
Ambroise et al. Algorithms Mol Biol (2019) 14:22
https://doi.org/10.1186/s13015-019-0157-4

RESEARCH

Adjacency‑constrained hierarchical
clustering of a band similarity matrix
with application to genomics
Christophe Ambroise1, Alia Dehman2, Pierre Neuvial3*  , Guillem Rigaill1,4 and Nathalie Vialaneix5 

Abstract 

Background:  Genomic data analyses such as Genome-Wide Association Studies (GWAS) or Hi-C studies are often
faced with the problem of partitioning chromosomes into successive regions based on a similarity matrix of high-
resolution, locus-level measurements. An intuitive way of doing this is to perform a modified Hierarchical Agglomera-
tive Clustering (HAC), where only adjacent clusters (according to the ordering of positions within a chromosome) are
allowed to be merged. But a major practical drawback of this method is its quadratic time and space complexity in
the number of loci, which is typically of the order of 104 to 105 for each chromosome.

Results:  By assuming that the similarity between physically distant objects is negligible, we are able to propose
an implementation of adjacency-constrained HAC with quasi-linear complexity. This is achieved by pre-calculating
specific sums of similarities, and storing candidate fusions in a min-heap. Our illustrations on GWAS and Hi-C datasets
demonstrate the relevance of this assumption, and show that this method highlights biologically meaningful signals.
Thanks to its small time and memory footprint, the method can be run on a standard laptop in minutes or even
seconds.

Availability and implementation:  Software and sample data are available as an R package, adjclust, that can be
downloaded from the Comprehensive R Archive Network (CRAN).

Keywords:  Hierarchical agglomerative clustering, Adjacency constraint, Segmentation, Ward’s linkage, Similarity, Min
heap, Genome-Wide Association Studies and Hi-C

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genetic information is coded in long strings of DNA
organised in chromosomes. High-throughput sequencing
such as RNAseq, DNAseq, ChipSeq and Hi-C makes it
possible to study biological phenomena along the entire
genome at a very high resolution [32].

In most cases, we expect neighboring positions to be
statistically dependent. Using this a priori information
is one way of addressing the complexity of genome-
wide analyses. For instance, it is common practice to
partition each chromosome into regions, because such
regions hopefully correspond to biological relevant or

interpretable units (such as genes or binding sites) and
because statistical modelling and inference are simpli-
fied at the scale of an individual region. In simple cases,
such regions are given (for example, in RNAseq analy-
sis, only genic and intergenic regions are usually con-
sidered and differential analysis is commonly performed
at the gene or transcript level). However, in more com-
plex cases, regions of interest are unknown and need to
be discovered by mining the data. This is the case in the
two leading examples considered in this paper. In the
context of Genome Wide Association Studies (GWAS),
region-scale approaches taking haplotype blocks into
account can result in substantial statistical gains [17].
Hi-C studies [12] have demonstrated the existence of
topological domains, which are megabase-sized local
chromatin interaction domains correlating with regions

Open Access

Algorithms for
Molecular Biology

*Correspondence: pierre.neuvial@math.univ‑toulouse.fr
3 Institut de Mathématiques de Toulouse, UMR5219 CNRS, Université de
Toulouse, UPS IMT, 31062 Toulouse Cedex 9, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3584-9998
http://orcid.org/0000-0003-1156-0639
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0157-4&domain=pdf

Page 2 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

of the genome that constrain the spread of heterochro-
matin. Hence, the problem of partitioning a chromosome
into biologically relevant regions based on measures of
similarity between pairs of individual loci has been exten-
sively studied for genomic applications.

Recovering the “best” partition of p loci for each pos-
sible number, K, of classes is equivalent to a segmenta-
tion problem (also known as “multiple changepoint
problem”). In the simplest scenario where the signals to
be segmented are piecewise-constant, such as in the case
of DNA copy numbers in cancer studies, segmentation
can be cast as a least squares minimization problem [23,
30]. More generally, kernel-based segmentation meth-
ods have been developed to perform segmentation on
data described by a similarity measure [3, 22]. Such seg-
mentation problems are combinatorial in nature, as the
number of possible segmentations of p loci into K blocks
(for a given K = 1 . . . p ) is

(p
K

)

= O(pK) . The “best” seg-
mentation for all K = 1 . . . p can be recovered efficiently
in a quadratic time and space complexity using dynamic
programming. As discussed in Celisse et al. [7], in the
case of kernel-based segmentation, this complexity can-
not be improved without making additional assumptions
on the kernel (or the corresponding similarity). Indeed,
for a generic kernel, even computing the loss (that is, the
least square error) of any given segmentation in a fixed
number of segments K has a computational cost of O(p2).

The goal of this paper is to develop heuristics that can
be applied to genomic studies in which the number of
loci is so large (typically of the order of p = 104 to 106 )
that algorithms of quadratic time and space complexity
cannot be applied. This paper stems from a modifica-
tion of the classical hierarchical agglomerative cluster-
ing (HAC) [26], where only adjacent clusters are allowed
to be merged. This simple constraint is well-suited to
genomic applications, in which loci can be ordered along
chromosomes provided that an assembled genome is
available. Adjacency-constrained HAC can be seen as a
heuristic for segmentation; it provides not only a single
partition of the original loci, but a sequence of nested
partitions.

The idea of incorporating such constraints was pre-
viously mentioned by Lebart [27] to incorporate geo-
graphical (two-dimensional) constraints to cluster
socio-economic data, and by Michel et al. [28] to cluster
functional Magnetic Resonance Imaging (fMRI) data into
contiguous (three-dimensional) brain regions. The totally
ordered case that is the focus of this paper has been stud-
ied by Grimm [19], and an R package implementing this
algorithm, rioja [25], has been developed.1 However, the

algorithm remains quadratic in both time and space. Its
time complexity cannot be improved because all of the
p2 similarities are used in the course of the algorithm. To
circumvent this difficulty, we assume that the similarity
between physically distant loci is zero, where two loci are
deemed to be “physically distant” if they are separated
by more than h other loci. The main contribution of this
paper is to propose an adjacency-constrained clustering
algorithm with quasi-linear complexity [namely, O(ph) in
space and O(p(h+ log(p))) in time] under this assump-
tion, and to demonstrate its relevance for genomic
studies. This algorithm is obtained by combining (i) con-
stant-time calculation of Ward’s likage after a pre-calcu-
lation step of linear time and space complexity, and (ii)
storage of candidate fusions in a binary heap.

The rest of the paper is organized as follows. In
“Method” section we describe the algorithm, its time and
space complexity and its implementation. The resulting
segmentation method is then applied to GWAS datasets
(“Linkage disequilibrium block inference in GWAS” sec-
tion) and to Hi-C datasets (“Hi-C analysis” section), in
order to illustrate that the above assumption makes sense
in such studies, and that the proposed methods can be
used to recover biologically relevant signals.

