
Regnier et al. Algorithms for Molecular Biology (2014) 9:25
DOI 10.1186/s13015-014-0025-1

RESEARCH Open Access

Analysis of pattern overlaps and exact
computation of P-values of pattern
occurrences numbers: case of Hidden Markov
Models
Mireille Régnier1,7,8*, Evgenia Furletova2,3*, Victor Yakovlev2,5 and Mikhail Roytberg2,4,5,6

Abstract

Background: Finding new functional fragments in biological sequences is a challenging problem. Methods
addressing this problem commonly search for clusters of pattern occurrences that are statistically significant. A
measure of statistical significance is the P-value of a number of pattern occurrences, i.e. the probability to find at least
S occurrences of words from a patternH in a random text of length N generated according to a given probability
model. All words of the pattern are supposed to be of same length.
Results: We present a novel algorithm SUFPREF that computes an exact P-value for Hidden Markov models (HMM).
The algorithm is based on recursive equations on text sets related to pattern occurrences; the equations can be used
for any probability model. The algorithm inductively traverses a specific data structure, an overlap graph. The nodes of
the graph are associated with the overlaps of words fromH. The edges are associated to the prefix and suffix relations
between overlaps. An originality of our data structure is that patternH need not be explicitly represented in nodes or
leaves. The algorithm relies on the Cartesian product of the overlap graph and the graph of HMM states; this approach
is analogous to the automaton approach from JBCB 4: 553-569. The gain in size of SUFPREF data structure leads to
significant improvements in space and time complexity compared to existent algorithms. The algorithm SufPref was
implemented as a C++ program; the program can be used both as Web-server and a stand alone program for Linux
and Windows. The program interface admits special formats to describe probability models of various types (HMM,
Bernoulli, Markov); a pattern can be described with a list of words, a PSSM, a degenerate pattern or a word and a
number of mismatches. It is available at http://server2.lpm.org.ru/bio/online/sf/. The program was applied to compare
sensitivity and specificity of methods for TFBS prediction based on P-values computed for Bernoulli models, Markov
models of orders one and two and HMMs. The experiments show that the methods have approximately the same
qualities.

Keywords: P-value, Pattern occurrences, PSSM (PWM), Hidden Markov model

Background
The recognition of functionally significant fragments in
biological sequences is a key issue in computational
biology. Many functionally significant fragments are char-
acterized by a set of specific words that is called a pat-
tern and denoted H below. These patterns may represent

*Correspondence: mireille.regnier@inria.fr; furletova@lpm.org.ru
1INRIA, d’Estienne d’Orves 1, 91120 Palaiseau, France
2Institute of Mathematical Problems of Biology, 142290, Institutskaya, 4,
Pushchino, Russia
Full list of author information is available at the end of the article

different biological objects, such as transcription factor
binding sites [1-3], polyadenylation signals [4], protein
domains, etc. The functional fragments recognition prob-
lem can be solved by finding sequences in which the
words from a given pattern are overrepresented. Defining
a meaningful significance criteria for this overrepresenta-
tion is a delicate goal, that, in turn, requires a clarification
of the probability model. A current criteria is the so-
called P-value computed as the probability that a random
sequence of length N contains at least S occurrences of a
pattern. There aremanymethods for P-value computation

© 2014 Regnier et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://server2.lpm.org.ru/bio/online/sf/
mailto:mireille.regnier@inria.fr
mailto:furletova@lpm.org.ru
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 2 of 21

designed for Bernoulli or Markov models. However, Hid-
den Markov models (HMM) were considered in only a
few papers [5,6] despite the models being widely used in
bioinformatics. This is a motivation to develop methods
for P-value calculation with respect to HMMs.
Existing methods for P-value calculation can be divided

into several groups and reviews of the methods can be
found in [7-10]. Studies on word probabilities started
as early as the eighties with the seed paper [11] that
introduced basic word combinatorics and derived induc-
tive equations for a single word and a uniform Bernoulli
model. Some works in the same vein, reviewed in [12] fol-
lowed for several words, multi-occurrences and extended
probability models. The time complexity is proportional
to the text length N and the desired number of occur-
rences S: computations are carried out by induction for
n ranging over 1, . . . ,N and, for a given n, by induc-
tion on the number of occurrences. Although these
“mathematics-driven” approaches allow for mathematical
formula derivation, the actual computation suffers from
a combinatorial explosion when |H| or Markov order
increase.
Later on, a first group of methods [13-17] formal-

ized systematically these inductions by the introduction
of bivariate generating functions. Coefficients are the P-
values to be computed. Expectations and variances for the
number of occurrences of the different words in pattern
H can be expressed explicitly in terms of these gener-
ating functions [14,15,18]. Moreover, coefficients may be
computed from the analytical expression, when it is avail-
able, or through a suitable manipulation of a functional
equation, where the theoretical time complexity reduces
to S logN . Nevertheless, computing the generating func-
tion, or the functional equation, requires the computation
of a system of linear equations or, equivalently, the deter-
minant of a matrix of polynomials of size O(|H|). It takes
O(|H|3) operations and it is the main drawback of this
approach.
A second group of methods computes asymptotics.

They rely on convergence results to the normal law proved
by [19] or [20]. An approximated P-value is derived, based
on Gaussian approximations [21] or Poisson approxima-
tions [22-25]. Nevertheless, this approximation is not suit-
able for exceptional words, when the observed number
of occurrences S significantly differs from the expected
number. This was proved experimentally by [26] and
theoretically [27]. Large deviation principles are used in
[28,29] with a much better precision. Nevertheless, no
computable formula are available for large sets.
A third group of methods revisits recursive P-value

computation, with aO(S×N) time complexity. They avoid
combinatorial explosion by a suitable use of appropriate
data structures, tightly related to word overlap proper-
ties. Therefore, loss in time dependency to N or S is

compensated by a gain on data structure size. A sig-
nificant part of algorithms in this group are based on
traversals of a specific graph. The graph may not be
defined explicitly [30]. It can be based on the graph cor-
responding to the finite automaton recognizing the given
pattern, see algorithms AHOPRO [31], SPATT [25,32] and
REGEXPCOUNT [17]. MOTIFRANK [33] that is designed
for first order Markov models makes use of suffix sets.
In [25,32,34], a Markov chain embedding technique was
suggested. Counting occurrences of regular patterns in
random strings produced by Markov chains reduces to
problems regarding the behavior of a first-order homo-
geneous Markov chain in the state space of a suitable
deterministic finite automaton (DFA) [35,36]. In a recent
paper [6], a probabilistic arithmetic automaton for com-
puting P-values for a HMM was proposed. In this paper
two algorithms were suggested. The first one has a time
complexity O(|Q|2 × N × S × |�| × |V|) and a space
complexity O(|Q| × S × |�|), where |Q| is the number
of states of the HMM, |�| is the number of states of
the automaton recognizing the given pattern, |V| is the
alphabet size. The second algorithm has a time complexity
O(|Q|3 × log(N) × S2 × |�|3) and a space complexity
O(|Q|2 × S × |�|2). This algorithm uses the “divide and
conquer” technique. The drawback is the lack of con-
trol on the number of states |�| when |H| increases.
Finally, despite these great efforts, existing methods per-
form badly for rather big patterns. Besides this, most of
the proposed algorithms are not implemented or imple-
mented only for Bernoulli models or Markov models of
small orders.
The present paper provides an algorithm supporting the

HMM probability model. It assumes that all words have
the same length m and that a HMM with |Q| states is
given. It is a generalization of algorithmSUFPREF designed
in [37] for Bernoulli models and Markov models of order
K . It relies on recurrent equations based on an overlap
graph, whose vertices are associated with the overlaps of
words from H, and edges correspond to the prefix and
suffix relations between overlaps. The time complexity is
O(|Q|2×N×S×(|OV (H)|+|H|)) and the space complexity is
O(|Q|2×(|OV(H)|+|H|)+|Q|×S×m×|OV (H)|+m×|H|),
where |OV (H)| is the number of overlaps between the
words from the pattern H. In the case of a Markov model
of orderK , whereK ≤m, bounds for time and space above
can be reduced toO(N×S×(K×|V|K+1 +|OV (H)|+|H|))
and to O(S×K × |V|K+1 + S×m× |OV (H)|+m× |H|),
respectively. Algorithm SUFPREF is implemented as a
Web-server, see http://server2.lpm.org.ru/bio/online/sf/,
and a stand-alone program for Windows and Linux. The
program is available by request from the authors.
The paper is organized as follows. Basic notions onword

overlaps are introduced, that lead to an overlap graph that
is the main data structure to be used. Then, one recalls

http://server2.lpm.org.ru/bio/online/sf/

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 3 of 21

the Hidden Markov models definition. Main text sets are
defined and equations for their probabilities are derived.
The next section describes the algorithm SUFPREF that
computes these equations using the overlap graph as a
main data structure. Then, the space and time complex-
ities are analyzed and our algorithm is compared with
other methods [3,24,31,38,39]. Finally, usage of P-values
for TFBS prediction is discussed.

Overlap words
Our approach strongly relies on overlaps of words from
a given pattern. In this section we provide necessary
definitions for these overlaps, following the notations
of [37]. The main deference is in definition of over-
lap graph, see definition 3. By definition from [37],
overlap graph has additional nodes (leaves) that corre-
spond to the words from the pattern H. In the present
paper overlap graph has deep edges instead of the nodes.
This modification is not affect on upper bounds of time
and space complexity. But in practice it gives significant
improvements.

Definition 1. Given a pattern H over an alphabet V, a
word w is an overlap (an overlap word) forH if there exist
words H and F inH such that w is a proper suffix ofH and
w is a proper prefix of F. The set of overlaps of the pattern
H is denoted OV (H).

Example 1. LetH be the set

H = {ACAGCTA, ACATATA, CTTTCGC, TACCACA}.

The overlap set is

OV (H) = {ε, A, ACA, C, TA}.

Notation. Below we will use the following notations:
1) w, for an overlap from OV (H); 2) H, for a word from
the patternH; 3) v, for a word from OV (H) ∪ H.

Notation. For an overlap w in OV (H), one denotes

H(w) = {H ∈ H | H ends with w} ,

with the conventionH(ε) = H.

Notation. x′ � x (x′ ⊂ x) means that x′ is a suffix
(proper suffix) of x; x′ � x (x′ ≺ x) means that x′ is a pre-
fix (proper prefix) of x. The elements of OV (H) that are
proper prefixes (respectively suffixes) of a given word are
totally ordered. The empty string is the minimal element.
The maximal elements are crucial for our algorithms and
data structures.

Definition 2. Given a word v in OV (H) ∪ H \ {ε}, one
denotes

lpred(v) = max{x|x ∈ OV (H) and x ≺ v};
rpred(v) = max{x|x ∈ OV (H) and x ⊂ v}.

Two words H and F from the pattern H are called
equivalent if they satisfy

lpred(H) = lpred(F),
rpred(H) = rpred(F).

Notation. Given two words x and w in OV (H), let
H∗(x,w) denote the equivalence class consisting of all
words H ∈ H such that lpred(H) = x and rpred(H) = w.
One notes, for a word H in H∗(x,w),

lpred(H∗(x,w)) = lpred(H) and rpred(H∗(x,w)) =
= rpred(H).

(1)

Let P(H) denote the set of all equivalence classes onH.

Example 2. Consider the pattern H from the previous
example.

1. For the overlap ACA ∈ OV (H), lpred(ACA) = A,
because A is the maximal prefix of ACA that is
overlap. Analogously, rpred(ACA) = A.

