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Current status and recent advances 
in reirradiation of glioblastoma
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Abstract 

Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation 
therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV 
gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care 
exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as fea-
sible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), 
either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits 
following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the 
efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and 
recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selec-
tion and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation 
necrosis.
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Introduction
Glioblastoma (GBM) is the most common malignant 
brain tumor in adults. The standard treatment includes 
surgery followed by external beam radiation therapy 
(RT) with concomitant and maintenance temozolomide, 
with a reported median survival time of 14.6 months and 
2-year survival rate of 26.5%, respectively [1]. However, 
almost all GBMs relapse within or in close proximity to 
the initial site of disease despite advances in surgery and 
chemoradiotherapy.

For patients with a recurrent GBM, no standard of care 
exists. Treatment options include repeated surgery, reir-
radiation, systemic therapy, and best supportive care [2]. 
A surgical approach can be utilized for locally recurrent 
or progressive malignant glioma with reported median 

survival times ranging from 6 to 17  months, with total 
or subtotal (extent of resection > 80%) resection being 
associated with longer survival [3, 4]; however, factors 
associated with increased postoperative morbidity, e.g. 
location of tumor recurrence in eloquent/critical brain 
regions, low performance status, and tumor volume 
have to be carefully evaluated. For patients who receive 
salvage systemic treatment at recurrence, the antiangio-
genic agent bevacizumab and alkylating agents, either 
temozolomide or lomustine, represent common salvage 
therapeutic options resulting in median survival times of 
6 to 12 months [5–7]. Bevacizumab has been the stand-
ard salvage therapeutic option for patients with recur-
rent GBM in the United States since its approval in 2009 
by the Food and Drug Administration [5, 6]; in contrast, 
lomustine is the recommended second-line chemother-
apy in the European Union based on a large randomized 
trial of 437 patients with progressive GBM that showed a 
similar median survival time around 9 months for those 
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receiving lomustine plus bevacizumab versus lomustine 
alone [7].

Reirradiation is increasingly used in patients with 
recurrent GBM. Even though damage of normal brain 
tissue previously treated with high dose RT is of concern, 
technological advances in radiation techniques, including 
developments in treatment planning systems and dose 
delivery, have improved the therapeutic ratio making it 
possible to use reirradiation as feasible treatment option 
[8]. Variable median survival times of 6 to 12  months 
and neurological toxicity rates of 5% to 20% have been 
reported after stereotactic radiosurgery (SRS) and stereo-
tactic radiotherapy (SRT), using either hypofractionated 
or conventionally fractionated radiation schedules [9, 10]. 
In addition, survival benefit has been reported following 
reirradiation in combination with temozolomide or beva-
cizumab compared to reirradiation alone. We present a 
clinical overview on the current status and advances of 
reirradiation in the setting of recurrent or progressive 
GBM after standard treatment, with special regard to 
target volume delineation and impact of radiation tech-
niques on survival and risk of radiation-induced brain 
necrosis.

Imaging and delineation of target volumes
A second course of radiation remains of concern for 
patients with a recurrent GBM because of unaccepta-
ble risk of neurological toxicity in the form of radiation 
necrosis. Then, the key issue for GBM reirradiation is an 
accurate delineation of target volumes and organs at risk 
(OARs) for a precise calculation of the spatial dose distri-
bution, and for choosing the optimal radiation dose frac-
tionation schedule. Magnetic resonance imaging (MRI), 
using contrast-enhanced T1-weighted and T2-weighted 
sequences, are routinely used because of their more accu-
rate depiction of the extension of the tumor and brain 
anatomy compared to computed tomography (CT). The 
gross tumor volume (GTV) is generally defined as the 
visible lesion on MRI contrast-enhanced T1-weighted 
sequences. The clinical target volume (CTV) which 
includes areas of potential suspected microscopic tumor 
infiltration and potential paths of microscopic spread, is 
then generated by adding a variable margin of 0–5  mm 
to the GTV constrained at anatomical borders, e.g. ten-
torium, falx cerebri, and bone. In this regard, no GTV-to-
CTV margins are usually utilized during SRS with the aim 
to limit the risk of toxicity, where margins up to 5 mm are 
commonly applied during hypofractionated and conven-
tionally fractionated SRT (see below). In a few studies, 
CTV delineation consists of including FLAIR abnormali-
ties around contrast-enhancing lesion in T1-weighted 
sequences [11, 12]. Finally, depending on radiation tech-
nique, available technology, and institutional practice, an 