Method
Adjacency‑constrained HAC with Ward’s linkage
In its unconstrained version, HAC starts with a trivial
clustering where each object is in its own cluster and
iteratively merges the two most similar clusters accord-
ing to a distance function δ called a linkage criterion. We
focus on Ward’s linkage, which was defined for cluster-
ing objects (xi)i taking values in the Euclidean space
R
d . Formally, Ward’s linkage between two clusters C

and C ′ defines the distance between two clusters as the
increase in the error sum of squares (or equivalently,
as the decrease in variance) when C and C ′ are merged:
δ(C ,C ′) = ESS (C ∪ C ′)− ESS (C)− ESS (C ′) , where
ESS (C) := 1

|C|

∑

i∈C �xi − C̄�2
Rd is the Error Sum of

Squares of cluster C (also known as “inertia of C”) and
C̄ = 1

n

∑

i∈C xi . It is one of the most widely used linkages
because of its natural interpretation in terms of within/
between cluster variance and because HAC with Ward’s
linkage can be seen as a greedy algorithm for least square
minimization, similarly to the k-means algorithm. In
this paper, the p objects to be clustered are assumed to
be ordered by their indices i ∈ {1, . . . p} . We focus on a
modification of HAC where only adjacent clusters are
allowed to be merged. This adjacency-constrained HAC
is described in Algorithm 1.

1  Available on CRAN at https​://cran.r-proje​ct.org/packa​ge=rioja​.

https://cran.r-project.org/package=rioja

Page 3 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

been studied in Miyamoto et al. [29]. Noting that (i)
for a large enough � , the matrix S� = S + �Ip is posi-
tive definite and that (ii) δS�(C ,C

′) = δ(C ,C ′)+ � , Miy-
amoto et al. [29, Theorem 1] concluded that applying
Ward’s HAC to S and S� yields the exact same hierar-
chy, only shifting the linkage values by +� . This result,
which a fortiori holds for the adjacency-constrained
Ward’s HAC, justifies the use of Eq. (1) in the case of a
general similarity matrix.

Band similarity assumption
In the case described in “Adjacency-constrained HAC
with Ward’s linkage” section where the p objects to be
clustered belong to Rd , with d < p , the computation
of Ward’s linkage between two clusters can be done in
O(d) by exploiting its explicit alternative formulation as
the distance between centers of gravity. In such cases, it
is possible to obtain unconstrained HAC in O(p2 log2 p)
in time [14], and lower complexities could possibly be
achieved for adjacency-constrained HAC. However, we
focus in this paper in the situation described in “Exten-
sion to general similarities” section, where the input
objects are represented by pairwise similarities. In such
cases there is generally no explicit or finite-dimensional
representation of the centers of gravity, and the time
complexity of adjacency-constrained HAC (e.g. in rioja)
is intrinsically quadratic in p because all of the p2 simi-
larities are used to compute all of the required linkage
values (Algorithm 1, line 3).

Note that the implementation provided in rioja is also
quadratic in space, as it takes as an input a p× p (dense)
dissimilarity matrix. However, Algorithm 1 can be made
sub-quadratic in space in situations where the similar-
ity matrix is sparse (see Ah-Pine and Wang [1] for simi-
lar considerations in the unconstrained case) or when
the similarities can be computed on the fly, that is, at the
time they are required by the algorithm, as in Dehman
et al. [11].

An implementation in Fortran of this algorithm was
provided by Grimm [19]. This implementation has been
integrated in the R package rioja [25].

Extension to general similarities
HAC and adjacency-constrained HAC are frequently
used when the objects to be clustered do not belong to
R
d but are described by pairwise dissimilarities that are

not necessarily Eulidean distance matrices. This case has
been formally studied in Székely and Rizzo [35], Strauss
and von Maltitz [34], Chavent et al. [8] and generally
involves extending the linkage formula by making an
analogy between the dissimilarity and the distance in Rd
(or the squared distance in some cases). These authors
have shown that the simplified update of the linkage at
each step of the algorithm, known as the Lance-Williams
formula, is still valid in this case and that the objective
criterion can be interpreted as the minimization of a so-
called “pseudo inertia”. A similar approach can be used to
extend HAC to data described by an arbitrary similarity
between objects, S = (sij)i,j=1,...,p , using a kernel frame-
work as in [1, 31]. More precisely, when S is positive defi-
nite, the theory of Reproducing Kernel Hilbert Spaces
[4] implies that the data can be embedded in an implicit
Hilbert space. This allows to formulate Ward’s linkage
between any two clusters in terms of the similarity using
the so-called “kernel trick”: ∀C , C ′ ⊂ {1, . . . , p},

where S(C) =
∑

(i,j)∈C2 sij only depends on S and not on
the embedding. This expression shows that Ward’s Link-
age also has a natural interpretation as the decrease in
average intra-cluster similarity after merging two clus-
ters. Equation (1) is proved in Section S1.1 of Additional
file 1.

Extending this approach to the case of a general (that
is, possibly non-positive definite) similarity matrix has

(1)δ(C ,C ′) =
S(C)

|C|
+

S(C ′)

|C ′|
−

S(C ∪ C ′)

|C ∪ C ′|
,

Page 4 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

In applications where adjacency-constrained cluster-
ing is relevant, such as Hi-C and GWAS data analysis,
this quadratic time complexity is a major practical bot-
tleneck because p is typically of the order of 104 to 105 for
each chromosome. Fortunately, in such applications it
also makes sense to assume that the similarity between
physically distant objects is small. Specifically, we assume
that S is a band matrix of bandwidth h+ 1 , where
h ∈ {1 . . . p} : sij = 0 for |i − j| ≥ h . This assumption is not
restrictive, as it is always fulfilled for h = p . However, we
will be mostly interested in the case where h ≪ p . In the
next section, we introduce an algorithm with improved
time and space complexity under this band similarity
assumption.

Algorithm
Ingredients
Our proposed algorithm relies on (i) constant-time cal-
culation of each of the Ward’s linkages involved at line 3
of Algorithm 1 using Eq. (1), and (ii) storage of the candi-
date fusions in a min-heap. These elements are described
in the next two subsections.