2. The words ACAGCTA and ACATATA from the
pattern are equivalent because

lpred(ACAGCTA) = lpred(ACATATA) = ACA and

rpred(ACAGCTA) = rpred(ACATATA) = TA.
These words are in the classH∗(ACA, TA). The
partition P(H) consists of three classes:
H∗(ACA, TA) = {ACAGCTA, ACATATA},
H∗(C, C) = {CTTTCGC} and
H∗(TA, ACA) = {TACCACA}.

Order relations are commonly associated to oriented
graphs.

Definition 3. The overlap graph of a given pattern H is
an oriented graph where the set of nodes is OV (H) and the
set of edges, E(H), contains the left, right and deep edges,
that are defined as follows:

• A left edge links node x to node w iff x = lpred(w);
• A right edge links node x to node w iff x = rpred(w);
• A deep edge links node x to node w iff there exists a

non-empty class H∗(x,w) in P(H).

It is denoted OvGraph.

The root is the node corresponding to the empty word.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 4 of 21

Definition 4. An overlap w ∈ OV (H) is called a
left deep node, respectively a right deep node, if there
exists a word H ∈ H such that w = lpred(H), respectively
w = rpred(H). The sets of all left and right deep nodes are
denoted by DLOV (H) and DROV (H).

Notation. For a right deep node r ∈ DROV (H), one
denotes

H̃(r) = {H ∈ H | r = rpred(H)}.
Below we will use r for notation of a right deep node.

Definition 5. Let v be in (OV (H) ∪ H) \ ε.
The set of non-empty prefixes of v (including v) that

belong to OV (H) is denoted by OverlapPrefix(v). For any
prefix x in OverlapPrefix(v), let Back(x, v) denote the suffix
of v that satisfies the equation

v = x · Back(x, v).
Let Back(v) denote Back(lpred(v), v).
Also for H∗(w, r) ∈ P(H) we denote

Back(H∗(w, r)) =
⋃

H∈H∗(w,r)
Back(H).

Remark. One can ascribe to each deep edge (w, r) the
class H∗(w, r) and to each left edge (lpred(w),w) a word
label Back(w).

Example 3. The overlap graph for the pattern
H = {ACAGCTA, ACATATA, CTTTCGC, TACCACA}
is shown in Figure 1. The nodes of the graph correspond
to the overlaps from the setOV (H) = {ε, A, ACA, C, TA}.
The index numbers of nodes are the index numbers
of overlaps in the prefix order. The graph has four left
edges (shown by straight lines), five right edges (shown
by dashed lines) and three deep edges (shown by double
lines).

Text sets
The computation of P-values will be done by induction on
the text length n (n = 1, . . . ,N), and, for each given n, by
induction on the number of occurrences s (s = 1, . . . , S).
It relies on formulas introduced in [37], that in turn was

based on the ideas from [12,13]. In [37] we give formulas
for P-values computation for Bernoulli and Markov mod-
els. In the present paper we introduce equations on texts
sets that underlie these formulas. Using these equations
one can derive formulas for P-value computation for dif-
ferent probabilities models. Also these equations take into
account improvements in the overlap graph structure, see
section “Overlap words”.

Figure 1 Overlap graph for patternH = {ACAGCTA, ACATATA,
CTTTCGC, TACCACA}. Nodes are the elements of OV(H). The node
with the index number “1” corresponds to ε , it is the root. The left
edges are shown by continuous straight lines, right edges are shown
by dashed lines and deep edges are shown by double lines. Each left
edge (lpred(w),w), where w ∈ OV(H), is labeled with Back(w). For
example, edge (2, 3) corresponding to the pair of overlaps (A, ACA) is
labeled with Back(ACA) = CA. A deep edge (w, r) corresponds to
equivalence classH∗(w, r). The right edges (w, rpred(w)) are not
labeled.

Definition 6. LetH be a pattern.

B(n, s) ={t ∈ Vn|t contains at least s
occurrences of the pattern H}.

By convention, B(n, 0) = Vn.

Definition 7. Given a right deep node r ∈ DROV (H),
one defines, for s = 1, . . . , S, S + 1

E(n, s, r) ={t ∈ Vn|t contains at least s occurrences of H&

& t ends with H ∈ H̃(r)}
(2)

These sets are called E-sets.

Definition 8. Let w∈OV (H), one defines, for s=1, . . . , S

R(n, s,w) ={t ∈ Vn|t contains exactly s occurrences of H&
& t ends with H ∈ H(w)}

(3)

These sets are called R-sets.

Remark. We remark that

R(n, s, ε) ={t ∈ Vn|t contains exactly s occurrences of H&
& t ends with H ∈ H}

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 5 of 21

Note, if t ∈ E(n, s, r) then t ends with a word H from
H(r), where r = rpred(H). In contrast, if t ∈ R(n, s,w)

then t ends with a word H from H(w), i.e. w is a
suffix of H.

Example 4. Consider the pattern H = {ACAGCTA,
ACATATA, CTTTCGC, TACCACA} from the example 1.
And consider the text t1=CTTTCGCCGAATCACAGCTA.
The texts is of length 20, contains exactly 2 occur-
rences of H (the occurrences are given in bold) and ends
with ACAGCTA. Obviously, rpred(ACAGCTA) = TA.
Thus t1 is in B(20, 1), B(20, 2), E(20, 1, TA), E(20, 2, TA),
R(20, 2, TA), R(20, 2, A) and R(20, 2, ε).

Example 5. Consider the pattern H from the previ-
ous examples and the set E(20, 2, TA). A text t from
E(20, 2, TA) is of length 20, has at least 2 occurrences ofH
and ends with a word H fromH such that rpred(H)=TA.
Obviously, H is ACAGCTA or ACATATA. The words
ACAGCTA and ACATATA are from the same class
H∗(ACA,TA). For example, texts t1 = CTTTCGCCGA
ATCACAGCTA, t2 = CTTTCGCGGTACCACATATA,
t3 = TACCACATATACCACAGCTA, t4 = ACGTTT
CCATACCACAGCTA, t5=ACTAAGACAGCTACATATA
are in E(20, 2, TA). The occurrences ofH are given in bold
or italic.

Definition 9. Given a right deep node r ∈ DROV (H),
one defines, for s = 1, . . . , S

RE(n, s, r) = {t ∈ R(n, s, r)|t ends with H ∈ H̃(r)}.
(4)

Remark that

RE(n, s, r) = E(n, s, r) \ E(n, s + 1, r). (5)

Example 6. Consider the pattern

H1 =H ∪ ATAGTCG = {ACAGCTA, ACATATA,
ATAGTCG, CTTTCGC, TACCACA},

where H is the pattern from the previous examples.
Obviously, OV (H1) = {ε, A, ACA, ATA, C, TA}. Con-
sider the texts t1 = CTTTCGCCGAATCACAGCTA and
t5 = ACTAAGACAGCTACATATA. The texts t1 and t5
belong to R(20, 2, TA) because the texts: 1) have length 20;
2) contain exactly two occurrences of H1 and 3) end with
the words fromH1(TA), here TA is the suffix of the words.
Also the text t1 is in RE(20, 2, TA) because it ends with
ACAGCTA, and rpred(ACAGCTA) = TA. In contrast,
t5 is not in RE(20, 2, TA) because it ends with ACATATA,
and rpred(ACATATA) = ATA.

The following proposition gives the inductive relations
allowing effective computation of probabilities of R-sets.

Proposition1. Let w ∈ OV (H). If w is a deep right node,
i.e. w = rpred(H) for a word H ∈ H, then

R(n, s,w) = RE(n, s,w) ∪
⎛
⎝ ⋃

x∈OV (H):w=rpred(x)
R(n, s, x)

⎞
⎠,

(6)

otherwise,

R(n, s,w) =
⋃

x∈OV (H):w=rpred(x)

R(n, s, x). (7)

The proof follows from the definition of R-sets.

Example 7. Lets illustrate the proposition 1 with the
data from the example 6. As we have seen before,
t1, t5 ∈ R(20, 2, TA). Further, t1 ∈ RE(20, 2, TA), and
t5 ∈ R(20, 2, ATA). Here, TA = rpred(ATA). Also note,
R(20, 2, ATA) = RE(20, 2, ATA).

Remark. For given n and s, we have to compute the
probabilities of sets R(n, s,w) for all w ∈ OV (H). The
equations (6) and (7) allow us to do this by recur-
sive traversal of OV (H) from the leaves (deep nodes)
of OvGraph to the root according to the right edges.
The calculation starts from probabilities of RE-sets found
according to the equation (5).

Belowwe introduceD-sets and give the equations forD-
sets, R-sets and E-sets leading to recursive equations for
E-sets probabilities. The D-sets defined below consist of
texts of length n containing at least s occurrences of the
pattern H, ending with a given non-empty overlap word
w that has a common part with the s-th occurrence of the
patternH.

Definition 10. Let w ∈ OV (H), w �= ε, k ≥ 1.

D(k, s,w) = {t ∈ B(k, s)|w is a suffix of t &
& s -th occurrence of the pattern H intersects
the suffix w}. (8)

By definition, D(k, s, ε) = ∅.
Notation. Below we will use the following notations:

1) len(x), for the length of a word x; 2) |M|, for the number
of words in a set of wordsM.

Notation. For a prefix w ∈ OV (H) and any integer n,
one denotes

k(n,w) = n − m + len(w),

wherem is the length of words fromH.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 6 of 21

Example 8. Let n = 20 and s = 2. Consider the pattern
H = {ACAGCTA, ACATATA, CTTTCGC, TACCACA}
and the texts t4 = ACGTTTCCATACCACAGCTA,
t5 = ACTAAGACAGCTACATATA from the example 5.
In the both cases, the first occurrence of H intersects the
ending occurrence of H. The texts end with words from
the class H∗(ACA,TA) = {ACAGCTA, ACATATA}.

Consider the overlap w = ACA. Then k(n,w) = 16. Con-
sider the prefixes t4[1, 16]= ACGTTTCCATACCACA
and t5[1, 16]= ACTAAGACAGCTACA of the texts.
For these prefixes we have: (1) their length is 16; (2)
the prefixes end with ACA; (3) the prefixes have at
least s − 1 = 1 occurrence of H and (4) the first
occurrence of H intersects the suffix ACA. Thus the
prefixes t4[1, 16] and t5[1, 16] are in D(16, 1, ACA). Fur-
ther, t4 and t5 are in D(16, 1, ACA) · Back(H∗(ACA,TA)),
where Back(H∗(ACA,TA)) = {GCTA,TATA}. Note, that
t5[1, 14] also belongs to D(14, 1, A).
The next propositions describe the relation between

D-sets and R-sets.

Proposition 2. Let w ∈ OV (H), w �= ε. Then

D(k(n,w), s,w) =
=

⋃
x∈OverlapPr efix(w)

R(k(n,w)−len(Back(x,w)),s,x)·Back(x,w).

(9)

Proof: [see Additional file 1].
Informally speaking, x is the common part of the s-th

occurrence of the patternH in the text t ∈ D(k(n,w), s,w)

and the suffix w of the text t. Remark that according to the
definition 5: (1) ε is not in OverlapPrefix(w), (2) w is in
OverlapPrefix(w).

Proposition 3. Let w ∈ OV (H) \ ε, n ≥ m, s ≥ 1. Then

D(k(n,w), s,w) =D(k(n, lpred(w)), s, lpred(w))×
× Back(w) ∪ R(k(n,w), s,w) .

(10)

Proof: Follows from the proposition 2 [see Additional
file 1].

Corollary 1. If lpred(w) = ε thenD(n, s,w) = R(n, s,w).