expansion up to 3 mm is applied to generate the planning 
target volume (PTV) which accounts for uncertainties in 
treatment planning and delivery.

Positron emission tomotherapy (PET)/CT imaging 
with radiolabeled amino acids may help to improve tar-
get volume delineation accuracy by revealing tumor 
infiltration in regions with a non-specific MRI appear-
ance [13–18]. In a trial including 44 patients with recur-
rent high-grade gliomas who received reirradiation with 
hypofractionated SRT (30  Gy/6 fractions) with or with-
out temozolomide, Grosu et  al. [13] demonstrated sig-
nificantly longer median survival time using treatment 
planning based on (11)C-methionine (MET)-PET or 
(123)I-alpha-methyl-tyrosine (IMT) single-photon com-
puted emission tomography/CT/MRI image fusion com-
pared with treatment planning using CT/MRI alone (9 
vs. 5  months; p = 0.03).  Significantly improved survival 
using MET-PET/CT to define the GTV compared with 
treatment planning based on conventional MRI has been 
observed by others [14]. In a prospective imaging study 
comparing FET-PET with advanced MRI imaging in 41 
patients who received SRT for recurrent GBM, Popp et al. 
[17] found that target volume delineation using MET-
PET imaging correlated better with localization of post-
reirradiation recurrences in comparison to target volume 
delineation based on diffusion-weighted (DWI) MRI and 
apparent diffusion coefficient (ADC) maps which reveal 
regions of high cellularity as surrogate for active tumor. 
Currently, a multicenter phase II trial (GLIAA, NOA-10, 
ARO 2013/1) is seeking to evaluate whether reirradia-
tion planning using FET/PET improves clinical outcome 
in patients with recurrent GBM compared to contrast-
enhanced MRI [19]. Although these studies support the 
use of biologic imaging as an effective strategy for tar-
get delineation of recurrent GBM, the impact of PET-
based treatment planning on survival requires further 
investigation.

Brain tolerance to reirradiation
Normal brain tissue dose tolerance is the limiting factor 
when giving reirradiation. An estimated risk of sympto-
matic radiation necrosis has been determined following 
brain SRS and SRT [20, 21]. For conventional fractiona-
tion, a 5% and 10% risk of symptomatic radiation necro-
sis is predicted to occur at a biologically equivalent dose 
(BED) of 72  Gy (range, 60–84  Gy) and 90  Gy (range, 
84–102 Gy) in 2-Gy fractions. For SRS, the risk of com-
plications increases rapidly once the volume of the 
brain exposed to 12  Gy is more than 5–10  ml [22, 23]. 
Dose-volume predictors of toxicity for critical struc-
tures, e.g. optic chiasm and brainstem, have also been 
determined for SRS and SRT, both hypofractionation 
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and normofractionation [24–26]; however, high-level evi-
dence is lacking and current constraints should be used 
with caution.

