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Abstract 

Background: Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as miss-
ing data or even completely exclude alignment columns that contain gaps.

Results: Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically 
informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise 
introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an 
approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that 
splids can be efficiently extracted from phylogenomic data sets.

Conclusions: Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear 
phylogenetic signal and an allow the inference of accurate phylogenetic trees.
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Background
Gaps in multiple sequence alignments are usually seen as 
a nuisance in molecular phylogenetics. In most studies, 
gaps are treated as missing data or alignment columns 
with gaps are even removed completely. Indeed, sto-
chastic models of sequence evolution that deal explicitly 
with insertions and deletions (indels) have been investi-
gated only recently [1, 2]. Detailed evaluation shows an 
overall improvement of phylogenetic reconstructions 
when indels are modelled explicitly [3–5]. For instance, 
the inclusion of insertion and deletion (indel) characters 
proved useful in the analysis of the phylogeny of the Arc-
toidea (Mammalia: Carnivora) [6], neognathous birds [7], 
or fungal families [8]. Nevertheless, there is a negative 
effect of an increasing density of gap characters in multi-
ple sequence alignments [5]. Furthermore, recent studies 
have indicated that biases may be introduced when indels 
are included without precautions in Bayesian and Maxi-
mum Likelihood phylogenies [9, 10].

Between these few recent rigorous approaches to 
include gaps and the dismissal of gaps as missing data, 
indels have been incorporated in several ways into 
sequence-based phylogenetic analyses. The simplest 
one is the coding of gaps as fifth character state. Other 
authors have suggested the replacement of the gapped 
regions by a binary matrix that codes presence and/or 
absence of the respective indel [11]. This binary matrix 
is then added to the “ungapped” sequence data and 
employed in tree inference. An extension of this sim-
ple indel coding (SIC) approach maximizes the amount 
of phylogenetic information in a parsimonious way by 
incorporating all indels [12].

Gaps in alignments are, of course, not features identifi-
able from the individual sequences. Instead, they appear 
as derived patterns inferred from sequence comparison 
only. Nevertheless, they convey a surprising amount of 
phylogenetic information. Shared multi-residue dele-
tions, for instance, have been used to support hypothesis 
derived from molecular data in single gene analyses, see 
e.g. [13]. Multi-residue gaps in nucleotide as well as pro-
tein sequences have been reported as useful indicators 
of monophyletic groups [14]. Single-residue gaps, on the 
other hand, occur more frequently than multi-residue 
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gaps and show a higher amount of homoplasy, e.g. [15]. 
The same authors suggest that single-residue gaps should 
not be removed a priori from a data set based on a large 
taxon sampling, since they can still contain a phyloge-
netic signal. Ashkenazy et  al. [16] proposed to quantify 
the reliability of indel characters by measuring the fre-
quency with which they appear in alternative multiple 
sequence alignments. They show that weighting or filter-
ing indels by reliability in general improves the accuracy 
of phylogenetic reconstruction.

The few studies of the phylogenetic information con-
tent of gap patterns were mostly conducted on lim-
ited sets of protein data. Gap patterns are, however, 
very different between coding and non-coding regions 
[17]. With the advent of high-throughput sequencing 
(nearly) complete genomes are becoming available at an 
increasing pace, from which large-scale genome-wide 
alignments can be constructed [18, 19]. Phylogenom-
ics capitalizes on these developments and provides a 
wide diversity of phylogenetic information [20]. We 
utilize these developments here to address the value of 
gap patterns from a phylogenomic perspective. Since 
we aim at using pre-computed genome-wide align-
ments it is not feasible to evaluate individual gaps by 
their stability with regard to different alignment meth-
ods as proposed in [16]. On the other hand, the size of 

genome-wide data sets allows us to devise stringent fil-
tering criteria to reduce noise and alignment-specific 
biases. To this end we focus on the sub-class of indels 
that define a “reasonably obvious” binary split among 
the sequences. As gaps are not part of the sequence 
itself but the result of an alignment algorithm, however, 
we need to systematically investigate the impact of the 
alignment method on the phylogenetic information of 
the gap patterns.