One observes that, whenever n < m , B(n, s) = ∅, and for
allw∈OV (H) and r∈DROV (H), R(n, s,w)=E(n, s, r)= ∅.
Now we are ready to formulate the main theorem of the

section. The theorem gives recursive equations for B-sets
and E-sets. The main equations (13)–(15) are based on
the following observation. The set E(n, s + 1, r), s ≥ 1,

can be divided in two disjoint sets: F(n, s + 1, r) and
C(n, s + 1, r). The set F(n, s + 1, r) consists of such words
that s-th occurrence of the pattern H does not intersect
the ending occurrence ofH. And C(n, s + 1, r) consists of
those texts t from E(n, s + 1, r) that s-th occurrence of H
in t intersects the ending occurrence ofH.

Theorem 1. Let n ≥ m, s ≥ 1 and r ∈ DROV (H), i.e. r
is a right deep node.

1. Sets B(n, s) and E(n, s, r) meet the following
equations:

B(n, s) = B(n − 1, s) · V ∪ R(n, s, ε) (11)
E(n, 1, r) = Vn−m · H̃(r) (12)

F(n, s + 1, r) = B(n − m, s) · H̃(r) (13)
C(n, s + 1, r) =

⋃
w:(w,r) is a deep edge

D(k(n,w), s,w) ×

×Back(H∗(w, r)) (14)
E(n, s + 1, r) = F(n, s + 1, r) ∪ C(n, s + 1, r) (15)

Note, that (w, r) is a deep edge iffH∗(w, r) ∈ P(H),
see definition 3.

2. Unions (11), (14) and (15) are disjoint, i.e.

B(n − 1, s) · V ∩ R(n, s, ε) = ∅ ;

if (w, r) �= (v, x) then

D(k(n,w), s,w) · Back(H∗(w, r)) ∩ D(k(n, v), s, v) ×
× Back(H∗(v, x)) = ∅;
F(n, s + 1, r) ∩ C(n, s + 1, r) = ∅.

Example 9. The statements (13)–(15) can be illustrated
with the data from the examples 5 and 8. Let n = 20, s = 1,
r = TA. Then (15) can be rewritten as

E(20, 2, TA) = F(20, 2, TA) + C(20, 2, TA).

Consider the texts t1, . . . , t5 from the example 5.

In each of the texts t1, t2, t3 the ending occurrence of
the pattern does not intersect the first occurrence. There-
fore the texts are in F(20, 2, TA). Note, that the ending
occurrence ACATATA of the pattern in t2 intersects the
second occurrence but not the first. Consider the prefixes
of t1, t2 and t3 of length n − m = 20 − 7 = 13, t1[1, 13]=
CTTTCGCCGAATC, t2[1, 13]= CTTTCGCGGTACC
and t3[1, 13]= TACCACATATACC. The prefixes con-
tain at least one occurrence of H, i.e. the prefixes are
in B(13, 1). Thus t1, t2, t3 ∈ B(13, 1) · H̃(TA), that is
in agreement with the statement (13) of the theorem.
Obviously,

H̃(TA) = H(TA) = H∗(ACA, TA) =
= {ACAGCTA, ACATATA}.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 7 of 21

In contrast, in each of the texts t4 and t5 the last
occurrence of the pattern intersects the first occurrence.
Therefore the texts t4, t5 ∈ C(20, 2, TA). According to
the example 7, the texts t4, t5 are in D(16, 1, ACA) ·
Back(H∗(ACA,TA)), that illustrates the statement (14) of
the theorem.
Note, there is only one overlapw such thatH∗(w, TA) �= ∅,

that is w = ACA. Thus

C(20, 2, TA) = D(16, 1, ACA) · Back(H∗(ACA,TA)).

Proof:

1. Consider statement (11). A text t is in B(n, s) if and
only if either its prefix of length n − 1 contains at
least s occurrences ofH or a s-th occurrenceH from
H ends at position n. In the first case, t is in
B(n − m, s) · V. In the second case, text t belongs to
R(n, s, ε). The two cases are mutually exclusive;
therefore B(n, s) is a disjoint union and (11) is proved.

2. The statement (12) directly follows from the
definition of E(n, 1, r).

3. Consider the statement (13).

(a) First, we prove that
F(n, s + 1, r) ⊆ B(n − m, s) · H̃(r). When a
text t is in F(n, s + 1, r), it ends with a word
H ∈ H such that r = rpred(H), i.e. H ∈ H̃(r).
The last occurrenceH of the pattern does not
intersect the s-th occurrence in the text t.
Thus the prefix of t of length n − m contains
at least s occurrences ofH, i.e. it is in
B(n − m, s), wherem is the length of pattern
words. Therefore t is in B(n − m, s) · H̃(r).

(b) Obviously, if t ∈ B(n − m, s) · H̃(r) then

• t has the length n;
• t contains at least s + 1 occurrences of

the patternH;
• s-th occurrence ofH lies on the prefix of

t of length n − m, i. e. it does not
intersect the last occurrence;

• t ends with H ∈ H̃(r).

Therefore t ∈ F(n, s + 1, r).

4. Consider the statement (14). Let Y denote the right
side of equation (14).

(a) Prove that C(n, s + 1, r) ⊆ Y . If a text t is in
C(n, s + 1, r) then it ends with a word
H ∈ H̃(r). The last occurrenceH intersects
the s-th occurrence of the pattern in the text
t. Let H1 be the s-th occurrence ofH in t, and
x be the overlap between H1 and H in t.
Obviously, x ∈ OverlapPrefix(w), where
w = lpred(H), see definition 5 of

OverlapPrefix(w). The prefix of t of length
k(n, x), where k(n, x) = n − m + len(x),
contains exactly s occurrences ofH and ends
with H1, whereH1 ∈ H(x). By definition of R-
sets, the prefix is in R(k(n, x), s, x). Therefore
t ∈ R(k(n, x), s, x) ·Back(x, H). Observing that

Back(x, H) = Back(x,w) · Back(H)

we obtain

t ∈ R(k(n, x), s, x) · Back(x,w) · Back(H).

Note, k(n, x) = k(n,w) − len(Back(x,w)),
where len(Back(x,w)) = len(w) − len(x).
According to the proposition 2,

R(k(n,w) − len(Back(x,w)), s, x) · Back(x,w) ⊆
⊆ D(k(n,w), s,w).

Thus

t ∈ D(k(n,w), s,w) · Back(H).

Note, if H ∈ H∗(w, r) then
Back(H) ⊆ Back(H∗(w, r)). Therefore,

D(k(n,w), s,w) · Back(H) ⊆ D(k(n,w), s,w)×
× Back(H∗(w, r)).

This yields that t ∈ Y .
(b) Proof that Y ⊆ C(n, s + 1, r). Let t ∈ Y , i.e

t ∈ D(k(n,w), s,w) · Back(H∗(w, r)). By the
definition of D-sets,

• t has the length n;
• t contains at least s + 1 occurrences of

the pattern;
• s-th occurrence intersects (s + 1)-th

occurrence ofH;
• t ends with H ∈ H̃(r).

Thus t ∈ C(n, s + 1, r).

5. The statement (15) follows from the definitions of F
and C-sets.

Notation. Given two integers n and s, and a class
H∗(w, r), one introduces

C′(n, s + 1,w, r) = D(k(n, x), s,w) · Back(H∗(w, r));
(16)

Obviously,

C(n, s + 1, r) =
⋃

w: (w,r) is a deep edge
C′(n, s + 1,w, r).

(17)

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 8 of 21

Remark. The unions in equations (11), (14), (15) and
(17) are disjoint. Therefore the probability of the set in the
left part of an equation is the sum of probabilities of sets
in the right side.

Probabilitymodels
We suppose that the probability distribution is described
by a Hidden Markov Model (HMM). In this section,
we recall some basic notions about HMMs and intro-
duce the needed notations. In fact, it is shown in [6]
that our definition is equivalent to the classical definition
of HMM [40].

Definition 11. A HMM G is a triple G = 〈Q, q0,π〉,
where Q is the set of states, q0 ∈ Q is an initial state, and π

is a function: Q×V×Q → [0, 1] such that π(q̃, a, q) is the
probability, being in state q̃, to generate symbol a and tra-
verse to state q. For any state q̃ in Q, the function π meets
the condition:

∑
a∈V

∑
q∈Q

π(q̃, a, q) = 1 . (18)

AHMMG is called deterministic if for any (q̃, a) inQ×V
there is only one state q such that π(q̃, a, q) > 0. In this
case the function π can be described with two functions:

1. a transition function φ : Q × V → Q;
2. a probability function ρ : Q × V → [0, 1].

Namely, φ(q̃, a) is equal to the unique state q such that
π(q̃, a, q) > 0 and ρ(q̃, a) is π(q̃, a, q).
A HMM G = 〈Q, q0,π〉 can be represented as a graph

whereQ is the set of vertices. Each edge is assigned with a
label a ∈ V and with a probability p ∈ (0; 1]. There exists
an edge from q̃ to q with the label a and probability p iff
π(q̃, a, q) > 0 and p = π(q̃, a, q). The graph is called the
traversal graph of HMM G.

Definition 12. Let h be a path in the traversal graph
of the HMM G. The label of h is the concatenation of the
labels of edges that constitute the path h. The probability
Prob(h) of a path h is the product of the probabilities of the
edges that constitute the path h.

Definition 13. The probability Prob(t) of a word t with
respect to the HMM G is the sum of probabilities of all
paths that start in the initial state q0 and have the label t.
Let q and q̃ belong to Q and t be a word. By definition,

the probability Prob(q̃, t, q) to move from the state q̃ to the
state q with the emitted word t is the sum of probabilities
of all paths starting in the state q̃, ending in the state q and
having the word label t.

To describe effective algorithms related to HMMs, we
need the notion of reachability.

Definition 14. Given a state q̃ and a word t, we define

ReachState(t, q̃) = {q|Prob(q̃, t, q) > 0}.
Given a state q and a string t, we define

StartState(t, q) = {q̃|Prob(q̃, t, q) > 0}.
A state q is called t-reachable from a state q̃ if and only

if Prob(q̃, t, q) > 0.

Definition 15. For a given word t, AllState(t) is the set
of states that are reachable from initial state q0 by at least
one text with suffix t. For a set of words M,

AllState(M) =
⋃
t∈M

AllState(t).

Remark.

AllState(t) =
⋃

t′∈V∗.t
ReachState(t′, q0). (19)

Definition 16. Let w be an overlap word. We denote by
PriorState(w, q) the set of states q̃ ∈ AllState(lpred(w))

such that q is Back(w)-reachable from q̃, i.e.

PriorState(w, q) =AllState(lpred(w))∩
∩ StartState(Back(w), q);

Analogously, for each deep edge (w, r) and its associated
class H∗(w, r), one notes

PriorState(H∗(w, r), q) = AllState(w) ∩

∩
⎡
⎣ ⋃
H∈H∗(w,r)

StartState(Back(H), q)

⎤
⎦.

HMMand probabilistic automata
The definition of HMM is very close to the definition of
probabilistic automaton PA, [41,42]. The main difference
lies in the interpretation of the behavior of a model. For
a HMM, one considers a label as a symbol emitted by
the HMM; for automata, one imagines an automaton that
processes a given word letter by letter. Another difference
connected with the previous one is that PAs are typically
used to describe word sets; thus, for a given PA, the sub-
set of accepting states is defined. HMMs are mainly used
to describe probability models and thus have no accepting
states.
In applications, one often uses a probabilistic automata

built as a Cartesian product of a deterministic automaton
accepting a given set of words and a HMM describing the
word probabilities, see e.g. [6,43]. A similar construction
is used below. In fact, we describe generalized proba-
bilistic automata, GPA. As opposed to PAs, the edges in

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 9 of 21

a graph that represents our automaton are labeled with
words rather than with letters, and thus it can be named
a generalized probabilistic automaton, analogously to the
definition of generalized HMM [44].
An originality of SUFPREF is that words from pattern

H, or classes, that represent terminal states in classical
automata need not be explicitly represented. Neverthe-
less, each class is uniquely associated to one deep edge.