Ward’s linkage as a function of pre‑calculated sums
The key point of this subsection is to show that the sums of
similarities involved in Eq. (1) may be expressed as a func-
tion of certain pre-calculated sums. We start by noting that
the sum of all similarities in any cluster C = {i, . . . , j − 1}
of size k = j − i can easily be obtained from sums of ele-
ments in the first min(h, k) subdiagonals of S. To demon-
strate that this is the case we define, for 1 ≤ r, l ≤ p , P(r, l)

as the sum of all elements of S in the first l subdiagonals of
the upper-left r × r block of S. Formally,

and symmetrically, P̄(r, l) = P(p+ 1− r, l) . This nota-
tion is illustrated in Fig. 1, with r ∈ {i, j} . In the left panel,
l = k ≤ h , while in the right panel, l = h ≤ k . In both
panels, P(j, min(h, k)) is the sum of elements in the yel-
low and green regions, while P̄(i, min(h, k)) is the sum of
elements in the green and blue regions. Because P and
P̄ are sums of elements in pencil-shaped areas, we call
P(r, l) a forward pencil and P̄(r, l) a backward pencil.

Figure 1 illustrates that the sum SCC of all similarities in
cluster C can be computed from forward and backward
pencils using the identity:

where hk := min(h, k) and P(p, hk) is the “full” pencil of
bandwidth hk (which also corresponds to P̄(1, hk) ). The
above formula makes it possible to compute δ(C ,C ′) in
constant time from the pencil sums using Eq. (1). By con-
struction, all the bandwidths of the pencils involved are
less than h. Therefore, only pencils P(r, l) and P̄(r, l) with
1 ≤ r ≤ p and 1 ≤ l ≤ h have to be pre-computed, so that
the total number of pencils to compute and store is less
than 2ph. These computations can be performed recur-
sively in a O(ph) time complexity. Further details about
the time and space complexity of this pencil trick are
given in Section S1.2 of Additional file 1.

(2)P(r, l) =
∑

1≤i,j≤r,|i−j|<l

sij

(3)P(j, hk)+ P̄(i, hk) = S(C)+ P(p, hk),

P (j, k)

P̄ (i, k)

k

h

S(C)

i

i

j

j

P (j, h)

P̄ (i, h)

k

h

S(C)

i

i

j

j

Fig. 1  Example of forward pencils (in yellow and green) and backward pencils (in green and blue), and illustration of Eq. (3) for cluster
C = {i, . . . , j − 1} . Left: cluster smaller than bandwidth ( k ≤ h ); right: cluster larger than bandwidth k ≥ h

Page 5 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

Storing candidate fusions in a min‑heap
Iteration t of Algorithm 1 consists in finding the mini-
mum of p− t elements, corresponding to the candi-
date fusions between the p− t + 1 clusters in Ct−1 , and
merging the corresponding clusters. Storing the candi-
date fusions in an unordered array and calculating the
minimum at each step would mean a quadratic time
complexity. One intuitive strategy would be to make use
of the fact that all but 2 to 3 candidate fusions at step t
are still candidate fusions at step t − 1 , as illustrated by
Fig. 2 where candidate fusions are represented by hori-
zontal bars above the clusters. However, maintaining a
totally-ordered list of candidate fusions is not efficient
because the cost of deleting and inserting an element in
an ordered list is linear in p, again leading to a quadratic
time complexity. Instead, we propose storing the candi-
date fusions in a partially-ordered data structure called a
min heap [36]. This type of structure achieves an appro-
priate tradeoff between the cost of maintaining the struc-
ture and the cost of finding the minimum element at each
iteration, as illustrated in Table 1.

A min heap is a binary tree such that the value of
each node is smaller than the value of its two children.
The advantage of this structure is that all the operations
required in Algorithm 1 to create and maintain the list
of candidate fusions can be done very efficiently. We pro-
vide a detailed description of the method, which is imple-
mented in the adjclust package. We also give illustrations
of the first steps of this algorithm when applied to the
RLGH data set provided in the package rioja, that are rel-
ative abundances of 41 taxa in p = 20 stratigraphic sam-
ples. A detailed description of this data set is provided in
the help of the RLGH data set.

Proposed algorithm
Description and illustration
Our proposed algorithm is summarized by Algorithm 2.
It is best expressed in terms of candidate fusions, con-
trary to Algorithm 1 which was naturally described in
terms of clusters.

The initialization step (lines 1 to 3) consists in build-
ing the heap of p− 1 candidate fusions between the p
adjacent items. At the end of this step, the root of the
heap contains the best such fusion. This is illustrated in
Fig. 3 for the RLGH data set. The best candidate fusion,
which is by definition the root of the tree, consists in
merging {4} and {5} . It is highlighted in violet and the
two “neighbor fusions”, i.e., the fusions that involve
either {4} or {5} , are highlighted in pink. The initializa-
tion step has a O(p log(p)) time complexity because the
complexity of inserting each of the p− 1 elements in
the heap is upper bounded by the maximal depth of the
heap, that is, log2(p).

As stated in the previous section, the merging step
consists in finding the best candidate fusion (line 5),
removing it from the heap (line 6) and inserting (up
to) two possible fusions (lines 11–12). The other lines
of the algorithm explain how the information regard-
ing the adjacent fusions and clusters are retrieved and
updated. The notation is illustrated in Fig. 4, elaborat-
ing on the example of Fig. 2.

C1
t−1 Cut

t−1 Cut+1
t−1 Cp−t+1

t−1

Fig. 2  The tth merging step in adjacency-constrained HAC in
Algorithm 1. The clusters are represented by rectangular cells.
Candidate fusions are represented by horizontal bars: above the
corresponding pair of clusters at step t and below it at step t + 1 ,
assuming that the best fusion is the one between the clusters of
indices ut and ut + 1 . Gray bars indicate candidate fusions that are
present at both steps

Table 1  Time complexities ( ×O(1) ) of the three
main elementary operations required by one step
of adjacency-constrained clustering (in columns), for three
implementation options (in rows), for a problem of size p 

Find min Insert Delete min Total

Unordered array p 1 p p

Min heap 1 log(p) log(p) log(p)

Ordered array 1 p p p

Page 6 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

The state of the heap after the first fusion is illus-
trated by Fig. 5, where the two new candidate fusions
are highlighted in yellow. The two fusions highlighted
in grey are the neighbors of the first fusion.

In Algorithm 2, we have omitted several points for
simplicity and conciseness of exposition. For a more
complete description, the following remarks can be
made:

1.	 The calculation of the linkage is not mentioned
explicitly in the calls to Heap.Insert. As explained
in “Ward’s linkage as a function of pre-calculated
sums” section, the linkage between any two clusters
can be calculated in constant time from pre-calcu-
lated pencil sums.

2.	 Algorithm 2 should take appropriate care of cases
when the best fusion involves the first or last clus-
ter. In particular, only one new fusion is defined and
inserted in such cases. This is taken care of in the
adjclust package, but not in Algorithm 2 for simplic-
ity of exposition.