Theory: inference of split‑inducing indels
The encoding of characters from gap patterns is not 
entirely trivial as soon as indels rather than individual 
gap characters are to be assessed.

We formally define an indel to be a contiguous stretch 
of gap characters in one or more rows of the alignment. 
Each indel therefore has a well-defined start and stop col-
umn. Its size is defined as the number of consecutive gap 
characters. Two indels overlap if there is an alignment 
column that is common to both of them [see, e.g., indel 
(1) and (3) in Fig. 1]. An indel locus consists of indels that 
overlap, i.e., a contiguous sequence of alignment columns 
such that two adjacent columns share at least one indel. 
By definition, the indels in two indel loci are independent 
of each other and thus can be treated separately.

Fig. 1 Non-trivial example of the determination of splids with size ≥ 2 from two concatenated alignments (A and B). Alignment A contains 
sequence data for all taxa, whereas B lacks sequence information for taxon g. At first, all indel loci are determined (I–IV). Second, indel loci are 
searched for indels constituting splids. From locus I only indels (4) and (6) fulfill this criterion. Indels (1) and (3) do not share a common 5’ end. Indel 
(8) is too short. Indels (9) and (10) of locus III are overlapping splids. Whether or not indel (11) is included in the final splid set depends on the applied 
algorithm. In strict mode it is not included, due to the single-residue indel (13). In fuzzy mode, it is included and taxon g is marked as missing data 
(“?”) in the binary presence/absence coding
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We call an indel a split-inducing indel (splid) if it 
defines an approximate bipartition of the taxon set 
according to the following rules:

1. Only indels that are present in at least two sequences 
and have a user-defined minimum size are taken into 
account. By default, all indels of size at least two are 
considered. Thus, indels (1), (2), (3), (5), (7), (8), (12), 
and (13) in Fig. 1 can be ignored.

2. A splid cannot overlap another indel that saties-
fies the first condition. Thus, indels (9) and (10) are 
excluded.

Splids are coded as binary characters marking their pres-
ence/absence pattern in the respective taxon. Missing 
sequence data in the alignment column of a splid is coded 
as “missing data” (“?”). We optionally filter out splids 
that overlap a single-residue indel occurring in at least 
two taxa [such as indel (13)]. Applying this “strict mode” 
removes indel (11), while it is retained in “fuzzy mode”. 
These alternative treatments of single-position gaps is 
motivated by the observation that they occur more ran-
domly than multi-residue gaps, while still containing 
some phylogenetic information [15]. Thus, including 
these splids could increase the number of available char-
acters, although this increases the possibility of conflict-
ing signal.

Methods
Implementation
The algorithm for the conversion of alignments to a 
binary character matrix is implemented in the C++ 
program gappy. It reads multiple sequence alignments 
in MAF and FASTA format. The user can select a mini-
mum and maximum indel size for determining splids. By 
default, the output is a FASTA file, containing the binary 
coded splid presence/absence information, and a sum-
mary statistic with details about the identified splids. 
Output is also available in PHYLIP and NEXUS format.

Data sets
Simulated data
Indel rates and indel-size distributions are usually esti-
mated based on pairwise alignments (e.g., human-mouse, 
primates, rodents [21–24]) but differ quite considerably. 
For example, estimates for the ratio of substitution rates 
to indel rates between mouse and human are ranging 
from 8 [24] to 14 [22, 23]. It seems to be a good approxi-
mation to apply an indel rate in vertebrates at least as high 
as between human and mouse, however. Estimates sug-
gest that the frequency of deletions is somewhat higher 
than the insertion frequency [21, 25, 26], with a ratio of 
deletion rate �d to insertion rate �i ranging from 1.3 to 4. 