Probabilities equations for HMM
In the section above the main text sets and corresponding
equations were described. One can apply the equations
to compute probabilities of the text sets for arbitrary
probability models. Here we give formulas to compute
the probabilities for an HMM. The formulas are based
on the following observations. First, all unions in the
text equations are disjoint. Second, an item of a set
union is a set with already known probability or con-
catenation of such sets. In the latter case the probability
Prob(q1, L1 · L2, q2) can be computed by the formula

Prob(q1, L1 ·L2, q2) =
∑
q̃∈Q

Prob(q1, L1, q̃) ·Prob(q̃, L2, q2),

(20)

where Prob(q′, L, q) is a probability that, being in the state
q′, the chain will go to the state q emitting a word t from
the set L.
Let n, s be integers, w ∈ OV (H), r ∈ DROV (H) and

q ∈ Q. Then

1. From (11) follows

Prob(B(n, s), q) =
∑
q̃∈Q

Prob(B(n − 1, s), q̃) · π(q̃, q)+

+ Prob(R(n, s, ε), q),
(21)

where π(q̃, q) = ∑
a∈V π(q̃, a, q);

2. From (12) follows

Prob(E(n, 1, r), q) =
∑

q̃∈StartState(H̃(r),q)

Prob(Vn−m, q̃)×

× Prob(q̃, H̃(r), q);
(22)

3. From (13)–(15) and (17) follows

Prob(F(n, s + 1, r), q) =
∑

q̃∈StartState(H̃(r),q)

Prob(B(n − m, s), q̄)×

× Prob(q̃, H̃(r), q);
(23)

Pr ob(C′(n, s+1,w, r), q) =
=

∑
q̃∈PriorState(H∗(w,r),q)

Pr ob(D(k(n, x), s,w), q̄)×

× Pr ob(q̃,Back(H∗(w, r)), q);
(24)

Pr ob(E(n, s + 1, r), q) = Pr ob(F(n, s + 1, r), q)+

+
⎛
⎝ ∑

w: (w,r) is a deep edge

Pr ob(C′(n, s + 1,w, r), q)

⎞
⎠;

(25)

4. Let lpred(w) �= ε. Then from (10) follows

Pr ob(D(k(n,w), s,w), q) =
∑

q̃∈PriorCloseState(w,q)
Pr ob(D(k(n, lpred(w)), s, lpred(w)), q̃)·
× Pr ob(q̃,Back(w), q)

+ Pr ob(R(k(n,w), s,w), q);

(26)

If lpred(w) = ε then

Prob(D(n, s,w), q) = Prob(R(n, s,w), q);

5. From (5) follows

Prob(RE(n, s, r), q) =Prob(E(n, s, r), q)−
− Prob(E(n, s + 1, r), q);

(27)

6. Let w be a right deep node. Then from (6) follows

Prob(R(n, s,w), q) =Prob(RE(n, s,w), q)+

+
⎛
⎝ ∑

x∈OV (H):w=rpred(x)

Prob(R(n, s, x), q)

⎞
⎠;

(28)

Otherwise, from (7) follows

Prob(R(n, s,w), q) =
∑

x∈OV (H):w=rpred(x)

Prob(R(n, s, x), q).

(29)

Algorithms
General description
Our goal is to compute Prob(B(N , S)), that is the probabil-
ity to find at least S occurrences of a patternH in a random
text of length N , given a HMM G = 〈Q, q0,π〉. The algo-

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 10 of 21

rithmSUFPREF, see Algorithm 1, computes the probability
by induction on a text length n, where m ≤ n ≤ N , and,
for a given n, by induction on a number of occurrences s,
where 1 ≤ s ≤ S.
The computation within the main loop is based on

equations (21)–(29), related to B-sets, C-sets, F-sets, E-
sets, D-sets, RE-sets and R-sets.
The computation related to texts of length n will be

referred to as n-th stage of the algorithm’s work. Themain
computation within the n-th stage is performed by depth-
first traversal of OvGraph following left and deep edges.
During the depth-first traversal for each visited node
w ∈ OV (H), the algorithm computes the probabilities of
RE-sets and auxiliary probabilities of D, F and C-sets by
induction on number of occurrences s = 1, . . . , S. Within
the traversal we store the probabilities of D-sets related to
the nodes on the path from the root of OvGraph to a cur-
rent node w, i.e. the nodes x fromOverlapPrefix(w), in the
temporary arrays TempDProb(x, q) of the size S; the size of
the data related to a node x on the path is O(|Q| × S), see
sub-section “Main loop” below. Then update of auxiliary
information stored in nodes of OvGraph, namely, proba-
bilities of R-sets, is performed by a bottom-up traversal of
OvGraph using right edges.
Computation on the inductive equations relies on a

generic procedure, analogous to the forward algorithm for
HMM [40], see also [5].

Preprocessing and data structures
On the preprocessing stage we initialize the global data
structures of the algorithm, i.e. the OvGraph, including
auxiliary structures assigned to its nodes and some other
structures that are described at the end of this subsection.

Overlap graph The graph OvGraph is built from the
Aho-Corasick trie TH for the set H [45]. The nodes
belonging to the OvGraph correspond to the overlaps
and therefore can be easily revealed using suffix links of
the Aho-Corasick trie, see [37] and [Additional file 2],
for details of the procedure. The nodes of OvGraph are
assigned with additional data (constant data and data to
be updated at each stage n = m+ 1, . . . ,N). All these data
are initialized at the preprocessing stage, see below.

Constant transition probabilities related to nodes of
overlap graph During the computation, algorithm SUF-
PREF uses some probabilities that are constant and can be
precomputed and stored.

• For each node w and all states q in AllState(w) and q̃
in PriorState(w, q), we store the “left transition
probability” Prob(q̃,Back(w), q), see definitions 15

and 16. The left transition probabilities are used for
the computation of D-sets probabilities, see (26);

• Given a right deep node r, the “word probabilities”
Prob(q̃, H̃(r), q) are memorized for states q in
AllState(r) and q̃ in Q. They are used to compute
probabilities of the F-sets, see (23);

• Given a right deep node r, we store, for each class
H∗(w, r), the “deep transition probabilities”
Prob(q̃,Back(H∗(w, r)), q) where q ranges over
AllState(H∗(w, r)) and q̃ ranges over
PriorState(H∗(w, r), q). The probabilities are needed
for the computation of C-sets probabilities, see (24).

The sets of states AllState(w) and PriorState(w, q), left
and deep transition probabilities and word probabilities
are computed in a depth-first traversal along the left edges
of OvGraph [see Additional file 2].

Updatable probabilities related to nodes of overlap
graph At the beginning of the n-th stage, for each pair
〈w, q〉, where w ∈ OV (H) and q ∈ AllState(w) we store a
(m − len(w)) × S matrix RProbs(w, q), where

RProbs(w, q)[i] [s]= Prob(R(l, s,w), q);

l ∈ [k(n,w), n − 1] ; s = 1, . . . , S; i = l mod (m − len(w)).
The probabilities were computed at the previous stages.
And the values in the matrices are updated at the end of
the n-th stage.
At the preprocessing stage, we compute the probabili-

ties for n = 1, . . . ,m; s = 1, . . . , S and q ∈ AllState(w)

according to the formulas:

Prob(R(m, 1,w), q) = Prob(H(w), q);

if n < m or (n = m and s > 1),

Prob(R(n, s,w), q) = 0.

The global data unrelated to overlap graph Besides the
data related to nodes of OvGraph we store the following
data.

• Transition probabilities. For each q̃, q ∈ Q we store
the constant probability

TransProb(q̃, q) =
∑
a∈V

π(q̃, a, q);

At the beginning of n-th stage, the following values
computed at the previous stages are stored

• For each q ∈ Q, updatable probabilities
Prob(Vn−m−1, q). They are used for computation of
Prob(E(n, 1, r), q) by the formula (22);

• For each s = 1, . . . , S and q ∈ Q, updatable B-sets
probabilities Prob(B(n − m − 1, s), q). At the

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 11 of 21

preprocessing stage, we compute the probabilities for
n = 1, . . . ,m, s = 1, . . . , S and q ∈ Q according to the
formulas:

Prob(B(m, 1), q) = Prob(H, q);

Prob(B(n, s), q) = 0, if n < m

or (n = m and s > 1).

Main loop
The aim of the n-th stage (main loop, see lines 2–13 of the
algorithm SUFPREF, see Algorithm 1) is to compute for all
s = 1, . . . , S the values

• Prob(B(n − m, s), q), n > 2m;
• Prob(R(n, s,w), q) for all w ∈ OV (H),

q ∈ AllState(w).

To compute the probabilities Prob(R(n, s,w), q) the
algorithm for each pair 〈w, q〉, where w ∈ OV (H),
q ∈ AllState(w), uses local array TempRProb(w, q) of size
S. Initially, for each s, TempRProb(w, q)[s]= 0.
The value n is not changed within the main loop. The

body of the loop consists of three parts.
Within the part 2.1, for all s = 1, . . . , S the val-

ues Prob(B(n − m, s), q) are computed according to the
formula (21); the values Prob(B(n − m − 1, s), q) and
Prob(R(n − m, s, ε), q) were computed and stored at the
previous stages.
The aim of the part 2.2 (procedure COMPUT-

EREPROB, see Algorithm 2) is to compute the values
Prob(RE(n, s, r), q) for all r ∈ DROV (H), q ∈ AllState(r)
and s = 1, . . . , S.
The computation is performed using the recursive

depth-first traversal of OvGraph along the left edges; it is
based on the formulas (22)–(27). Let a node w is visited, it
corresponds to the call of COMPUTEREPROB(n,w). Firstly,
COMPUTEREPROB computes Prob(E(n, 1,w), q) by the
formula (22) and puts the values to TermRProb(w, q)[1].
Then by induction on s = 1, . . . , S the procedure com-

putes the following probabilities.
Within the part B, see lines 8–14, for all states

q ∈ AllState(w), the procedure computes Prob(D(k(n,w),
s,w), q) by the formula (26). To make the computation
by the formula (26) one needs the value Prob(D(k(n,
lpred(w)), s, lpred(w)), q̃); the value is stored in the array
TempDProb(w, q), see sub-section “General description”.
Now consider the part C of Algorithm 2, see lines 15–

26. Although the calculation of probabilities of R-sets and
RE-sets is based on the formulas (25) and (27) we avoid
explicit usage of E-sets in our calculations. From (25) and
(27) we have (here s > 1)

Pr ob(RE(n, s, r), q) = Pr ob(E(n, s, r), q) − Pr ob(E(n, s + 1, r), q) =
= Pr ob(F(n, s, r), q) +
+

∑
w:(w,r) is a deep edge

Pr ob(C′(n, s,w, r), q) −

− Pr ob(F(n, s + 1, r), q)−
−

∑
w:(w,r) is a deep edge

Pr ob(C′(n, s + 1,w, r), q) =

= (Pr ob(F(n, s, r), q)− Pr ob(F(n, s+ 1, r), q))+
+

∑
w:(w,r) is a deep edge

(Pr ob(C′(n, s,w, r), q)− Pr ob(C′(n, s+1,w, r), q)).

For s = 1 we have

Prob(RE(n, 1, r), q) = Prob(E(n, 1, r), q) − Prob(E(n, 2, r), q) =
= Prob(E(n, 1, r), q) − Prob(F(n, 2, r), q)

−
∑

w:(w,r) is a deep edge
Prob(C′(n, 2,w, r), q).