When assessing the risk of radiation necrosis follow-
ing reirradiation, several factors should be taken into 
account, including dose and fractionation, treated vol-
ume, combined chemotherapy, and interval between 
radiation treatments. Previous meta-analyses of brain 
reirradiation found no cases of brain necrosis when 
the cumulative radiation dose of the two courses of 
radiation, calculated as biological equivalent total dose 
normalized to 2  Gy/fraction (EQD2) using the linear-
quadratic model, was < 96  Gy [27, 28]. The median 
cumulative EQD2 reported in conventionally fraction-
ated reirradiation (81.6–101.9  Gy) series was gener-
ally lower than those observed in hypofractionated SRT 
(90–133.9 Gy) and SRS (111.6–137.2 Gy). The estimated 
risk of radiation necrosis at 1 year was 2–12% for cumu-
lative EQD2 > 96.2  Gy and up to 17% for cumulative 
EQD2 > 137  Gy. Our update of the literature on GBM 
reirradiation confirms the relationship between cumula-
tive EQD2 and the risk of radiation necrosis, as shown in 
Tables 1, 2 and 3; the reported risk was about 0–3% after 
conventional fractionation at cumulative EQD2 < 101 Gy, 
7–13% after hypofractionated SRT at cumulative EQD2 
of 102–130 Gy, and up to 24.4% after SRS using a cumu-
lative EQD2 of about 124–150 Gy.

Although the validity of the linear-quadratic model has 
been questioned for high radiation doses as employed 
during SRS and ultrahypofractionated schedules [29], 
current data indicates that doses exceeding 100  Gy 
should be used with caution, especially in case of large 
irradiated volumes. In contrast, other factors did not 
appear to be linked with an increased risk of radiation 
necrosis, e.g. the time interval between two radiation 
courses or the use of concurrent bevacizumab, the latest 
associated with reduced treatment toxicity [30].

Based on dose/volume data and clinical risk estimates 
for central nervous system (CNS), maximum doses 
exceeding 8–10  Gy and 12  Gy given in single fraction 
and 55 Gy and 54 Gy (59 Gy to < 10 cc) given in 1.8–2 Gy 
fractions for optic apparatus and brainstem, respectively, 
should be avoided in clinical practice [26]; however, 
limited data are available in the setting of reirradiation. 
Niyazi et  al. [31] showed no relevant long-term toxicity 
in a series of 58 patients who received reirradiation for 
a malignant glioma using maximum cumulative EQD2 
of 80.3  Gy, 79.4  Gy, and 95.2  Gy to optic chiasm, optic 
nerves, and brainstem, respectively. With regard to the 
brainstem, a few series did not observe significant neu-
rological toxicity and/or radiological changes sugges-
tive of brain necrosis in patients with progressive diffuse 
intrinsic pontine gliomas receiving a second course 

of SRT with doses of 20–24  Gy given in 2-Gy fractions 
[32]. Overall, these data suggest relatively high and fast 
recovery capacity of the normal human brain after a sec-
ond course of RT, similarly to that seen for spine [33], 
and support the use of cumulative EQD2 doses around 
100 Gy or even higher (up to 120 Gy), e.g. small and well 
defined lesions away from eloquent areas.

Few data are available on the effect of reirradiation 
on cognitive deterioration. Wick et al. [34] reported the 
results of a phase II study involving 91 patients with 
progressive GBM randomized to receive reirradiation 
(36  Gy in 2-Gy fractions) with or without the systemic 
agent Asunercept. Neurological status and quality of life, 
assessed by the European Organization for Research and 
Treatment of Cancer (EORTC) Quality of Life Question-
naire (QLQ)-C15 PAL fatigue scale, EORTC QLQ-BN20 
and Medical Research Council (MRC)-Neurological sta-
tus, remained stable in both groups until progression. 
In another small prospective series of 15 patients who 
received hypofractionated SRT (35 Gy in 7-Gy fractions) 
for malignant gliomas, overall quality of life, physical 
functioning, and cognitive functioning remained stable in 
two thirds of the patients at a median time of 9 months. 
Although these results offer some reassurance about the 
safety of reirradiation in adult patients, caution should be 
applied in clinical practice when treating large volumes 
with large fraction size.