We therefore created three different data sets using the 
F81 model [27], two indel-size distributions and differ-
ent indel rates, each consisting of 100 alignments with a 
length of 100,000 bp (see Additional file 1: Figure S1). The 
first two data sets use a geometric distribution with simi-
lar insertion and deletion rates ( �i1 = �i2 = 0.03106 and 
�d1 = �d2 = 0.04037 ) but different probability values 
( q1 = 0.7 and q2 = 0.55 , respectively). The third data 
set follows a Lavalette distribution ( a = 1.5 , M = 120 , 
�i3 = 0.02899 , and �d3 = 0.03768 ), which has been sug-
gested as being an appropriate approximation of the indel 
length distribution in real-life data sets [28, 29]. All data 
sets were simulated using INDELible V1.03 [29]. The 
guide tree and background base frequencies were taken 
from the phastCons17way phastCons tree model file [30] 
obtained from UCSC1 and rescaled to have a maximum 
root-to-tip distance of 2.

ENCODE data
In order to address the problem of  how our method 
behaves under real-life data and genome-scale alignment 
lengths we created two data sets from the ENCODE [31] 
project data, based on the December 2007 Multi-Spe-
cies Sequence Analysis sequence freeze available from 
UCSC.2 The ENCODE data contains sequences of 35 ver-
tebrates orthologous to a representative 1% of the human 
genome divided among 44 regions. The sequences were 
aligned with TBA/Multiz [18], a toolkit that has been 
widely used for whole-genome alignments in large-scale 
comparative genomics studies [31, 32]. TBA/Multiz 
produces a set of local alignments (“blocks”) that are 
stitched together relative to a reference sequence to rep-
resent the evolutionary operations, in particular inser-
tions and deletions, that separate the included sequences. 
The program requires a predefined guide tree that 
describes the relationship of the species to be aligned. In 
case of the ENCODE data set this tree is largely based on 
taxonomic information.

A genome-wide alignment is the result of an exten-
sive similarity search between at least two species. Due 
to evolutionary changes in genome organization, such as 
inversions and duplications, two genomes are virtually 
never completely co-linear, resulting in a decomposition 
of alignments into syntenic blocks. Practical procedures 
such as TBA/Multiz also use other features, such as 
large insertions, missing data in individual species, or 
low complexity regions, as additional breakpoints, so that 
relative small alignment blocks are produced. Not all of 

1 http://hgdow nload .cse.ucsc.edu.
2 http://hgdow nload .cse.ucsc.edu/golde nPath /hg18/encod e/MSA/DEC-
2007/.

http://hgdownload.cse.ucsc.edu
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/MSA/DEC-2007/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encode/MSA/DEC-2007/
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these blocks contain sequence information from all taxa, 
both due to missing data in the sequence assemblies and 
because highly diverged regions of some taxa cannot be 
reliably recognized as homologous.

The first data set contains only those alignments with 
sequence information for all 36 organisms. Alignment 
blocks of two ENCODE regions fulfilled this criteria: 
ENm001 (498 alignment blocks) and ENm013 (67 align-
ment blocks). To investigate how the method behaves 
under a considerable amount of missing data, as it is usu-
ally the case for genome wide alignments, we created a 
second data set, based on all ENCODE alignment regions 
with sequence information for at least three species.

Re‑alignment without predefined guide trees
The use of a predefined guide tree for the genome align-
ments could conceivably create a bias in indel position-
ing. We therefore checked whether such a bias exists and 
how other commonly used alignment programs perform. 
To this end we removed all gaps from the ENCODE 
alignment blocks. The genome-wide alignments thus are 
used only as a convenient means of extracting ortholo-
gous regions.

We applied a similar procedure to the ’true’ alignments 
of the simulated data set. To mimic the properties of the 
ENCODE alignments, we first split all simulated align-
ments in blocks with an average size of 140  bp. After 
removing all gaps, each block was then re-aligned with a 
variety of commonly used multiple sequence alignment 
programs using default settings: ClustalW version 
2.0.12 [33], Muscle version 3.7 [34], T-Coffee version 
8.97 [35], Prank version 100802 [36], Dialign-TX ver-
sion 1.0.2 [37], and Mafft version 6.833b [38]. Mafft 
was run in three different strategies: default mode, 
L-INS-i, and G-INS-i mode. Dialign-TX differs from 
all other methods as it creates alignments from local 
pairwise sequence similarities without the use of explicit 
gap penalties.