The value Prob(E(n, 1, r), q) was computed and stored
in TempRProb(w, q)[1] at the part A of the procedure.
During the computation we accumulate the needed prob-
abilities in the arrays TempRProb(w, q), see section C
of the algorithm 2, lines 15–26. Visiting a left deep
node w, for each r such that there is a deep edge
(w, r), and for each q ∈ AllState(r), we firstly calcu-
late the value Prob(C′(n, s + 1,w, r), q) using (24). Then
add to the current value of TempRProb(w, q)[s] the value
Prob(C′(n, s,w, r), q) − Prob(C′(n, s + 1,w, r), q) (if s > 1)
or substract the value Prob(C′(n, 2,w, r), q) (if s = 1).
In section D of the Algorithm 2, see lines 27–36 we

analogously take into account the probabilities of F-sets.
At part 2.3 of the algorithm SUFPREF (proce-

dure COMPUTERPROB, see Algorithm 3), the values
Prob(R(n, s,w), q) are computed according to the formulas
(28), (29).
The computation is done by a recursive bottom-up

traversal of OvGraph along the right edges. Also the pro-
cedure records the computed Prob(R(n, s,w), q) probabil-
ities to the corresponding cells of the matrix RProb(w, q)
and initializes elements of TempRProb(w, q) by zeros.

Remark. The above traversals are implemented with
a recursive procedure initially called at the root (node
corresponding to ε) of OvGraph, see lines 11, 12 of the
algorithm SUFPREF (Algorithm 1).

Post-processing
At the post-processing step of the algorithm (see
Algorithm 1, lines 14–19), P-value Prob(B(N , S)) follows
by summation over Q states:

Prob(B(N , S)) =
∑
q∈Q

Prob(B(N , S), q) .

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 12 of 21

Algorithm 1: SUFPREF
Input: an alphabet V, HMM G =< Q, q0,π >, the length N of a random text, desired number S of occurrences of

pattern words, patternH
Output: Prob(B(N , S))
// 1. Pre-processing

1 Parsing of input data, creating of OvGraph, initialization of data structures corresponding to the nodes of OvGraph,
computing of B-sets and R-sets probabilities for n = m.

// 2. Main Loop
2 foreach n = m + 1, . . . ,N do

// 2.1. Computation of Prob(B(n − m, s), q) and Prob(Vn−m, q)
3 if n > 2m then
4 foreach q ∈ Q do
5 foreach s = 1, . . . , S do
6 Compute Prob(B(n − m, s), q) using (21);
7 end
8 Compute Prob(Vn−m, q);
9 end

10 end
// 2.2. Computation of Prob(RE(n, s, r), q) for all
// s = 1, . . . , S; r ∈ DROV (H); q ∈ AllState(r)
// using depth-first traversal of OvGraph following left edges

11 COMPUTEREPROB(n, ε); // see Algorithm 2

// 2.3. Computation of Prob(R(n, s,w), q) for all
// s = 1, . . . , S; w ∈ OV (H); q ∈ AllState(w)

// using bottom-up traversal of OvGraph following right edges
12 COMPUTERPROB(n, ε); // see Algorithm 3

13 end

// 3. Post-processing

14 foreach n = N − m + 1, . . . ,N do
15 foreach q ∈ Q do
16 Compute Prob(B(n, S), q) by the formula (21);
17 end
18 end
19 Compute Prob(B(N , S)) by summation of the values Prob(B(N , S), q);

Discussion
Space complexity The data stored consist of input data,
temporary data used at the preprocessing step, the main
data structure OvGraph and the working data unrelated
to the OvGraph. The detailed description of all of the
data is given in the section “Preprocessing and data struc-
tures”. The space complexity is mainly determined by the
memory needed for the data related to the OvGraph and
temporary data used at the preprocessing step. We first
briefly consider the data unrelated to the overlap graph;
then we consider OvGraph data. The input data consist of
the text length N , the number of occurrences S, a repre-
sentation of an HMM and a patternH. The data related to

the pattern representation are included in the data related
to OvGraph nodes and will be considered below. Storage
size for an HMM isO(|Q|2×|V|). Thus the input data size
is O(|Q|2 × |V|).
At the preprocessing stage the algorithm uses a

temporary structure, the Aho-Corasick trie, to build
the OvGraph and temporary data structures to store
intermediate probabilities Prob(q̃,Back(w), q) for each
w ∈ OV (H), and probabilities Prob(q̃,Back(H), q) and
Prob(q̃, H, q) for each H ∈ H, where q̃, q ∈ Q. The mem-
ory needed for Aho-Corasick trie is O(m × |H|) where
m is the pattern length. The memory needed to store the
intermediate probabilities is O(|Q|2 × (|OV (H)| + |H|)).

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 13 of 21

Algorithm 2: COMPUTEREPROB

Input: integer n, n > m; node w of OvGraph
Output: arrays TempRProb(w, q)[] with probabilities Prob(RE(n, s,w)), if w is not right deep node then elements of

TempRProb(w, q)[] are zeros
// 1. Computations
// A. Computation of Prob(E(n, 1,w), q)

1 if w is right deep node then
2 foreach q ∈ AllState(w) do
3 Compute Prob(E(n, 1,w), q) using (22);
4 Put Prob(E(n, 1,w), q) to TempRProb(w, q)[1];
5 end
6 end
7 foreach s = 1, . . . , S do

// B. Computation of Prob(D(k(n,w), s,w), q)
8 if w �= ε then
9 foreach q ∈ AllState(w) do

10 Compute Prob(D(k(n,w), s,w), q) using (26);
11 end
12 else
13 Prob(D(k(n,w), s,w), q) = 0;
14 end

// C. Computation of Prob(C′(n, s + 1,w, r), q)
15 if w is left deep node then
16 foreach deep edge (w, r) do
17 foreach q ∈ AllState(r) do
18 Compute Prob(C′(n, s + 1,w, r), q) using (24);
19 if s = 1 then
20 TempRProb(r, q)[1] –=Prob(C′(n, 2,w, r), q);
21 else
22 TempRProb(r, q)[s]+=Prob(C′(n, s,w, r), q) − Prob(C′(n, s + 1,w, r), q);
23 end
24 end
25 end
26 end

// D. Computation of Prob(F(n, s + 1,w), q)
27 if w is right deep node then
28 foreach q ∈ AllState(w) do
29 Compute Prob(F(n, s + 1,w), q) using (23);
30 if s = 1 then
31 TempRProb(w, q)[1] –=Prob(F(n, 2,w), q);
32 else
33 TempRProb(w, q)[s]+=Prob(F(n, s,w), q) − Prob(F(n, s + 1,w), q);
34 end
35 end
36 end
37 end

// 2. Recursion. Depth-first traversal of OvGraph following left edges
38 foreach x such that w = lpred(x) do
39 COMPUTEREPROB(n, x);
40 end

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 14 of 21

Algorithm 3: COMPUTERPROB

Input: integer n, n > m; w ∈ OV (H)

Output: probabilities Prob(R(n, s,w)), the
probabilities are stored in the matrices
RProb(w, q), q ∈ AllState(w)

1 pos = nmod (m − len(w));
// Recursion. Bottom-up traversal of

OvGraph following right edges
2 foreach x such that w = rpred(x) do
3 COMPUTERPROB(n, x);
4 foreach q′ ∈ AllState(x) do
5 foreach s = 1, . . . , S do
6 TempRProb(w, q′)[s]+=TempRProb(x, q′)[s];

7 TempProb(x, q′)[s]=0;
8 end
9 end

10 end
11 foreach q ∈ AllState(w) do
12 foreach s = 1, . . . , S do
13 RProb(w, q)[s] [pos]=TempRProb(w, q)[s];
14 if w = ε then
15 TempRProb(w, q)[s]=0;
16 end
17 end
18 end

The temporary data structures used by sub-algorithms
in the preprocessing stage are released after their run-
ning. Thus, the total memory used during this stage is
O(|Q|2 × (|OV (H)| + |H|) + m × |H|).
The working data unrelated to OvGraph consist of B-

sets probabilities Prob(B(n−m−1, s), q) and probabilities
Prob(Vn−m−1, q), q ∈ Q. These data need O(|Q| × S) and
O(|Q|)memory, respectively.Within themain loop we use
local arrays withD-sets probabilities (the number of these
arrays is at most m × |Q|, see remark below) and arrays
TempRProb(w, q) (for all w ∈ OV (H), q ∈ AllState(w)).

These arrays are of size S. Therefore the necessary memory
to store all of the arrays isO(|Q|×S×m+|Q|×S×|OV (H)|).
As we will see, all this memory, except for the memory

needed to store Aho-Corasick trie, does not increase the
space complexity of the algorithm.

Remark. During processing of a node w in main loop
one stores arrays withD-set probabilities for all left prede-
cessors of w, i. e. for all x ∈ OverlapPrefix(x). The number
of left predecessors is bounded by the number of all pre-
fixes of w, that is len(w), where len(w) ≤ m. Thus the
number of arrays with D-sets probabilities used by the
algorithm during the performing of main loop is at most
m × |Q|.

Consider now the data related to the OvGraph. The
OvGraph structure is determined by the pattern H. The
number of nodes and the number of left and right edges
is O(|OV (H)|), that is upper bounded by m × |H|. How-
ever, usually |OV (H)| ≤ |H|, see Table 1. The number
of deep edges is equal to the number of classes, |P(H)|,
that is upper bounded by |H|. Then the storage size for
OvGraph is O(|OV (H)| + |H|). The data assigned to a
node of OvGraph consist of constant data and updatable
data. The constant data consist of left transition probabili-
ties assigned to the nodes of theOvGraph, deep transition
probabilities assigned to the deep edges and word prob-
abilities assigned to the right deep nodes. The updatable
data are probabilities of R-sets assigned to all nodes. More
precisely, left transition probabilities Prob(q̃,Back(w), q)
are stored in the memory associated with a node w;
deep transition probabilities Prob(q̃,Back(H∗(w, r)), q)
are stored in the memory associated with deep edge (w, r);
word probabilities Prob(q̃, H̃(r), q) are stored in the mem-
ory associated with a right deep node r. As a whole, it
gives

O(|Q|2 × |OV (H)|) + O(|Q|2 × |P(H)|) +
+ O(|Q|2 × |DROV (H)|) ≤
≤ O(|Q|2 × (|OV (H)| + |H|)).

Table 1 PSSM-based patterns of length 12

PatternH Fraction(H) H OV(H) P(H) NAC P-value

PSSM(12,9.63) 0.00001 169 14 57 468 2.1887831E-27

PSSM(12,8.69) 0.00003 503 22 125 1123 9.9588634E-22

PSSM(12,7.41) 0.0001 1682 49 395 3189 2.1630650E-16

PSSM(12,5.89) 0.0003 5045 157 1789 9070 3.9649240E-12

PSSM(12,4.01) 0.001 16835 488 8967 29297 2.0930535E-07

PSSM(12,2.04) 0.003 50490 1417 35313 83016 0.001494591

The number x in “PSSM(12,x)” denotes the cut-off. The P-values are given w.r.t. the text length and probability models described in the text of the paper. The
intermediate values of Fraction(H) (0.003, 0.0003, etc. instead of more common 0.005, 0.0005, etc.) were chosen to obtain more homogeneous log-scale.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 15 of 21

To store R-sets probabilities one needs O(S× |Q|×m×
|OV (H)|) memory. Thus the size of memory needed to
store global data related to OvGraph is

O(|Q|2 × (|OV (H)| + |H|) + |Q| × S×m× |OV (H)|).
Finally, the overall space complexity of the algorithm is

O(|Q|2 × (|OV (H)| + |H|) + |Q| × S × m × |OV (H)|+
+ m × |H|).

