used to illustrate the usefulness of constrained hier-
archical clustering for Hi-C data came from Dixon et al. 
[12], Shen et  al. [33]. Hi-C contact maps from experi-
ments in mouse embryonic stem cells (mESC), human 
ESC (hESC), mouse cortex (mCortex) and human IMR90 
Fibroblast (hIMR90) were downloaded from the authors’ 
website at http://chrom​osome​.sdsc.edu/mouse​/hi-c/
downl​oad.html (raw sequence data are published on the 
GEO website, accession number GSE35156.

Even if these data do not perfectly fulfill the sparse band 
assumption, their sparsity is very high, especially outside 
a band centered on the diagonal. Taking as an example 
the largest and smallest chromosomes of the hESC data 
(chromosomes 1 and 22 respectively), the proportion of 
bin pairs with a positive count (present bin pairs) corre-
spond to 10.7% and 25.8% respectively. This proportion 
is even smaller when focusing on bins pairs with a count 
larger than one (3.2% and 10.5% respectively). In addi-
tion, these bin pairs are mostly concentrated close to 
the diagonal: the proportion of present bin pairs that are 
located within a 10% diagonal band correspond to 60.1% 
and 45.6% of the present bin pairs, respectively. Finally, 
respectively 92.5% and 87.8% of the remaining present 
bin pairs have a count equal to only 1.

All chromosomes were processed similarly:

•	 Counts were log-transformed to reduce the distribu-
tion skewness;

•	 Constrained hierarchical clustering was computed on 
log-transformed data using, for the similarity, either 
the whole matrix ( h = p ) or the sparse approach with 
a sparse band size equal to h = {0.5p, 0.1p};

•	 Model selection was finally performed using both the 
broken stick heuristic and the slope heuristic.

All computations were performed using the Genotoul 
cluster.

Influence of the bandwidth parameter
The effect of h (sparse band parameter) on computa-
tional time, dendrogram organization and clustering 
were assessed. Figure  8 gives the computational times 

versus the chromosome size for the three values of h 
together with the computational time obtained by the 
standard version of constrained hierarchical cluster-
ing as implemented in the R package rioja. As expected, 
the computational time is substantially reduced by the 
sparse version (even though not linearly with respect to h 
because of the preprocessing step that extracts the band 
around the diagonal), making the method suitable for 
dealing efficiently with a large number of chromosomes 
and/or a large number of Hi-C experiments. rioja, that 
cannot cope efficiently with the sparse band assumption, 
requires considerably more computational time (10 times 
the time needed by adjclust). In addition, the memory 
required by the two approaches is very different: adjclust 
supports sparse matrix representation (as implemented 
in the R package Matrix), which fits the way Hi-C matri-
ces are typically stored (usually these matrices are given 
as rows with bin number pairs and associated count). For 
instance, the sparse version (dsCMatrix class) of the 
largest chromosome (chromosome 1) in the hESC data 
is 23 Mb, as opposed to 231 Mb for the full version. The 
sparse version of the smallest chromosome (chromo-
some 22) is 1.1 Mb, versus 5.2 Mb for the full version. The 
sparse version of the h = 0.1p band for these two chro-
mosomes is, respectively, 13.2 M and 0.4 Mb respectively.

However, this gain in time and space did not impact 
the results of the method: the indexes of the first differ-
ence were computed between the dendrograms obtained 
by the full version ( h = p ) and by the two sparse versions 
( h ∈ {0.5p, 0.1p} ) for every chromosome. For most of the 
clusterings there was no difference in merge for h = 0.5p 
(with the similarity computed as in Fig.  6 always larger 
than 0.9992, and equal to 1 in more than 3 clusterings out 
of 4). For h = 0.1p , the similarity ranged from 0.9811 to 
0.9983. Baker’s Gamma index and Rand indices [24] for 

Fig. 8  Impact of sparsity on the computational time. Dots that 
correspond to the same datasets but different chromosomes are 
linked by a path

http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
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selected clusterings (both with broken stick and slope 
heuristic) confirmed this conclusion (results not shown).