Approximately 2% of the ENCODE regions contain 
coding exons while the majority covers non-coding 
sequences, such as introns, UTRs, and intergenic regions. 
It has been pointed out that, while performing fairly good 
on these sequences, TBA/Multiz’s results on regions 
containing non-coding RNAs is not optimal [39]. We 
therefore additionally tested ProbConsRNA version 1.1 
[40], an experimental version of PROBCONS for nucleo-
tide data with parameters estimated from BRAliBASE II 
via unsupervised training [41].

Following realignment, gaps introduced at the 5′ and 3′ 
ends of the sequence blocks were considered as artifacts 
and hence coded as missing data (see also [11]). As indi-
vidual alignment blocks typically contain sequence infor-
mation for only a subset of the input taxa, sequences of 

such missing taxa were also explicitly coded as missing 
data. Alignment blocks with sequence information for 
two or more taxa and containing at least one gap charac-
ter were then concatenated using a custom Perl script 
(available with the source code of gappy). Note that 
by construction the delimiting columns of each align-
ment block do not contain gap characters; concatenation 
therefore does not affect the gap patterns. From these 
concatenated alignments we extracted all splids ≥ 2  bp 
using gappy in strict mode.

Phylogenetic reconstruction and analysis
Model selection and tree reconstruction
Binary model selection was performed using Parti-
tionFinder version 2.1.1 [42] and comparing the BIC 
scores. Phylogenetic trees were calculated with RAxML 
version 8.2.11 [43], executing 100 rapid bootstrap infer-
ences and thereafter a thorough ML search. Bootstrap 
support values were drawn on the best-scoring tree.

Tree comparison
Two phylogenetic n-taxa trees can be compared using a 
variety of different distance measures. The most sensitive 
one is the unweighted Robinson–Foulds (RF) distance 
( dRF ) [44], defined as the sum of the number of splits pre-
sent in exactly one of the two trees. The normalized RF 
distance ( d′RF ) is then computed by dividing dRF by the 
maximal possible distance between the two trees, i.e., 
d′RF = dRF/(2n− 6) . The RF measure does not empha-
size local similarity, so that trees differing by the place-
ment of a single taxon may have a large RF distance [45]. 
We therefore also calculated the quartet distance ( dQ ) 
[46], defined as the number of quartets that are subtrees 
of one but not the other input tree, for comparison. The 

normalized quartet distance, d′Q = dQ

/(

n
4

)

 , serves as 

a convenient distance measure between large phyloge-
netic trees. We use here Phylonet version 3.6.1 [47] 
and tqDist version 1.0.0 [48] to compare the obtained 
trees with the respective UCSC guide trees.

Results
Simulated alignments
In order to test the phylogenetic signal provided by splids 
we first used simulated sequence data generated with 
INDELible along a known reference tree. Alignments 
were computed using nine different methods. Parti-
tionFinder identified the GAMMA model of rate 
heterogeneity including ascertainment bias correction 
as the most suitable model for all splid alignments. In 
total 3000 trees were calculated from these alignments 
and the simulated INDELible reference alignments. On 
these artificial data set we observe nearly correct trees 
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derived from splids (see Additional file 1: Figure S1). On 
these benign data, the choice of the alignment methods 
has little effect on the quality of the estimated phylog-
enies. No RF distances between reconstructed phylog-
eny and reference tree larger than 4 were observed. This 
corresponds to a maximum of two splits that are not 
present in the reference tree. Indeed 84.07% of the trees 
were identical to the reference tree, and another 15.17% 
showed an RF distance of 2. Quartet distances draw a 
similar picture but allow a better differentiation between 
the results of the respective methods. The overwhelming 
majority of all trees (97.4%) from all alignment methods 
have a d′Q ≤ 0.001221 . The tree most dissimilar to the 
guide tree ( d′Q = 0.016801 ) was calculated based on 
one of the ClustalW alignments. The alignment pro-
gram that performed best in terms of similarity to the 
reference tree was Mafft L-INS-i with an average of 
d′Q = 0.000227.