Observe that the storage of classes in deep nodes saves
a O(S × |Q| × m × |P(H)|) memory for R-sets.

Remark. The parameter |OV (H)| belongs to the
bounds of space and time complexities. It is upper
bounded by m × |H|. Assume that a pattern consists of
random words of length m generated according to the
uniform Bernoulli model. It was shown that in such case
|OV (H)| ≈ |H|, see [46] and supplementary materials,
file “Comparison_with_AhoPro.xls”. But for a majority of
patterns described by Position-Specific Scoring Matrices
and cut-offs that were considered in the present paper,
|OV (H)| ≤ 0.1 × |H|, see Table 1 in this paper and
[Additional file 3].

Time complexity The algorithm SUFPREF (see
Algorithm 1) consists of three parts: preprocessing, main
loop and post-processing. The time complexity of the pre-
processing part is mainly determined by the construction
of the Aho-Corasick trie and OvGraph, their traversals
and the computation of intermediate probabilities. The
complexity isO(|Q|2 ×m× (|OV (H)|+|H|). Some details
are given in [Additional file 2]. The time complexity of the
post-processing part (see lines 14–19) is O(m × |Q|2).
The time complexity of the algorithmSUFPREF is mainly

determined by the main loop (see lines 2–13), i.e. by the
total run-time of the computation of parts 2.1, 2.2 and 2.3
for n = m + 1, . . . ,N . Within the part 2.1 (lines 3–10),
computing probabilities Prob(B(n − m, s), q) for all
s = 1, . . . , S and q ∈ Q requires O(S × |Q|2) operations.
Consider the part 2.2 (procedure COMPUTEREPROB,

see Algorithm 2). The procedure performs computations
by depth-first traversal of OvGraph for all w ∈ OV (H).
For a given n and w the computation consists of four parts:
A, B, C and D. If w is right deep node then at the part
A (lines 1–6) one computes Prob(E(n, 1,w), q) for all q ∈
AllState(w); overall nodes this requiresO(|Q|2×|OV (H)|)
operations.
The parts B, C and D run for S values of s. To exe-

cute parts B, C and D (lines 8–14, 15–26 and 27–36
respectively) overall nodes of OvGraph one needs
O(S × |Q|2 × |OV (H)|), O(S × |Q|2 × (|OV (H)| + |H|))
and O(S × |Q|2 × |OV (H)|) operations respectively.
As a whole, O(S × |Q|2 × (|OV (H)| + |H|)) operations

are needed to execute COMPUTEREPROB.

Analogously, for computation of part 2.3 (see pro-
cedure COMPUTERPROB, see Algorithm 3) one needs
O(|Q|×S×|OV (H)|) operations. Therefore, the time com-
plexity of the algorithm SUFPREF for a general HMM is

O(N × S × |Q|2 × (|OV (H)| + |H|)).

Time and space asymptotics In the previous sub-section
we gave upper bounds of the space and time complexities
of the algorithm SUFPREF. All bounds are given as big-O
notations. For example, the time complexity bounds have
formN×S×λ(G)×μ(H), hereN is the text length, S is the
number of occurrences, λ(G) is a factor depending on the
HMMG andμ(H) is a factor depending on the patternH.
The estimation of space complexity is analogous except of
absence of factor N , see sub-section “Space complexity”
for details.
In the case of a general HMM λ(G) = k × |Q|2, here

|Q| is the number of states of the HMM G; the value of k
depends on features of the HMM.
We have performed computer experiments to get a

better understanding of the asymptotic behavior of time
and space complexity. Let NTrans be the number of states
where the HMM can transit in one step from a given state.
This parameter describes the “density” of an HMM; the
smaller NTrans, the smaller the complexities of the algo-
rithm. The factor λ(G) was studied as a function of NTrans
and the number of states NStates in used HMMs. We have
performed 96 = 4 × 24 series of experiments, 100 exper-
iments in each series. In all series we have used following
input data:

• the pattern is defined by a PSSM for transcription
factor FOXA2 from the database HOCOMOCO [47]
and cut-off 5.89 that corresponds to roughly 0.03% of
all words of length 12;

• number of occurrences is 10;
• text length is 1000.

Thus, a series differs from the others only with the used
HMMs. Each series is determined by the number NState
of states in the HMMs, and the number NTrans, see above.
The value NState ranges from 2 to 25, therefore 24 val-
ues of NState were considered. For each number of states
four values of NTrans were used, namely, 1; 2; 0.25 · NState
and NState. Given values NState and NTrans, we have cre-
ated 100 HMMs by the following randomized procedure.
For each state q̃, we firstly have randomly chosen NTrans
states q ∈ Q such that there exists a transition from q̃ to
q. In our models if there exists transition from q̃ to q then
π(q̃, a, q) > 0 for all a ∈ V. Then we assign to each triple
〈q̃, a, q〉, where a ∈ V, a random positive value π(q̃, a, q)
from [0, 1], and then normalize the values to make the
needed sums of probabilities equal to 1. For each series
we report average run-time and used space. The results

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 16 of 21

of the experiments are presented in Figure 2 and Figure 3.
The experiments show that for NTrans = 0.25 · NState and
NTrans = NState the time and space are not much differ-
ent. This is because most of states from Q are reachable
for nodes of overlap graph. In contrast, forNTrans = 1 (the
models are deterministic) the run-time and used space
are significantly less than in the case considered above.
The case NTrans = 2 is an intermediate case. Note that
Markov models are deterministic and correspond to the
case NTrans = 1.
In the casesNTrans = 2; 0.25 ·NState andNState, a propor-

tion k×|Q|2 is reached. The smaller isNTrans, the smaller is
k. When NTrans = 1, the function λ(G) has approximately
linear behavior.
Analogous experiments for patterns described by other

PSSMs and cut-offs show the same results. The results are
given in [Additional file 4].
Now let’s consider in details the complexity of the algo-

rithm for Bernoulli and Markov models.

Bernoulli models In a Bernoulli model, the set Q con-
tains only 1 state. Therefore formulas for space and time
complexities turn intoO(m×S×|OV (H)|+m×|H|) and
O(N × S × (|OV (H)| + |H|)). Note (see algorithm SUF-
PREF, Algorithm 1) that time and space complexity of the
algorithm does not depend on symbol probabilities given
by a Bernoulli model [see Additional file 5].

Markov models. Further refinements Complexity re-
sults are presented with (possibly rough) upper bounds.
In particular, the |Q|2 factor arises from transition prob-
abilities representation. It actually stands for the sum of

Figure 2 Average size of used memory of SUFPREF. The details of
the experiments are given in [Additional file 4]. The computer
environment is described in the subsection “Comparison with the
existing algorithms”.

Figure 3 Average run-time of SUFPREF. The details of the
experiments are given in [Additional file 4]. The computer
environment is described in the subsection “Comparison with the
existing algorithms”.

the cardinalities of PriorState(w, q) sets in a given node
w ∈ OV (H), q ∈ AllState(w).
In practical cases, this number may be significantly

smaller than |Q|2. In particular, this is the case for Markov
models that can be treated as a special case of Hidden
MarkovModels. Let K denote the order ofMarkovmodel.
For an overlap node w, such that len(w) ≥ K , the set
AllState(w) consists of only one state. We use the tech-
nique of “reachable states”, see section “Probability mod-
els” to take into account this issue. It does not decrease
the upper bounds in the case of a general HMM but leads
to a significant improvement of the software for Markov
models. At the same time, combining the technique with
other improvements of the algorithm, see [37], allows one
to obtain better complexity bounds for the Markov case.
Namely,O(S×m×(K×|V|K+1+|OV (H)|)+m×|H|) space
complexity andO(N ×S× (K ×|V|K+1 +|OV (H)|+|H|))
time complexities are achievable. The details of the opti-
mized algorithm for the Markov case achieving the above
bounds will be presented in a separate paper.

Comparison with the existing algorithms The algo-
rithm SUFPREF implements a P-value computation for
HMM and achieves the theoretical complexity of the best
algorithms for P-value computation. Notably, the com-
plexities of SUFPREF are consistent with the complexities
of algorithms based on finite automata. Our optimiza-
tion of the data structure provides an improvement for
the constant factor. A comparison of the number of
nodes of OvGraph and the number of states of a mini-
mal automaton for a given pattern is given in paper [37].
It was observed in [46] that an average number of over-
laps (nodes of OvGraph) for random patterns generated

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 17 of 21

according to Bernoulli models is proportional to the num-
ber of words in the patterns and is independent of the
length of the words.
For Bernoulli and first order Markov model cases, we

have compared program SUFPREF with the implementa-
tion of program AHOPRO [31]. The program AHOPRO
admits only Bernoulli and first order Markov models.
The P-values were computed with the following input

parameters: (1) alphabet (V) - {A, C, G, T}; (2) Bernoulli
probabilities of letters - {0.25, 0.25, 0.25, 0.25}; Markov
model is described by a 4 × 4 matrix where all elements
are 0.25; (3) text length - 1000; (4) minimal number of
occurrences - 10 and (5) two types of patterns: patterns
containing words of lengths 12 and 14 randomly gener-
ated according to a uniform probability model and pat-
terns of lengths 12 and 14 defined by a Position-Specific
Scoring Matrix (PSSM or PWM) and different cut-offs.
A pattern presented by PSSM and cut-off consists of all
words whose score according to PSSM is greater than
the cut-off. The cut-offs were precalculated such that the
numbers of words matching the PSSM and a cut-off are
equal to the fractions of all 12 (14)-mers in range from
0.00001 to 0.003. The fractions correspond to the fractions
of words in patterns using for transcription factor binding
sites (TFBS) prediction.
The experiments were performed using a quad-core

Intel Core i5 system running at 2.67 GHz (only one core
used) with 8 GB RAM and dual-disk stripped swap par-
tition. Both programs AHOPRO and SUFPREF were com-
piled using the GCC 4.5 tool chain for the 64-bit Linux
target. To measure running time and maximum sizes
of memory during the program’s runs we used POSIX’s

“getrusage()” function twice: before and after processing
to measure data size excluding program code itself. We
have slightly modified the source code of AHOPRO to call
this function before and after main program execution.
We consider the matrices PSSM from the database

HOCOMOCO [47] describing binding sites of lengths 12
and 14 in human genome for transcription factors FOXA2
and E2F1; the matrices are given in [Additional file 6].
Observe that the P-values computed for both probabil-
ity models are the same, when the other parameters are
identical.
The results of the experiments for PSSM-based patterns

of length 12 are presented in Tables 1 and 2. The results
for other patterns are given in [Additional file 7]. Table 1
provides details on the patterns structures; NAC denotes
the number of nodes of the Aho-Corasick trie (the size of
automaton used by AHOPRO). Table 2 provides space and
run-time results. The running time is given in seconds and
the memory size in megabytes.
It turns out that in all cases our program is several

times faster than AHOPRO. And for a majority of cases, it
is faster than AHOPRO by more than ten and five times
for Bernoulli and Markov models respectively. Also it
outperforms AHOPRO in space.