3.	 At each merging step the algorithm also tags as inac-
tive the fusions involving the merged clusters (13).
Indeed, once a cluster is fused with its left neighbor
it can no longer be fused with its right neighbor and
vice-versa. These fusions are highlighted in pink in
Fig. 3 and in gray (once tagged) in Fig. 5. In order to
avoid invalid fusions, each candidate fusion has an
active/inactive label (represented by the gray high-
light in Fig. 5), and when retrieving the next best can-
didate fusion (line 5), the min heap is first cleaned by

deleting its root as long as it corresponds to an inac-
tive fusion. In the course of the whole algorithm, this
additional cleaning step will at worst delete 2p roots
for a total complexity of O(p log(p)).

4.	 The insertion instructions in Algorithm 2 indicate
that the heap not only contains the value of the can-
didate fusions, but also the left and right clusters of
each fusion, and the preceding and next candidate
fusions in the order of the original objects to be clus-
tered. In practice this side information is not actually
stored in the heap, but in a dedicated array, together
with the values of the corresponding linkage and the
validity statuses of each candidate fusion. The heap
only stores the index of each fusion in that array. The
state of this array before and after the first fusion for
the RLGH data set are given in Tables 2 and 3.

Complexity of the proposed algorithm
By pre-calculating the ph initial pencils recursively
using cumulative sums, the time complexity of the pre-
computation step is ph and the time complexity of the
computation of the linkage of the merged cluster with
its two neighbors is O(1) (see Section S1.2 of Additional
file 1 for further details). Its total time complexity is
thus O(p(h+ log(p)) , where O(ph) comes from the pre-
computation of pencils, and O(p log(p)) comes from the
p iterations of the algorithm (to merge clusters from p
clusters up to 1 cluster), each of which has a complexity
of O(log(p)) . The space complexity of this algorithm is

Page 7 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

O(ph) because the size of the heap is O(p) and the space
complexity of the pencil pre-computations is O(ph) .
Therefore, the method achieves a quasi-linear (linearith-
mic) time complexity and linear space complexity when
h ≪ p , which in our experience is efficient enough for
analyzing large genomic datasets.

Implementation
Our method is available in the R package adjclust, using
an underlying implementation in C and available on
CRAN.2 Additional features have been implemented to
make the package easier to use and results easier to inter-
pret. These include:

•	 Plots to display the similarity or dissimilarity together
with the dendrogram and a clustering corresponding
to a given level of the hierarchy as illustrated in Addi-
tional file 1: Figure S2;

4|5
.094

5|6
.095

7|8
.095

8|9
.105

11|12
.113

12|13
.111

15|16
.110

2|3
.106

19|20
.118

10|11
.145

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

16|17
.118

17|18
.157

18|19
.153

9|10
.119

Fig. 3  Min heap after the initialization step of the RLGH data set. Each node corresponds to a candidate fusion, and is represented by a label of the
form i|i + 1 giving the indices of the items to be merged, and (ii) the value of the corresponding linkage δ({i}, {j}) . The nodes corresponding to the
best fusion and the two neighbor fusions are highlighted

Cl Cl* Cr* Cr

P
P*

H*
N*

N

P
i
i + 1

N

Fig. 4  Illustration of the result of a merging step in Algorithm 2

2  https​://cran.r-proje​ct.org/packa​ge=adjcl​ust.

https://cran.r-project.org/package=adjclust

Page 8 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

•	 Wrappers to use the method with SNP data or Hi-C
data that take data from standard bed files or outputs
of the packages snpStats and HiTC respectively;

•	 A function to guide the user towards a relevant cut of
the dendrogram (and thus a relevant clustering). In
practice the underlying number of clusters is rarely
known, and it is important to choose one based on
the data. Two methods are proposed in adjclust: the
first is based on a broken stick model [6] for the dis-
persion. Starting from the root of the dendrogram,
the idea is to iteratively check whether the decrease
in within-cluster variance corresponding to the next
split can or cannot be explained by a broken stick
model and to stop if it can. To the best of our knowl-
edge this broken stick strategy is ad hoc in the sense
that it does not have a statistical justification in terms
of model selection, estimation of the signal, or con-
sistency. The second method is based on the slope
heuristic that is statistically justified in the case of
segmentation problems [3, 18], for which HAC pro-

5|6
.095

4:5|6
.101

7|8
.095

2|3
.106

8|9
.105

12|13
.111

15|16
.110

16|17
.118

19|20
.118

11|12
.113

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

9|10
.119

17|18
.157

18|19
.153

3|4:5
.119

10|11
.145

Fig. 5  Min heap after the first merging step for the RLGH data set. The nodes corresponding to the fusion that have changed since initialization
(Fig. 3) are highlighted

Table 2  State of the array after initialization
of the clustering for the RLGH data set, as in Fig. 3

Left Right Prev Next Linkage Valid

1 2 NA 2 0.121 1

2 3 1 3 0.106 1

3 4 2 4 0.115 1

4 5 3 5 0.095 1

5 6 4 6 0.095 1
.
.
.

.

.

.
.
.
.

18 19 17 19 0.153 1

19 20 18 NA 0.118 1

Page 9 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

vides an approximate solution. This later approach is
implemented using the capushe package [2], with a
penalty shape of

(p−1
K−1

)

.

Clustering with spatial constraints has many different
applications in genomics. The next two sections illus-
trate the relevance of our adjacency constraint cluster-
ing approach in dealing with SNP and Hi-C data. In both
cases samples are described by up to a few million vari-
ables. All simulations and figures were performed using
the R package adjclust, version 0.5.7.

Linkage disequilibrium block inference in GWAS
Genome-Wide Association Studies (GWAS) seek to
identify causal genomic variants associated with rare
human diseases. The classical statistical approach for
detecting these variants is based on univariate hypoth-
esis testing, with healthy individuals being tested against
affected individuals at each locus. Given that an individ-
ual’s genotype is characterized by millions of SNPs this
approach yields a large multiple testing problem. Due to
recombination phenomena, the hypotheses correspond-
ing to SNPs that are close to each other along the genome
are statistically dependent. A natural way to account for
this dependence in the process is to reduce the number
of hypotheses to be tested by grouping and aggregating
SNPs [11, 20] based on their pairwise Linkage Disequi-
librium (LD). In particular, a widely used measure of LD
in the context of GWAS is the r2 coefficient, which can be
estimated directly from genotypes measured by genotyp-
ing array or sequencing data using standard methods [9].
The similarity S = (r2ij)i,j induced by LD can be shown to
be a kernel (see Section S1.3 of Additional file 1). Identi-
fying blocks of LD may also be useful to define tag SNPs
for subsequent studies, or to characterize the recombina-
tion phenomena.