ENCODE genomes
Data set with sequence information for all taxa. Depend-
ing on the alignment method, the concatenated align-
ments of the ENCODE data differed quite considerably 
in length and hence in the total number of gaps. For the 
small ENCODE data set, ClustalW produced the short-
est and Dialign-TX the longest alignment (Table  1). 
In general, the number of splids increased with the num-
ber of alignment sites. For the three Mafft algorithms, 
however, the number of splids decreases with increasing 
alignment length. In particular, Mafft default and 
Mafft L-INS-i seem to introduce more single-resi-
due gaps or conflicting splits than Mafft G-INS-i.

Dialign-TX, T-Coffee, Prank, and ProbCon-
sRNA yield a splid length distribution similar to TBA/
Multiz (Fig.  2). In comparison, Muscle, ClustalW, 
and all three Mafft algorithms found considerably fewer 
shorter splids. There is, however, no systematic depend-
ence on design features of the alignment methods such as 
global versus local alignments or progressive versus con-
sistency based methods.

While the splid-based phylogenies are nearly perfect 
on simulated data, we observed larger deviations that 
depend at least in part on the alignment methods when 
applying our approach to real-life data. On the other 
hand, in real data sets we do not have an absolute ground 
truth to compare to. Thus, we discuss in following both 
the quality of the reconstructed phylogenies and the 
position of interesting taxa in some detail [see Table  2 
and machine-readable data online (see Availability)].

The monophyly of Afrotheria and the positioning 
of tenrec basal to elephant and rock hyrax [49, 50] was 
always recovered. Only splid data derived from the 
Mafft default alignments placed tenrec basal to 
armadillo. The position of the placental root is still, at 
least to some extent, a matter of debate [51–54]. How-
ever, results based on the Mafft default alignments 
and most other alignment programs correctly positioned 
Afrotheria outside of Boreoeutheria [55]. Only splid 
data obtained from the Muscle, ProbConsRNA, and 
T-Coffee alignments placed Afrotheria as sister group 
to Laurasiatheria (ProbConsRNA and T-Coffee) or 
inside Euarchontoglires (Muscle). The original TBA/
Multiz alignments did not contain enough supporting 
splids to position Afrotheria outside of Boreoeutheria, 
however.

Three hypotheses concerning the positioning of Xenar-
thra are discussed in the literature: (1) basal-Afrotheria 
((Boreoeutheria, Xenarthra); Exafroplacentalia), e.g. 

Table 1 Overview of the total number of sites of all 
alignments per alignment method and the number 
of derived splids with length ≥ 2 bp for the ENCODE data 
set containing only alignments with sequence information 
for all taxa

Program Number of sites Number 
of splids

ClustalW 79,006 793

Dialign-TX 96,990 2163

Mafft 84,105 1021

Mafft L-INS-i 83,578 1245

Mafft G-INS-i 83,123 1279

Muscle 84,577 1378

ProbConsRNA 86,277 1927

Prank 96,622 2047

T-Coffee 84,835 1831

TBA/Multiz 90,726 2032
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[51, 54], (2) basal-Xenarthra ((Boreoeutheria, Afroth-
eria); Epitheria), e.g. [56], and (3) basal-Boreoeutheria 
((Afrotheria, Xenarthra); Atlantogenata), e.g. [57]. Splid 
data mostly supports the basal-Xenarthra hypothesis. 
Prank positioned armadillo basal to Afrotheria, whereas 
ProbConsRNA and T-Coffee placed armadillo basal 
to Laurasiatheria and therefore inside Boreoeutheria. 
Interestingly, none of the calculated trees supports the 
ENCODE guide tree that follows the basal-Afrotheria 
hypothesis.