Remark. The advantages of SUFPREF are crucial for
patterns of big sizes. For example, consider the pattern
described by PSSM corresponding to binding sites of
lengths 16 for factor ANDR with cut-off 4.64, where pat-
tern contain about 0.001 of all 16-mers (4270349 words).
For this pattern, the run time and space of SUFPREF’s
work are 12.71 seconds and 691.58megabytes. But the run

Table 2 Comparison of running time and used space of SUFPREF and AHOPRO programs for PSSM-based patterns of
length 12

Experiments parameters Time Space

PatternH Fraction(H) Prob Distrib SufPref AhoPro Aho/SP SufPref AhoPro Aho/SP

PSSM(12,9.63) 0.00001 Bernoulli 0.02 0.37 20.39 0.44 0.59 1.36

PSSM(12,8.69) 0.00003 Bernoulli 0.03 0.90 32.00 0.5 0.97 1.94

PSSM(12,7.41) 0.0001 Bernoulli 0.07 2.60 37.64 0.69 1.88 2.74

PSSM(12,5.89) 0.0003 Bernoulli 0.27 7.64 28.10 1.21 4.97 4.11

PSSM(12,4.01) 0.001 Bernoulli 1.27 26.15 20.61 3.01 15.28 5.07

PSSM(12,2.04) 0.003 Bernoulli 4.99 78.37 15.70 7.75 42.61 5.50

PSSM(12,9.63) 0.00001 Markov 0.03 0.38 15.12 0.47 0.62 1.32

PSSM(12,8.69) 0.00003 Markov 0.05 0.91 18.65 0.53 0.97 1.84

PSSM(12,7.41) 0.0001 Markov 0.11 2.64 23.13 0.71 1.91 2.67

PSSM(12,5.89) 0.0003 Markov 0.41 7.74 18.78 1.24 5.02 4.04

PSSM(12,4.01) 0.001 Markov 1.77 26.50 14.95 3.04 15.31 5.04

PSSM(12,2.04) 0.003 Markov 6.67 79.25 11.88 8.36 42.65 4.94

See Table 1 for the general information on the patterns. The intermediate values of Fraction(H) (0.003, 0.0003, etc. instead of more common 0.005, 0.0005, etc.) were
chosen to obtain more homogeneous log-scale.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 18 of 21

Table 3 Sensitivity and specificity of TFBS recognition for various thresholds and probabilitymodels

Number of occurrences
P-value

Bernoulli Markov1 Markov2 HMM3 HMM4

Threshold 1 0.5 0.5 0.5 0.5 0.8

Sensitivity 97.11% 97.11% 97.11% 97.11% 97.11% 97.11%

Specificity 62.33% 62.56% 62.56% 62.56% 62.78 % 62.33%

Threshold 2 0.0189 0.01966 0.0215 0.0232 0.02619

Sensitivity 69.11% 69.11% 69.11% 69.11% 69.11% 69.22%

Specificity 87.33% 92.33% 92.33% 92% 92% 92.22%

Threshold 3 0.00135 0.00135 0.00157 0.00219 0.003

Sensitivity 32.33% 32.44% 32.44% 32.44% 32.44% 32.33%

Specificity 95.33% 98.11% 98% 98% 97.56% 97.78%

See details in the text of the paper.

time and space of AHOPRO’s work are 351.59 seconds and
1868.18 megabytes.

Remark. For a Bernoulli model the time complexities
of AHOPRO and SUFPREF are O(N × S × |V| × NAC) and
O(N×S×(|OV (H)|+|H|)). Note,NAC ≥ |OV (H)|+|H|.

Usage of P-values for TFBS prediction The majority of
methods for TFBS prediction firstly search for genome
regions with high number of occurrences of a pattern cor-
responding to needed TFBS. Then the candidate regions
have to be chosen following proper criterion of statis-
tical significance [48,49]. We have compared predictive
abilities of methods using criteria based on P-values for
different probability models and a method using crite-
rion based on a number of occurrences. The experiments
were performed with human transcription factor FOXA2.
We have considered several patterns based on the PSSM
of length 12 from the database HOCOMOCO [47] and
different cut-offs. The best results were obtained for the
cut-off 5.89; about 0.0003 of all words of length 12 match
the PSSM with this cut-off. The pattern H that is dis-
cussed below consists of all words having score exceeding
the cut-off and their reverse-complemented words.
We have considered the test set of 1800 genome regions

of length from 200 to 400; the set consists of 900 “positive”
regions and 900 “negative” ones. The positive regions were
taken from the database ENCODE [50]. We have cho-
sen top 900 regions related to human transcription factor
FOXA2 having length from 200 to 400 b.p. in accordance
with their quality (Signal value). The length distribution
of regions is almost uniform; all the regions belong to Top
1000 of the FOXA2-related regions according to their Sig-
nal value. The negative regions presumably do not bind
FOXA2. They were taken from random places of the first
chromosome of human genome, the length of negative
regions by construction are uniformly distributed from
200 to 400 b.p. For each region (positive or negative) we

have computed 5 variants of P-values related to different
probability models. The other parameters of computation
were chosen as follows.

1. Text length N is the length of the region.
2. Number of pattern occurrences S is the number of

occurrences of the pattern found in the region.
3. Let MinScore be the minimal PSSM score among

scores of the pattern words found in the region. The
patternH′ used within the P-value calculation
corresponds to the FOXA2 PSSM and the cut-off
MinScore.

The P-values were calculated w.r.t. five probability mod-
els (for each model it’s short notation is given): Bernoulli
(Bernoulli), Markov models of orders 1 (Markov1) and
2 (Markov2), HMM with 3 states (HMM3) and 4 states

Figure 4 ROC-curves for recognition methods. The methods are
described in the text and Table 3. Blue squares correspond to the
method based on the number of occurrences. The ROC-curves for
P-value based methods are almost coincide.

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 19 of 21

Table 4 Spearman’s rank correlation between experimental ENCODE signal value and characteristics of regions related
to pattern occurrences

Number of occurrences
P-value

Bernoulli Markov1 Markov2 HMM3 HMM4

Spearman’s coef. 0.12 0.061 0.061 0.058 0.059 0.063

Significance level 0.0003 0.0674 0.0673 0.0802 0.0796 0.0578

See the text for further explanations.

(HMM4). The parameters of the models were estimated
on the adjacent fragments of length 4000 b.p. taken from
both sides of the considered region. To estimate param-
eters of Bernoulli and Markov models we have used
maximal likelihood method; for HMMs we have used
Baum-Welch algorithm, see [40].
The main results are given in Table 3 and Figure 4; the

details of the experiments are given in [Additional file 8].
The Table shows sensitivity and specificity of recognition
for various thresholds and probabilitymodels. The thresh-
olds for P-value based methods were chosen to obtain
approximately the same sensitivity as the method based
on number of occurrences with corresponding minimal
number of occurrences. One can see (see also Figure 4)
that all P-value methods have approximately the same
quality and outperform the method based on number of
occurrences.

Remark. The signal value of ChIP-Seq data reflects the
amount of binded proteins. Therefore the signal values of
considered ENCODE regions showbetter correlation with
number of pattern occurrences, than with P-values, see
Table 4. However, the methods for TFBS prediction based
on P-values show significantly better predictive abilities.

Conclusions
This work presents an approach to compute the P-value of
multiple pattern occurrence within a randomly generated
text of a given length. The approach provides significant
space and time improvements compared to the existing
software that is crucially important for applications. The
improvements are achieved due to the use of an overlap
graph: taking into account overlaps between the pattern
words allows one to decrease necessary space and time.
The number of nodes of a Aho-Corasick trie, a structure
that is extensively used in automaton approach, is much
larger than the number of overlaps.
Another advantage is that, unlike existing algorithms

and programs, it allows us to deal with Hidden Markov
Models, the most general class of popular probabilistic
models. The algorithm relies on the Cartesian product
of the overlap graph and the graph of HMM states. A
further reduction to the reachable vertices leads to extra
improvement of time and space complexity. Despite the
fact that Bernoulli and Markov models can be treated as

special HMMs, it is worth implementing specialized and
optimized versions of software for these models. Indeed,
paper [37] can be viewed as a meta version of SUFPREF.
The peculiarity of the implementation of Markov models
of higher orders will be presented in a separate paper.
The implementation of the algorithm SUFPREF was

compared with the program AHOPRO for a Bernoulli
model and a first order Markov model. The comparison
shows that, for a majority of cases, our algorithm is faster
than AHOPRO in more than ten times for the Bernoulli
model and in more than five times for the Markov model.
The greatest advantage of SUFPREF is to decrease the
needs in space. It outperforms AHOPRO in space. There-
fore it can be run with patterns with a greater number of
words and a greater length.

Availability and requirements
The algorithm SUFPREF was implemented as a C++ pro-
gram and was compiled for Unix and Windows. The
program was implemented both as web-server and as
a standalone program with the command line interface.
It is available at http://server2.lpm.org.ru/bio/online/sf/.
Implementation details are provided in http://server2.
lpm.org.ru/static/downloads/SufPrefHMM/Web-site.pdf.
The algorithm SufPref supports P-values computation

taking into account pattern occurrences on the both
strands of genome fragments. To do this the algorithm
adds to the pattern reverse complement words to the
words from the pattern. After the procedure, the pattern
size is not increased by more than twice.

Additional files

Additional file 1: Proofs of propositions. Description of data: The file
contains the proofs of the propositions 2 and 3.

Additional file 2: Algorithms of pre-processing stage of SUFPREF.
Description of data: The file contains description of the algorithms used on
the pre-processing stage of the algorithm SUFPREF.

Additional file 3: Number of overlaps between pattern words.
Description of data: The file contains information about numbers of
overlaps between words of the patterns defined by PSSMs from
HOCOMOCO [47]. The detailed description of the data is given in sheet
“INFO” of the file.

Additional file 4: Time and space asymptotics. Description of data: The
file contains the details of experiments that were performed for
understanding of the asymptotic behavior of time and space

http://server2.lpm.org.ru/bio/online/sf/
http://server2.lpm.org.ru/static/downloads/SufPrefHMM/Web-site.pdf
http://server2.lpm.org.ru/static/downloads/SufPrefHMM/Web-site.pdf
http://www.almob.org/content/supplementary/s13015-014-0025-1-s1.pdf
http://www.almob.org/content/supplementary/s13015-014-0025-1-s2.pdf
http://www.almob.org/content/supplementary/s13015-014-0025-1-s3.xls
http://www.almob.org/content/supplementary/s13015-014-0025-1-s4.xls

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 20 of 21

complexities of the algorithm SUFPREF for HMMs. The detailed description
of the data is given in sheet “INFO” of the file.

Additional file 5: Running time and used space of SUFPREF for
Bernoulli models. Description of data: The file contains results of
comparison of running time and used space of SufPref’s work for several
Bernoulli models.

Additional file 6: PSSMs from HOCOMOCO related to transcription
factors ANDR, ATF1, E2F1 and FOXA2.

Additional file 7: Comparison of SUFPREF and AHOPRO.Description of
data: The file contains the details of comparison of running time and used
space of the programs SUFPREF and AHOPRO. The detailed description of
the data is given in sheet “INFO” of the file.

Additional file 8: Accuracies of TFBS prediction methods. Description
of data: The file contains the details of comparison of methods for TFBS
prediction based on P-values and on number of occurrences. The detailed
description of the data is given in sheet “INFO” of the file.

Abbreviations
HMM: Hidden Markov model; PSSM: Position-specific scoring matrix; synonym
of PWM; PWM: Position weight matrix; TFBS: Transcription factor binding sites.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The idea of the work and the basic ideas of the algorithms belong to M Régnier.
She also took part in the development of the algorithms. M Roytberg took part
in the development of the algorithms, especially with respect to the HMM. He
also supervised the programming. EF took part in the development of the
algorithms especially with respect to details of implementation and has written
the vast majority of the code. VY consulted EF during the programming, took
part in the program testing and computer experiments and implemented the
Web-site. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by INRIA associated team MIGEC, French-Russian
grant CARNAGE and 14-01-93106 from RFBR. Evgenia Furletova, Mikhail
Roytberg and Victor Yakovlev were supported by grants 08-01-92496-NCNIL-a,
09-04-01053-a, 12-04-00944-a, 14-01-93106-NCNILa from RFBR and contract
07.514.11.4004 within the Russian Federation research program
2011-1.4-514-008-009. Evgenia Furletova also was supported by the grant
14-04-32220-mol_a from RFBR.