Numerical experiments were performed on a SNP
dataset coming from a GWA study on HIV [10] based on
317k Illumina genotyping microarrays. For the evaluation
we used five data sets corresponding to five chromosomes
that span the typical number of SNPs per chromosome
observed on this array ( p = 23, 304 for chromosome 1,
p = 20, 811 for chromosome 6, p = 14, 644 for chromo-
some 11, p = 8, 965 for chromosome 16 and p = 5, 436
for chromosome 21).

For each dataset, we computed the LD
using the function ld of snpStats, either for
all SNP pairs ( h = p ) or with a reduced num-
ber of SNP pairs, corresponding to a bandwidth
h ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000}.
The packages rioja [25] (which requires the full matrix
to be given as a dist object3) and adjclust with sparse
matrices of the class dgCMatrix (the default output
class of ld) were then used to obtain hierarchical cluster-
ings. All simulations were performed on a 64 bit Debian
4.9 server, with 512G of RAM, 3GHz CPU (192 process-
ing units) and concurrent access. The available RAM
was enough to perform the clustering on the full dataset
( h = p ) with rioja although we had previously noticed that
rioja implementation could not handle more than 8000
SNPs on a standard laptop because of memory issues.

Quality of the band approximation
First, we evaluated the relevance of the band approxima-
tion by comparing the dendrogram obtained with h < p
to the reference dendrogram obtained with the full band-
width ( h = p ). To perform this comparison we simply
recorded the index t of the last clustering step (among
p− 1 ) for which all the preceding fusions in the two den-
drograms are identical. The quantity t/(p− 1) can then
be interpreted as a measure of similarity between den-
drograms, ranging from 0 (the first fusions are different)
to 1 (the dendrograms are identical). Figure 6 displays
the evolution of t/(p− 1) for different values of h for the
five chromosomes considered here. For example, for all
five chromosomes, at h = 1000 , the dendrograms differ
from the reference dendrogram only in the last 0.5% of
the clustering step. For h ≥ 2000 the dendrograms are
exactly identical to the reference dendrogram. We also
considered other criteria for evaluating the quality of the
band approximation, including Baker’s Gamma correla-
tion coefficient [5], which corresponds to the Spearman
correlation between the ranks of fusion between all pairs
of objects. The results obtained with these indices are

Table 3  State of the array after the first merge
in the clustering for the RLGH data set, as in Fig. 5

3  The time needed to compute this matrix was 50-1000 times larger than the
computation of the LD matrix itself. However, we did not include this in the
total computation time required by rioja because we have not tried to opti-
mize it from a computational point of view.

Page 10 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

not shown here because they were consistent with those
reported in Fig. 6.

One important conclusion that may be drawn from
these results is that the influence of the bandwidth
parameter is the same across chromosomes, that is,
across values of p (that range from 5000 to 23000 in this
experiment). Therefore, it makes sense to assume that h
does not depend on p and that the time and space com-
plexity of our proposed algorithm, which depends on h, is
indeed quasi-linear in p.

Scalability and computation times
Figure 7 displays the computation time for the LD matrix
(dotted lines) and for the CHAC with respect to the size
of the chromosome (x axis), both for rioja (dashed line)
and adjclust (solid lines). As expected, the computation
time for rioja did not depend on the bandwidth h, so
we only represented h = p . For adjclust, the results for

varying bandwidths are represented by different colors.
Only the bandwidths 200, 1000, and 5000 are represen-
tend in Fig. 7 for clarity.

Several comments can be made from Fig. 7. First, the
computation times of rioja are much larger than those of
adjclust, even when h = p where both methods imple-
ment the exact same algorithm. For the largest chro-
mosome considered here (chromosome 1, p = 23304 ),
the running time of rioja is 18900 seconds (more than
5 h), compared to 345 seconds (less than 6 minutes). As
expected, the complexity of adjclust with h = p is quad-
ratic in p, while it is essentially linear in p for fixed values
of h < p . For large values of p the gain of the band approx-
imation is substantial: for p = 23304 (chromosome 1), the
running time of adjclust for h = 1000 (which is a relevant
value in this application according to the results of the
preceding section) is of the order of 20 s.

We also note that regardless of the value of h, the total
time needed for the clustering is of the order of (and gen-
erally lower than) the time needed for the computation of
the LD.

Hi‑C analysis
Hi-C protocol identifies genomic loci that are located
nearby in vivo. These spatial co-locations include intra-
chromosomal and inter-chromosomal interactions. After
bioinformatics processing (alignment, filtering, qual-
ity control...), the data are provided as a sparse square
matrix with entries that give the number of reads (con-
tacts) between any given pair of genomic locus bins at
genome scale. Typical sizes of bins are ∼40 kb, which
results in more than 75,000 bins for the human genome.
Constrained clustering or segmentation of intra-chro-
mosomal maps is a tool frequently used to search for e.g.,
functional domains (called TADs, Topologically Associat-
ing Domains). A number of methods have been proposed
for TAD calling (see Forcato et al. [15] for a review and
comparison), among which the ones proposed by Fraser
et al. [16], Haddad et al. [21] that take advantage of a
hierarchical clustering, even using a constrained version
for the second reference. In the first article, the authors
proceed in two steps with a segmentation of the data into
TADs using a Hidden Markov Model on the directionality
index of Dixon, followed by a greedy clustering on these
TADs, using the mean interaction as a similarity meas-
ure between TADs. Proceeding in two steps reduces the
time required for the clustering, which is O(p2) otherwise.
However, from a statistical and modeling perspective
these two steps would appear redundant. Also, pipelin-
ing different procedures (each of them with their sets
of parameters) makes it very difficult to control errors.
Haddad et al. [21] directly use adjacency-constrained
HAC, with a specific linkage that is not equivalent to

Fig. 6  Quality of the band approximation as a function of the
bandwidth h for five different chromosomes

Fig. 7  Computation times versus p: LD matrices, for CHAC rioja and
adjclust with varying values for the band h 

Page 11 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

Ward’s. They do not optimize the computational time of
the whole hierarchy, instead stopping the HAC when a
measure of homogeneity of the cluster created by the last
merge falls below a parameter. Both articles thus high-
light the relevance of HAC for exploratory analysis of
Hi-C data. Our proposed approach provides, in addition,
a faster way to obtain an interpretable solution, using the
interaction counts as a similarity and a h similar to the
bandwidth of the Dixon index.

Data and method
Data used to illustrate the usefulness of constrained hier-
archical clustering for Hi-C data came from Dixon et al.
[12], Shen et al. [33]. Hi-C contact maps from experi-
ments in mouse embryonic stem cells (mESC), human
ESC (hESC), mouse cortex (mCortex) and human IMR90
Fibroblast (hIMR90) were downloaded from the authors’
website at http://chrom​osome​.sdsc.edu/mouse​/hi-c/
downl​oad.html (raw sequence data are published on the
GEO website, accession number GSE35156.