Monophyly of Laurasiatheria was recovered in all 
cases. Monophyly was also recovered for its major orders 
Insectivora (Eulipotyphla), Chiroptera, and Carnivora. 
There was no clear result from splid data about the rela-
tionship within Laurasiatheria, which resembles the con-
clusions obtained elsewhere [50, 52, 55], although results 
from all alignment methods support Insectivora (Eulipo-
typhla) as the most basal clade within Laurasiatheria [52]. 
The evolutionary history of bats has long been a subject 
of discussion, with conflicting hypothesis depending on 
whether morphological or molecular data was used. Ear-
lier studies either traditionally suggested the monophyly 
of the suborders Megachiroptera (megabats) and Micro-
chiroptera (microbats), e.g. [58], while other studies 
placed megabats together with the rhinolophoid micro-
bats (Yinpterochiroptera), with the remaining microbats 
forming the suborder Yangochiroptera, e.g. [59, 60]. Splid 
data derived from most of the alignment methods sup-
port this and place Rhinolophus ferrumequinum as sister 
taxon to Pteropus vampyrus, while Myotis lucifugus was 
found as sister taxon to both of them. Only ProbCon-
sRNA follows the traditional view of a monophyly of 
megabats and microbats and is therefore similar to the 
results obtained from the TBA/Multiz alignments.

The monophyly of Euarchontoglires (Euarchonta and 
Glires) could not be recovered from splid data obtained 
from Muscle and T-Coffee, because of the wrongly 
positioned Muroidea (Muscle and T-Coffee) and 
the wrong position of tree shrew, guinea pig, and squir-
rel (T-Coffee). However, all other alignment meth-
ods clearly support the monophyly of the superorder 
Euarchontoglires.

Among all analyzed groups, Glires are the most prob-
lematic one. Incongruent results were reported in the 
literature in particular concerning the position of the 
tree shrew. While some studies place tree shrews as sis-
ter group to Glires, others recover them as sister group 
to Primata (see [61] for a recent summary). Splid data 
also do not yield an unambiguous conclusion. They 
often place the tree shrew within (ClustalW, Mafft 
G-INS-i, Mafft L-INS-i) or in a sister group rela-
tionship to Glires (TBA/Multiz). Only splid data 
derived from ProbConsRNA alignments places the tree 

shrew (but also monophyletic Glires) within Primata. 
Interestingly, splid data obtained from the alignments of 
Prank recovered the tree shrew as the most basal taxon 
in Euarchontoglires (with monophyletic Glires as sister 
group to all Primates). Splid data from Dialign-TX, 
Mafft default, Muscle, and T-Coffee alignments 
recover Glires as polyphyletic with varying positions of 
the tree shrew.

Almost all methods support the monophyly of Pri-
mates, as well as a monophyly of the respective sub- and 
parvorders. Only splid data derived from the Prob-
ConsRNA alignments places Strepsirrhini together 
with the tree shrew as the most basal clade within 
Euarchontoglires.

As a quantitatively evaluation of the mammalian tree 
we consider the normalized RF and quartet distances 
to the ENCODE reference tree, which—although not 
undisputed – well reflects the state of the art in mam-
malian phylogeny. Overall, the tree calculated from 
splids derived from the Mafft G-INS-i alignments 
shows the highest similary to the ENCODE refer-
ence tree (Fig. 3). The tree based on splids derived from 
the T-Coffee alignments is most different from the 
ENCODE tree with respect to the more sensitive quar-
tet distance. While the tree computed with Muscle has 
a higher normalized RF distance, its normalized quar-
tet distance is much lower. However, when comparing 
the values of the two distances for the other methods it 
becomes apparent that their results are quite different 
and show no clear correlation. For example, while the RF 
distances of the ENCODE tree to the trees based on the 
splids derived from the Mafft L-INS-i and Prank 
alignments, respectively, are similar, the quartet distances 
differ by a factor larger than two. Interestingly, when 
comparing the much more sensitive quartet distances of 
the trees based on splids extracted from the alignments 
calculated with ClustalW, Dialign-TX, and all three 
Mafft algorithms, they indicate a higher similarity to 
the ENCODE reference tree than the tree based on splids 
extracted from the guide tree based TBA/Multiz align-
ments. The Probabilistic Alignment Kit Prank [36] has 
been developed with a focus on a phylogenetic consist-
ent placement of insertions and deletions. However, trees 
calculated from splids derived from Prank alignments 
showed no superior similarity to the ENCODE reference 
tree, an observation that is in line with another study 
[62]. We note, finally, that misplaced taxa in all trees gen-
erally had low bootstrap support.