Results
Additional file  1: Figure  S1 provides the average clus-
ter size for each chromosome versus the chromosome 
length. It shows that the average cluster size is fairly con-
stant among the chromosomes and does not depend on 
the chromosome length. Both model selection methods 
found typical cluster sizes of 1-2 Mb, which is in line 
with what is reported in Forcato et al. [15] for some TAD 
callers.

Additional file  1: Figure  S2 shows that clusters for a 
given chromosome (here chromosome 11 for hIMR90 
and chromosome 12 for mCortex) can have different sizes 
and also different interpretations: some clusters exhibit a 
dense interaction counts (deep yellow) and are thus good 
TAD candidates whereas a cluster approximately located 
between bin 281 and bin 561 in chr12-mCortex map has 
almost no interaction and can be viewed as possibly sep-
arating two dense interaction regions.

The directionality Index (DI, Dixon et  al. [12]) quan-
tifies a directional (upstream vs downstream) bias in 
interaction frequencies, based on a χ2 statistic. DI is the 
original method used for TAD calling in Hi-C. Its sign is 
expected to change and DI values are expected to show 
a sharp increase at TADs boundaries. Figure  9 displays 
the average DI, with respect to the relative bin position 
within the cluster and the absolute bin position outside 
the cluster. The clusters found by constrained HAC show 

a relation with DI that is similar to what is expected for 
standard TADs, with slightly varying intensities.

Finally, boundaries of TADs are known to be enriched 
for the insulator binding protein CTCF Dixon et al. [12]. 
CTCF ChIP-seq peaks were retrieved from ENCODE 
[13] and the distribution of the number of the 20% 
most intense peaks was computed at ±400 Kb of cluster 
boundaries, as obtained with the broken stick heuristic 
(Additional file 1: Figure S3). The distribution also exhib-
ited an enrichment at cluster boundaries, which indicates 
that the clustering is relevant with respect to the func-
tional structure of the chromatin.

Conclusions
We have proposed an efficient approach to perform con-
strained hierarchical clustering based on kernel (or simi-
larity) datasets with several illustrations of its usefulness 
for genomic applications. The method is implemented 
in a package that is shown to be fast and that currently 
includes wrappers for genotyping and Hi-C datasets. The 
package also provides two possible model selection pro-
cedures to choose a relevant clustering in the hierarchy. 
The output of the method is a dendrogram, which can be 
represented graphically, and provides a natural hierarchi-
cal model for the organization of the objects.

The only tuning parameter in our algorithm is the 
bandwidth h. The numerical experiments reported in this 
paper suggest that at least for GWAS and Hi-C studies, 
there exists a range of values for h such that h ≪ p (which 
implies very fast clustering) and the result of the HAC is 
identical or extremely close to the clustering obtained for 

Fig. 9  Evolution of the Directionality Index (DI) around clusters
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h = p . While the range of relevant values of h will depend 
on the particular application, an interesting extension 
of the present work would be to propose a data-driven 
choice of h by running the algorithm on increasing (yet 
small) values for h on a single chromosome, and deciding 
to stop when the dendrogram is stable enough. In addi-
tion, by construction, all groups smaller than h are iden-
tical in both clusterings (with and without the h-band 
approximation).

While HAC is a tool for exploratory data analysis, an 
important prospect of the present work will be to make 
use of the low time and memory footprint of the algo-
rithm in order to perform inference on the estimated 
hierarchy using stability/resampling-based methods. 
Such methods could be used to propose alternative 
model selection procedures, or to compare hierarchies 
corresponding to different biological conditions, which 
has been shown to be relevant to Hi-C studies [16].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1301​5-019-0157-4.

 Additional file 1. Supplementary methods and results.
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