Even if these data do not perfectly fulfill the sparse band
assumption, their sparsity is very high, especially outside
a band centered on the diagonal. Taking as an example
the largest and smallest chromosomes of the hESC data
(chromosomes 1 and 22 respectively), the proportion of
bin pairs with a positive count (present bin pairs) corre-
spond to 10.7% and 25.8% respectively. This proportion
is even smaller when focusing on bins pairs with a count
larger than one (3.2% and 10.5% respectively). In addi-
tion, these bin pairs are mostly concentrated close to
the diagonal: the proportion of present bin pairs that are
located within a 10% diagonal band correspond to 60.1%
and 45.6% of the present bin pairs, respectively. Finally,
respectively 92.5% and 87.8% of the remaining present
bin pairs have a count equal to only 1.

All chromosomes were processed similarly:

•	 Counts were log-transformed to reduce the distribu-
tion skewness;

•	 Constrained hierarchical clustering was computed on
log-transformed data using, for the similarity, either
the whole matrix ( h = p ) or the sparse approach with
a sparse band size equal to h = {0.5p, 0.1p};

•	 Model selection was finally performed using both the
broken stick heuristic and the slope heuristic.

All computations were performed using the Genotoul
cluster.

Influence of the bandwidth parameter
The effect of h (sparse band parameter) on computa-
tional time, dendrogram organization and clustering
were assessed. Figure 8 gives the computational times

versus the chromosome size for the three values of h
together with the computational time obtained by the
standard version of constrained hierarchical cluster-
ing as implemented in the R package rioja. As expected,
the computational time is substantially reduced by the
sparse version (even though not linearly with respect to h
because of the preprocessing step that extracts the band
around the diagonal), making the method suitable for
dealing efficiently with a large number of chromosomes
and/or a large number of Hi-C experiments. rioja, that
cannot cope efficiently with the sparse band assumption,
requires considerably more computational time (10 times
the time needed by adjclust). In addition, the memory
required by the two approaches is very different: adjclust
supports sparse matrix representation (as implemented
in the R package Matrix), which fits the way Hi-C matri-
ces are typically stored (usually these matrices are given
as rows with bin number pairs and associated count). For
instance, the sparse version (dsCMatrix class) of the
largest chromosome (chromosome 1) in the hESC data
is 23 Mb, as opposed to 231 Mb for the full version. The
sparse version of the smallest chromosome (chromo-
some 22) is 1.1 Mb, versus 5.2 Mb for the full version. The
sparse version of the h = 0.1p band for these two chro-
mosomes is, respectively, 13.2 M and 0.4 Mb respectively.

However, this gain in time and space did not impact
the results of the method: the indexes of the first differ-
ence were computed between the dendrograms obtained
by the full version ( h = p ) and by the two sparse versions
( h ∈ {0.5p, 0.1p} ) for every chromosome. For most of the
clusterings there was no difference in merge for h = 0.5p
(with the similarity computed as in Fig. 6 always larger
than 0.9992, and equal to 1 in more than 3 clusterings out
of 4). For h = 0.1p , the similarity ranged from 0.9811 to
0.9983. Baker’s Gamma index and Rand indices [24] for

Fig. 8  Impact of sparsity on the computational time. Dots that
correspond to the same datasets but different chromosomes are
linked by a path

http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html

Page 12 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

selected clusterings (both with broken stick and slope
heuristic) confirmed this conclusion (results not shown).

Results
Additional file 1: Figure S1 provides the average clus-
ter size for each chromosome versus the chromosome
length. It shows that the average cluster size is fairly con-
stant among the chromosomes and does not depend on
the chromosome length. Both model selection methods
found typical cluster sizes of 1-2 Mb, which is in line
with what is reported in Forcato et al. [15] for some TAD
callers.

Additional file 1: Figure S2 shows that clusters for a
given chromosome (here chromosome 11 for hIMR90
and chromosome 12 for mCortex) can have different sizes
and also different interpretations: some clusters exhibit a
dense interaction counts (deep yellow) and are thus good
TAD candidates whereas a cluster approximately located
between bin 281 and bin 561 in chr12-mCortex map has
almost no interaction and can be viewed as possibly sep-
arating two dense interaction regions.

The directionality Index (DI, Dixon et al. [12]) quan-
tifies a directional (upstream vs downstream) bias in
interaction frequencies, based on a χ2 statistic. DI is the
original method used for TAD calling in Hi-C. Its sign is
expected to change and DI values are expected to show
a sharp increase at TADs boundaries. Figure 9 displays
the average DI, with respect to the relative bin position
within the cluster and the absolute bin position outside
the cluster. The clusters found by constrained HAC show

a relation with DI that is similar to what is expected for
standard TADs, with slightly varying intensities.

Finally, boundaries of TADs are known to be enriched
for the insulator binding protein CTCF Dixon et al. [12].
CTCF ChIP-seq peaks were retrieved from ENCODE
[13] and the distribution of the number of the 20%
most intense peaks was computed at ±400 Kb of cluster
boundaries, as obtained with the broken stick heuristic
(Additional file 1: Figure S3). The distribution also exhib-
ited an enrichment at cluster boundaries, which indicates
that the clustering is relevant with respect to the func-
tional structure of the chromatin.

Conclusions
We have proposed an efficient approach to perform con-
strained hierarchical clustering based on kernel (or simi-
larity) datasets with several illustrations of its usefulness
for genomic applications. The method is implemented
in a package that is shown to be fast and that currently
includes wrappers for genotyping and Hi-C datasets. The
package also provides two possible model selection pro-
cedures to choose a relevant clustering in the hierarchy.
The output of the method is a dendrogram, which can be
represented graphically, and provides a natural hierarchi-
cal model for the organization of the objects.

The only tuning parameter in our algorithm is the
bandwidth h. The numerical experiments reported in this
paper suggest that at least for GWAS and Hi-C studies,
there exists a range of values for h such that h ≪ p (which
implies very fast clustering) and the result of the HAC is
identical or extremely close to the clustering obtained for

Fig. 9  Evolution of the Directionality Index (DI) around clusters

Page 13 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

h = p . While the range of relevant values of h will depend
on the particular application, an interesting extension
of the present work would be to propose a data-driven
choice of h by running the algorithm on increasing (yet
small) values for h on a single chromosome, and deciding
to stop when the dendrogram is stable enough. In addi-
tion, by construction, all groups smaller than h are iden-
tical in both clusterings (with and without the h-band
approximation).

While HAC is a tool for exploratory data analysis, an
important prospect of the present work will be to make
use of the low time and memory footprint of the algo-
rithm in order to perform inference on the estimated
hierarchy using stability/resampling-based methods.
Such methods could be used to propose alternative
model selection procedures, or to compare hierarchies
corresponding to different biological conditions, which
has been shown to be relevant to Hi-C studies [16].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1301​5-019-0157-4.