Data set with sequence information for at least three 
species. In the following, we focus on three alignment 
methods to analyze splid performance on the large 
ENCODE data set: Mafft G-INS-i was chosen 
because it performed best on the data set containing 
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sequence information for all taxa. In order to analyze 
whether the increase in the size of the data set improves 
the performance, we also included T-Coffee, the 
method with the poorest performance on the small 
ENCODE data set (with respect to the quartet dis-
tance). In addition, we included in our analysis the splid 
set derived from the original TBA/Multiz alignments. 
We removed four invariant splid sites extracted from the 
TBA/Multiz alignments, because invariant sites are not 
allowed when ascertainment bias correction is used.

We observed an improvement in terms of tree simi-
larity to the ENCODE guide tree for two of the three 
splid data sets derived from the large ENCODE data 

Fig. 3 Cladogram with bootstrap values obtained from 100 bootstrap trees calculated by RAxML using splid data and the Gamma model with 
ascertainment bias correction. Splids with gap lengths ≥2 bp were extracted from the small ENCODE data set that has been re-aligned using 
Mafft G-INS-i 

Table 3 Results for the large ENCODE data set. 
Splids ≥ 2 bp were coded and trees were calculated 
with RAxML using the Gamma model for binary data 
and ascertainment bias correction

Mafft G-INS-i T-Coffee TBA/Multiz

Number of sites 36,132,992 36,450,667 37,689,662

Number of splids 545,790 922,277 919,908

dRF 16 16 12

d′
RF

0.2424 0.2424 0.1818

dQ 5000 7494 3710

d′
Q

0.0849 0.1272 0.0630
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set (Table 3). For the T-Coffee alignments, both tree 
distance measures indicate higher similarity of the 
maximum likelihood (ML) tree to the ENCODE guide 
tree ( d′RF = 0.2424 and d′Q = 0.1272 , respectively) 
than the tree calcuated from splid data derived from 
the small data set ( d′RF = 0.3030 and d′Q = 0.1606 , 
respectively). However, Boreoeutheria were not found 
to be monophyletic anymore: Glires are placed as sis-
ter group to ((Afrotheria, Xenarthra), Laurasiathe-
ria) and the remaining Euarchontoglires (Primata); 
although with low bootstrap support. The tree shrew 
is recovered in a sister taxon relationship to all of the 
former. On the other hand, monophyly of all other 
major groups (Laurasiatheria, Afrotheria) and groups 
therein (Chiroptera, Carnivora, Insectivora, Primata 
etc.) was correctly recovered.

RF and quartet distance of the ML tree calculated 
from splids derived from the original TBA/Mul-
tiz alignments also decreased ( d′RF = 0.1818 and 
d′Q = 0.0630 , respectively) compared to the small 
ENCODE data set ( d′RF = 0.2121 and d′Q = 0.0668 , 
respectively). Monophyletic Afrotheria are recovered 
as sister-group to monophyletic Boreoeutheria (Epi-
theria) with basal Xenarthra. Within Boreoeutheria, 
monophyly of all major groups were correctly recov-
ered and order within groups largely follows the 
ENCODE guide tree with three notable exceptions. 
(1) The tree shrew is now recovered as sister taxon 
to (Epitheria, Xenarthra). (2) Insectivora (hedgehog 
and shrew) is not the basal group within Laurasiathe-
ria anymore but is now sister group to Chiroptera, 
(3) while both are sister group to ((Carnivora, cow), 
horse).