Author details
1INRIA, d’Estienne d’Orves 1, 91120 Palaiseau, France. 2Institute of
Mathematical Problems of Biology, 142290, Institutskaya, 4, Pushchino, Russia.
3Pushchino State University, 142290, Prospect Nauki, 5, Pushchino, Russia.
4Laboratoire J.-V. Poncelet (UMI 2615), 119002, Bolshoy Vlasyevskiy Pereulok,
11, Moscow, Russia. 5National Research University “Higher School of
Economics”, 101978, Myasnitskaya str., 20, Moscow, Russia. 6Moscow Institute
of Physics and Technology, 141700, Institutsky pereulok, 11, Moscow Region,
Dolgoprudny, Russia. 7CNRS, d’Estienne d’Orves 1, 91120 Palaiseau, France.
8LIX, Ecole Polytechnique, Batiment A. Turing, 91128 Palaiseau, France.

Received: 22 October 2013 Accepted: 9 November 2014

References
1. Qian Z, Lu L, Qi L, Li Y: An efficient method for statistical significance

calculation of transcription factor binding sites. Bioinformation 2007,
2(5):169–174.

2. Berman B, Pfeiffer B, Laverty T, Salzberg S, Rubin G, Eisen M, Celniker S:
Computational identification of developmental enhancers:
conservation and function of transcription factor binding-site
clusters in Drosophila melanogaster and Drosophila
pseudoobscura. Genome Biol 2004, 5(9)):R61
doi:10.1186/gb-2004-5-9-r61.

3. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch
M, Bayerlein M, Werner T:MatInspector and beyond: promoter
analysis based on transcription factor binding sites. Bioinformatics
2005, 21(13):2933–2942. [http://bioinformatics.oxfordjournals.org/
content/21/13/2933.short]

4. Helden JV, Olmo M, Perez-Ortin J: Statistical analysis of yeast genomic
downstream sequences revels putative polyadenylation signals.
Nucleic Acids Res 2000, 28(4):1000–1010.

5. Roytberg MA: Computation of the probabilities of families of
biological sequences. Biophysics 2009, 54(5):569–573.

6. Marschal T, Herms I, Kaltenbach H, Rahmann S: Probabilistic arithmetic
automata and their applications. IEEE/ACMTrans Comput Biol
Bioinformatics 2012, 59(6):1737–1750.

7. Reinert G, Schbath S: Probabilistic and statistical properties of words:
an overview. J Comput Biol 2000, 7(1–2):1–46.

8. Tompa M, Li N, Bailey T, Church G, De Moor B, Eskin E, Favorov A, Frith M,
Fu Y, Kent J, Makeev V, Mironov A, Noble W, Pavesi G, Pesole G, Régnier M,
Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z,
Workman C, Ye C, Zhu Z: An assessment of computational tools for
the discovery of transcription factor binding sites. Nat Biotechnol
2005, 23:137–144.

9. Nuel G: Numerical solutions for patterns statistics on Markov chains.
Stat Appl Genet Mol Biol 2006, 5:26.

10. Lladser M, Betterton MD, Knight R:Multiple patternmatching: A
Markov chain approach. J Math Biol 2008, 56(1–2):51–92.

11. Guibas L, Odlyzko A: String overlaps, pattern matching and
nontransitive games. J Comb Theory, Series A 1981, 30:183–208.

12. Szpankowski W: Average case analysis of algorithms on sequences. New
York: John Wiley and Sons; 2001.

13. Régnier M: A unified approach to word occurrences probabilities.
Discrete Appl Math 2000, 104:259–280. [Special issue on Computational
Biology; preliminary version at RECOMB’98].

14. Régnier M, Szpankowski W: On pattern frequency occurrences in a
Markovian sequence. Algorithmica 1997, 22(4):631–649. [Preliminary
draft at ISIT’97].

15. Régnier M, Denise A: Rare events and conditional events on random
strings. Discrete Math Theor Comput Sci 2004, 6(2):191–214.

16. Nicodéme P:Motif statistics. Theor Comput Sci 2004, 287:593–617.
17. Nicodéme P: Regexpcount, a symbolic package for counting

problems on regular expressions andwords. Fundamenta
Informaticae 2003, 56(1–2):71–88.

18. Régnier M, Lifanov A, Makeev V: Three variations on word counting. In
Proceedings German Conference on Bioinformatics. Heidelberg; 2000:75–82.

19. Prum B, Rodolphe F, Turckheim E: Finding words with unexpected
frequencies in DNA sequences. J R Stat Soc B 1995, 11:190–192.

20. Bender EA, Kochman F: The distribution of subword counts is usually
normal. Eur J Comb 1993, 14(4):265–275.

21. Cowan R: Expected frequencies of DNA patterns using Whittle’s
formula. J Appl Prob 1991, 28:886–892.

22. Godbole AP: Poissons approximations for runs and patterns of rare
events. Adv Appl Prob 1991, 23:851–865.

23. Geske MX, Godbole AP, Schaffner AA, Skrolnick AM, Wallstrom GL:
Compound Poisson approximations for word patterns under
Markovian hypotheses. J Appl Prob 1995, 32:877–892.

24. Reinert G, Schbath S: Compound Poisson approximation for
occurrences of multiple words in Markov chains. J Comput Biol 1998,
5(2):223–253.

25. Nuel G: Pattern Markov chains: optimal Markov chain embedding
through deterministic finite automata. J Appl Prob 2008, 45:226–243.

26. MR L, Spouge J, Kanga G, Landsman D: Statistical analysis of
over-represented words in human promoter sequences. Nucleic Acids
Res 2004, 32(3):949–958. [http://0-www.ncbi.nlm.nih.gov.iii-server.ualr.
edu/pubmed/14963262]

27. Regnier M, Vandenbogaert M: Comparison of statistical significance
criteria. J Bioinformatics Comput Biol 2006, 4(2):537–551.

28. Regnier M, Bourdon J: Large deviation properties for patterns.
J Discrete Algorithms 2014, 24:2–11.

29. Nuel G: LD-SPatt: large deviations statistics for patterns on Markov
chains. J Comp Biol 2004, 11(6):1023–1033.

30. Hertzberg L, Zuk O, Getz G, Domany E: Findingmotifs in promoter
regions. J Comput Biol 2005, 12(3):314–330.

http://www.almob.org/content/supplementary/s13015-014-0025-1-s5.xls
http://www.almob.org/content/supplementary/s13015-014-0025-1-s6.xls
http://www.almob.org/content/supplementary/s13015-014-0025-1-s7.xls
http://www.almob.org/content/supplementary/s13015-014-0025-1-s8.xls
http://bioinformatics.oxfordjournals.org/content/21/13/2933. short
http://bioinformatics.oxfordjournals.org/content/21/13/2933. short
http://0-www.ncbi.nlm.nih.gov.iii-server.ualr.edu/pubmed/149 63262
http://0-www.ncbi.nlm.nih.gov.iii-server.ualr.edu/pubmed/149 63262

Regnier et al. Algorithms for Molecular Biology (2014) 9:25 Page 21 of 21

31. Boeva V, Clément J, Régnier M, Roytberg M, Makeev V: Exact p-value
calculation for heterotypic clusters of regulatory motifs and
its application in computational annotation of cis-regulatory
modules. AlgorithmsMol Biol 2007, 2(13):25. [http://www.almob.org/
content/2/1/13]

32. Nuel G: Effective p-value computations using finite Markov chain
imbedding (FMCI): application to local score and to pattern
statistics. AlgorithmsMol Biol 2006, 1(5):14. [http://www.almob.org/
content/1/1/5]

33. Zhang J, Jiang B, Li M, Tromp J, Zhang X, Zhang M: Computing exact
p-values for DNAmotifs. Bioinformatics 2006, 23:531–537.

34. Fu J, Lou W: Distribution theory of runs and patterns and its applications. A
finite Markov chain imbedding approach. Singapore: World Scientific; 2003.
[162p., ISBN 981-02-4587-4].

35. Crochemore M, Stefanov V:Waiting time and complexity for matching
patterns with automata. Inform Process Lett 2003, 87(3):119–125.

36. Ribeca P, Raineri E: Faster exact Markovian probability functions for
motif occurrences: a DFA-only approach. Bioinformatics 2008,
24(24):2839–2848.

37. Regnier M, Kirakossian Z, Furletova E, Roytberg MA: A word counting
graph. In London Algorithmics 2008: Theory and Practice (Texts in
Algorithmics). Edited by Joseph Chan JWD, Rahman MS. London: London
College Publications; 2009:31. [http://hal.inria.fr/inria-00437147/en/]

38. Karlin S, Burge C, Campbell A: Statistical analyses of counts and
distributions of restriction sites in DNA sequences. Nucleic Acids Res
1992, 20(6):1363–1370.

39. Nicodème P, Salvy B, Flajolet P:Motif Statistics. Theor Comput Sci 2002,
287(2):593–618. [Preliminary version at ESA’99].

40. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge: Cambridge
University; 1998.

41. Rabin M: Probabilistic automata. Inform Control 1963, 6:230–245.
42. Salomaa A: Theory of automata. Oxford: Pergamon Press; 1969. [Chapter 2].
43. Kucherov G, Noé L, Roytberg M: A unifying framework for seed

sensitivity and its application to subset seeds. J Bioinformatics Comput
Biol 2009, 4(2):553–569.

44. Rabiner LR: A tutorial on hidden Markov models and selected
applications in speech recognition. Proc IEEE 1989, 77(2):257–286.

45. Aho A, Corasick M: Efficient stringmatching. CACM 1975, 18(6):333–340.
46. Regnier M, Furletova E, Roytberg MA: An average number of

suffix-prefixes. In Proceedings of the International Moscow Conference on
computational molecular biology. Moscow, Russia; 2009:313–314.

47. Kulakovskiy I, Medvedeva YA, Shaefer U, Kasianov AS, Vorontsov IE, Bajic
VB, Makeev VJ: HOCOMOCO: A comprehensive collection of human
transcription factor binding sites models. Nucleic Acids Res 2013,
41:D195—D202.

48. Stormo GD: DNA binding sites: representation and discovery.
Bioinformatics 2000, 16:16–23.

49. Kulakovskiy IV, Makeev VJ: DNA sequence motif: a jack of all trades for
ChIP-Seq data. Adv Protein Chem Struct Biol 2013, 91:135–171.

50. ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green E,
Gunter C, Snyder C: An integrated encyclopedia of DNA elements in
the human genome. Nature 2012, 489(7414):57–74.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.almob.org/content/2/1/13
http://www.almob.org/content/2/1/13
http://www.almob.org/content/1/1/5
http://www.almob.org/content/1/1/5
http://hal.inria.fr/inria-00437147/en/

	Abstract
	Background
	Results
	Keywords

	Background
	Overlap words
	Text sets
	Probability models
	HMM and probabilistic automata
	Probabilities equations for HMM
	Algorithms
	General description
	Preprocessing and data structures
	Overlap graph
	Constant transition probabilities related to nodes of overlap graph
	Updatable probabilities related to nodes of overlap graph
	The global data unrelated to overlap graph

	Main loop
	Post-processing

	Discussion
	Space complexity
	Time complexity
	Time and space asymptotics
	Bernoulli models
	Markov models. Further refinements
	Comparison with the existing algorithms
	Usage of P-values for TFBS prediction

	Conclusions
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	*-17pt
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