 Additional file 1. Supplementary methods and results.

Acknowledgements
The authors would like to warmly thank Michel Koskas for very interesting
discussions, and for proposing a very elegant alternative implementation.

The authors are grateful to the GenoToul bioinformatics platform (INRA
Toulouse, http://bioin​fo.genot​oul.fr/) and its staff for providing computing
facilities. PN and NV would like to thank Shubham Chaturvedi for his contribu-
tion to the package adjclust via the R project in google summer of code
2017.

The authors would like to thank two anonymous referees whose com-
ments helped us to improve the manuscript. All authors read and approved
the final manuscript.

Authors’ contributions
CA and PN conceived the study. AD and GR proposed the algorithm. AD, PN
and NV wrote the software. CA and PN performed the analysis and interpreta-
tion of Hi-GWAS data. NV performed the analysis and interpretation of Hi-C
data. CA, PN, GR and NV wrote the manuscript. All authors read and approved
the final manuscript.

Funding
This work was supported by CNRS project SCALES (Mission “Osez
l’interdisciplinarité”). The work of GR was funded by an ATIGE from Génopole.

 Availability of data and materials
GWAS data analyzed in this paper are available as described in “Linkage dis-
equilibrium block inference in GWAS” section. Hi-C data analyzed in this paper
are available as described in “Data and method” section.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Laboratoire de Mathématiques et Modélisation d’Evry, UMR CNRS 8071,
Université d’Evry Val d’Essonne, 23 boulevard de France, 91037 Evry, France.
2 Hyphen-stat, 195 Route d’Espagne, 31036 Toulouse, France. 3 Institut de
Mathématiques de Toulouse, UMR5219 CNRS, Université de Toulouse, UPS
IMT, 31062 Toulouse Cedex 9, France. 4 Institute of Plant Sciences Paris Saclay
IPS2, CNRS, INRA, Gif sur Yvette, France. 5 MIAT, Université de Toulouse, INRA,
Castanet‑Tolosan, France.

Received: 27 February 2019 Accepted: 2 November 2019

References
	1.	 Ah-Pine J, Wang X. Similarity based hierarchical clustering with an appli-

cation to text collections. In: Boström H, Knobbe A, Soares C, Papapetrou
P, eds. In: Proceedings of the 15th international symposium on intelligent
data analysis (IDA 2016), Lecture notes in computer sciences, Stockholm,
Sweden; 2016. p. 320–331 https​://doi.org/10.1007/978-3-319-46349​-0.
URL https​://hal.archi​ves-ouver​tes.fr/hal-01437​124.

	2.	 Arlot S, Brault V, Baudry J-P, Maugis C, Michel B. capushe: CAlibrating
Penalities Using Slope HEuristics, 2016. https​://CRAN.R-proje​ct.org/packa​
ge=capus​he. R package version 1.1.1.

	3.	 Arlot S, Celisse A, Harchaoui Z. A kernel multiple change-point algorithm
via model selection. Preprint arXiv​: 1202.3878, 2016.

	4.	 Aronszajn N. Theory of reproducing kernels. Trans Am Math Soc.
1950;68(3):337–404.

	5.	 Baker FB. Stability of two hierarchical grouping techniques case I:
sensitivity to data errors. J Am Stat Assoc. 1974;69(346):440–5. https​://doi.
org/10.1080/01621​459.1974.10482​971.

	6.	 Bennett KD. Determination of the number of zones in a biostrati-
graphical sequence. New Phytol. 1996;132(1):155–70. https​://doi.
org/10.1111/j.1469-8137.1996.tb045​21.x.

	7.	 Celisse A, Marot G, Pierre-Jean M, Rigaill G. New efficient algorithms for
multiple change-point detection with reproducing kernels. Comput Stat
Data Analy. 2018;128:200–20.

	8.	 Chavent M, Kuentz-Simonet V, Labenne A, Saracco J. ClustGeo2: an R
package for hierarchical clustering with spatial constraints. Comput Stat.
2018;33(4):1799–822. https​://doi.org/10.1007/s0018​0-018-0791-1.

	9.	 Clayton D. snpStats: SnpMatrix and XSnpMatrix classes and methods,
2015; R package version 1.24.0.

	10.	 Dalmasso C, Carpentier W, Meyer L, Rouzioux C, Goujard C, Chaix M-L,
Lambotte O, Avettand-Fenoel V, Le Clerc S, de Senneville LD, Deveau C,
Boufassa F, Debré P, Delfraissy J-F, Broet P, Theodorou I. Distinct genetic
loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1
infection: the ANRS Genome Wide Association 01 study. PLoS ONE.
2008;3(12):e3907. https​://doi.org/10.1371/journ​al.pone.00039​07.

	11.	 Dehman A, Ambroise C, Neuvial P. Performance of a blockwise approach
in variable selection using linkage disequilibrium information. BMC
Bioinform. 2015;16(1):148. https​://doi.org/10.1186/s1285​9-015-0556-6.

	12.	 Dixon J, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J, Ren B. Topologi-
cal domains in mammalian genomes identified by analysis of chromatin
interactions. Nature. 2012;485:376–80. https​://doi.org/10.1038/natur​
e1108​2.

	13.	 ENCODE Project Consortium. An integrated encyclopedia of DNA
elements in the human genome. Nature. 2012;489:57–74. https​://doi.
org/10.1038/natur​e1124​7.

	14.	 Eppstein D. Fast hierarchical clustering and other applications of dynamic
closest pairs. J Exp Algor. 2000;5:1. https​://doi.org/10.1145/35182​7.35182​
9.

	15.	 Forcato M, Nicoletti C, Pal K, Livi C, Ferrari F, Bicciato S. Comparison
of computational methods for Hi-C data analysis. Nat Methods.
2017;14(7):679–85.

	16.	 Fraser J, Ferrai C, Chiariello A, Schueler M, et al. Hierarchical folding and
reorganization of chromosomes are linked to transcriptional changes
in cellular differentiation. Mol Syst Biol. 2015;11:852. https​://doi.
org/10.15252​/msb.20156​492.