Unexpectedly, the ML tree calculated from the 
Mafft G-INS-i alignments (Table  3) showed 
a higher distance to the ENCODE guide tree tree 
( d′RF = 0.2424 and d′Q = 0.0849 , respectively) 
and is thus more dissimilar than the tree calcu-
lated from splid data derived from the small data set 
( d′RF = 0.2121 and d′Q = 0.0321 , respectively). Here, 
Laurasiatheria were not recovered to be monophyletic. 
Instead, non-monophyletic Insectivora are recovered 
as basal to ((Afrotheria, Xenarthra), Euarchontoglires) 
and the remaining Laurasiatheria. Again, monophyly 
of all other major groups (Afrotheria, Euarchontog-
lires) and groups therein (Primata, Glires etc.) was 
correctly recovered and the tree shrew was placed as 
sister taxon to Glires.

We note, finally, that of all species included in the 
large ENCODE data set, tree shrew has by far the 
smallest sequence coverage (approximately 10% of the 
amount of human sequence in the alignments), which 
likely contributes to its unstable position.

Discussion
Indels are not features of individual sequences. Instead 
they are inferred by comparative analysis and, in practice, 
appear as gaps in multiple sequence alignments. In some 
alignment methods they are explicitly modelled and con-
tribute to the score, e.g. by means of affine gap costs. In 
other approaches they are modelled only implicitly. It is 
not unexpected, therefore, that the number and position 
of gaps depends quite strongly on the alignment algo-
rithm. The fact that the choice of the alignment algorithm 
has an impact on the reconstructed phylogenies is well 
documented in the literature, see e.g. [63–67]. Neverthe-
less, gap positions can be phylogenetically informative.

We have focused here on a subclass of indels, namely 
those which can be found in more than one sequence 
and therefore define a split in the taxon set. Our defini-
tion and inference of such split-inducing indels (splids) 
is based on two basic principles that are largely accepted 
in the literature. First, indels at the same position, i.e. 
sharing the same end points in two sequences, are likely 
homologous. Second, independent single-residue inser-
tions and deletions tend to occur more frequently than 
multi-residue indels. Hence they are expected to contrib-
ute a more noisy signal and hence are disregarded in our 
analysis.

We have tested the information content of splids on 
three simulated and two real-life data sets and analyzed 
the capability of splids introduced by nine different align-
ment programs for phylogenetic inference by ML. For 
artificial data sets, which are generated from a known 
underlying phylogeny, we find that splid-based ML 
reconstruction leads to nearly perfect trees. On the real-
life data sets, however, we observe larger discrepancies 
between different alignment methods.

The splid-based phylogenies clearly recovered most of 
the undisputed monophyletic groups. Although there are 
clear differences in the alignment methods, the approach 
is surprisingly robust across a wide variety of alignment 
techniques. We expected a large influence of the guide 
tree on the reconstructed phylogeny since guide trees 
are known to influence the indel pattern [68]. Neverthe-
less, we observed that this effect is small for indel-based 
phylogenies when only splids are considered. Overall, 
alignment methods that put more emphasis on model-
ling indels, in particular those that employ an affine gap 
cost model, perform superior to alignment algorithm 
that consider indels only implicitly. Furthermore, for very 
large data sets we can observe a decreasing influence of 
the alignment algorithm.

Similar to other phylogenetic approaches, taxon sam-
pling has a major influence on branch positions in very 
divergent taxonomic orders. This can been seen for 
example in the Laurasiatheria, where a small group 
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of more closely related taxa (e.g. bats or Carnivora) is 
embedded in a larger set of more distantly ones. While 
splid data always supports a monophyly of Chiroptera, 
their position within Laurasiatheria cannot be unambig-
uously determined.

Increasing sequence length, and therefore splid infor-
mation, does not necessarily lead to better resolved trees. 
This effect is likely related to the observation that align-
ments computed for large data sets have relatively large 
error rates, especially when sequence coverage is low. 
This in turn introduces considerable conflicting signal in 
tree inference [69]. In the case of low but roughly equal 
amount of sequence data for all taxa, the choice of the 
alignment algorithm seems to have a higher effect within 
lower taxonomic orders, while groups resembling higher 
taxonomic orders are relatively stable and are mostly cor-
rect positioned.3
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