	17.	 Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi

https://doi.org/10.1186/s13015-019-0157-4
https://doi.org/10.1186/s13015-019-0157-4
http://bioinfo.genotoul.fr/
https://doi.org/10.1007/978-3-319-46349-0
https://hal.archives-ouvertes.fr/hal-01437124
https://CRAN.R-project.org/package=capushe
https://CRAN.R-project.org/package=capushe
http://arxiv.org/abs/1202.3878
https://doi.org/10.1080/01621459.1974.10482971
https://doi.org/10.1080/01621459.1974.10482971
https://doi.org/10.1111/j.1469-8137.1996.tb04521.x
https://doi.org/10.1111/j.1469-8137.1996.tb04521.x
https://doi.org/10.1007/s00180-018-0791-1
https://doi.org/10.1371/journal.pone.0003907
https://doi.org/10.1186/s12859-015-0556-6
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1145/351827.351829
https://doi.org/10.1145/351827.351829
https://doi.org/10.15252/msb.20156492
https://doi.org/10.15252/msb.20156492

Page 14 of 14Ambroise et al. Algorithms Mol Biol (2019) 14:22

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D.
The structure of haplotype blocks in the human genome. Science.
2002;296(5576):2225–9. https​://doi.org/10.1126/scien​ce.10694​24.

	18.	 Garreau D, Arlot S. Consistent change-point detection with kernels.
Electron J Stat. 2018;12(2):4440–4486. https​://doi.org/10.1214/18-EJS15​13

	19.	 Grimm E. CONISS: a fortran 77 program for stratigraphically constrained
analysis by the method of incremental sum of squares. Comput Geosci.
1987;13(1):13–35.

	20.	 Guinot F, Szafranski M, Ambroise C, Samson F. Learning the optimal
scale for GWAS through hierarchical SNP aggregation. BMC Bioinform.
2018;19(1):459. https​://doi.org/10.1186/s1285​9-018-2475-9

	21.	 Haddad N, Vaillant C, Jost D. IC-Finder: inferring robustly the hierarchical
organization of chromatin folding. Nucleic Acids Res. 2017;45(10):e81.
https​://doi.org/10.1093/nar/gkx03​6.

	22.	 Harchaoui Z, Cappé O. Retrospective mutiple change-point estima-
tion with kernels. In: Proceedings of the 14th workshop on statistical
signal processing (SSP’07), Madison; 2007. p. 768–772. IEEE. https​://doi.
org/10.1109/SSP.2007.43013​63.

	23.	 Hocking TD, Schleiermacher G, Janoueix-Lerosey I, Boeva V, Cappo J,
Delattre O, Bach F, Vert J-P. Learning smoothing models of copy number
profiles using breakpoint annotations. BMC Bioinform. 2013;14(1):164.
https​://doi.org/10.1186/1471-2105-14-164.

	24.	 Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
https​://doi.org/10.1007/BF019​08075​.

	25.	 Juggins S. rioja: Analysis of Quaternary Science Data, 2018; URL https​://
cran.r-proje​ct.org/packa​ge=rioja​. R package version 0.9-15.1.

	26.	 Kaufman L, Rousseeuw PJ. Finding Groups in Data: an introduction to
cluster analysis, volume 344 of Wiley series in probability and statistics.
Hoboken: Wiley; 2009. https​://doi.org/10.1002/97804​70316​801.

	27.	 Lebart L. Programme d’agrégation avec contraintes. Les Cahiers de
l’Analyse des Données, 1978; 3(3):275–87. http://www.numda​m.org/item
?id=CAD_1978__3_3_275_0.

	28.	 Michel V, Gramfort A, Varoquaux G, Eger E, Keribin C, Thirion B. A super-
vised clustering approach for fmri-based inference of brain states. Pattern
Recogn. 2012;45(6):2041–9.

	29.	 Miyamoto S, Abe R, Endo Y, Takeshita J. Ward method of hierarchical
clustering for non-Euclidean similarity measures. In Proceedings of the
VIIth international conference of soft computing and pattern recognition
(SoCPaR 2015); 2015.

	30.	 Picard F, Robin S, Lavielle M, Vaisse C, Daudin J-J. A statistical approach for
array-CGH data analysis. BMC Bioinform. 2005;6(27):1471–2105. https​://
doi.org/10.1186/1471-2105-6-27.

	31.	 Qin J, Lewis DP, Noble WS. Kernel hierarchical gene clustering from micro-
array expression data. Bioinformatics. 2003;19(16):2097–104. https​://doi.
org/10.1093/bioin​forma​tics/btg28​8.

	32.	 Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing tech-
nologies. Mol Cell. 2015;58(4):586–97. https​://doi.org/10.1016/j.molce​
l.2015.05.004.

	33.	 Shen Y, Yu F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee
L, Lobanenkov VV, Ren B. A map of the cis-regularoty sequence in the
mouse genome. Nature. 2012;488:116–20. https​://doi.org/10.1038/natur​
e1124​3.

	34.	 Strauss T, von Maltitz MJ. Generalising Ward’s method for use with Man-
hattan distances. PLoS ONE. 2017;12:e0168288. https​://doi.org/10.1371/
journ​al.pone.01682​88.

	35.	 Székely GJ, Rizzo ML. Hierarchical clustering via joint between-within
distances: extending Ward’s minimum variance method. J Classif.
2005;22(2):151–83. https​://doi.org/10.1007/s0035​7-005-0012-9.

	36.	 Williams JWJ. Algorithm 232-heapsort. Commun ACM. 1964;7(6):347–8.
https​://doi.org/10.1145/51227​4.51228​4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1126/science.1069424
https://doi.org/10.1214/18-EJS1513
https://doi.org/10.1186/s12859-018-2475-9
https://doi.org/10.1093/nar/gkx036
https://doi.org/10.1109/SSP.2007.4301363
https://doi.org/10.1109/SSP.2007.4301363
https://doi.org/10.1186/1471-2105-14-164
https://doi.org/10.1007/BF01908075
https://cran.r-project.org/package=rioja
https://cran.r-project.org/package=rioja
https://doi.org/10.1002/9780470316801
http://www.numdam.org/item?id=CAD_1978__3_3_275_0
http://www.numdam.org/item?id=CAD_1978__3_3_275_0
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1093/bioinformatics/btg288
https://doi.org/10.1093/bioinformatics/btg288
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1038/nature11243
https://doi.org/10.1038/nature11243
https://doi.org/10.1371/journal.pone.0168288
https://doi.org/10.1371/journal.pone.0168288
https://doi.org/10.1007/s00357-005-0012-9
https://doi.org/10.1145/512274.512284

	Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics
	Abstract
	Background:
	Results:
	Availability and implementation:

	Background
	Method
	Adjacency-constrained HAC with Ward’s linkage
	Extension to general similarities
	Band similarity assumption

	Algorithm
	Ingredients
	Ward’s linkage as a function of pre-calculated sums
	Storing candidate fusions in a min-heap

	Proposed algorithm
	Description and illustration
	Complexity of the proposed algorithm
	Implementation

	Linkage disequilibrium block inference in GWAS
	Quality of the band approximation
	Scalability and computation times

	Hi-C analysis
	Data and method
	Influence of the bandwidth parameter
	Results

	Conclusions
	Acknowledgements
	References