Survival outcomes and toxicity
SRS
For patients with recurrent GBM, SRS is usually given 
alone or in combination with systemic therapy. Treat-
ment planning characteristics and clinical outcomes 
of sixteen selected series published from 2005 to 2020 
and including 901 patients who received SRS for recur-
rent GBM are shown in Table 1 [35–50]. With a median 
dose of 15–18 Gy for a treated volume around 4–10 ml 
as seen in the majority of studies, the overall survival 
time from the date of SRS reirradiation ranges from 7.5 
to 13  months and progression-free survival time from 
4.4 to 6  months. Gamma Knife remains the prevalent 
SRS modality, whereas hypofractionated treatments 
are typically delivered with Cyberknife and LINAC. Of 
note, a recent systematic review and meta-analysis of 50 
non-comparative studies including 2095 patients treated 
with different SRS reirradiation modalities/technologies 
showed similar overall survival rates of 70% and 34% and 
progression-free survival rates of 40% and 16%, respec-
tively, at 6 and 12 months [10].

With respect to the retrospective nature and small 
numbers of patients, available data suggest increased 
survival rates with SRS and systemic therapies compared 
to SRS alone [38, 44, 46, 48, 51]. The reported overall 



Page 4 of 14Minniti et al. Radiat Oncol           (2021) 16:36 

Ta
bl

e 
1 

St
er

eo
ta

ct
ic

 ra
di

os
ur

ge
ry

 in
 re

cu
rr

en
t p

at
ie

nt
s 

w
it

h 
gl

io
bl

as
to

m
a

SR
S,

 ra
di

os
ur

ge
ry

; C
TV

, c
lin

ic
al

 ta
rg

et
 v

ol
um

e;
 P

TV
, p

la
nn

in
g 

ta
rg

et
 v

ol
um

e;
 P

FS
, p

ro
gr

es
si

on
-fr

ee
 s

ur
vi

va
l; 

O
S,

 o
ve

ra
ll 

su
rv

iv
al

; E
Q

D
2,

 e
qu

iv
al

en
t d

os
e 

no
rm

al
iz

ed
 to

 2
 G

y;

N
R,

 n
ot

 re
po

rt
ed

; S
RS

, s
te

re
ot

ac
tic

 ra
di

os
ur

ge
ry

; L
IN

AC
, l

in
ea

r a
cc

el
er

at
or

; G
K,

 G
am

m
a 

Kn
ife

; T
1-

w
 c

e 
M

RI
, T

1-
w

ei
gh

te
d 

co
nt

ra
st

-e
nh

an
ce

d 
m

ag
ne

tic
 re

so
na

nc
e 

im
ag

in
g;

 

TM
Z,

 te
m

oz
ol

om
id

e;
 B

EV
, b

ev
ac

iz
um

ab
; M

, m
ar

im
as

ta
t; 

CC
N

U
, l

om
us

tin
e;

 T
M

Z,
 te

m
oz

ol
om

id
e;

 B
EV

, b
ev

ac
iz

um
ab

A
ut

ho
r

Pt
s 

(N
o)

In
te

rv
al

 
be

tw
ee

n 
RT

 
co

ur
se

s

SR
S 

m
od

al
it

y
M

ed
ia

n 
do

se
 

(G
y)

Im
ag

in
g 

fo
r p

la
nn

in
g

Tr
ea

te
d 

vo
lu

m
e 

(m
l)

CT
V/

PT
V 

m
ar

gi
ns

 
(m

m
)

Sy
st

em
ic

 
th

er
ap

y
M

ed
ia

n 
PF

S 
(m

on
th

s)
M

ae
di

an
 O

S 
(m

on
th

s)
EQ

D
2 

(G
y)

Cu
m

ul
at

iv
e 

EQ
D

2 
(G

y)
RN

 (%
)

La
rs

on
 e

t a
l., 

20
02

 [3
5]

53
14

.5
G

K
16

 1
5 

(+
 M

)
T1

-w
 c

e 
M

RI
SR

S 
+

 M
, 8

 S
RS

, 
9.

1
N

R
M

, 1
2

4.
2

4.
4 

9.
5 

(+
 M

)
72

 6
3.

8 
(+

 M
)

13
2 

12
3.

8 
(+

 M
)

8

Co
m

bs
 e

t a
l., 

20
05

 [3
6]

32
10

LI
N

A
C

15
 (1

0–
20

)
T1

-w
 c

e 
M

RI
10

 (1
.2

–5
9.

2)
2–

5
N

on
e

5
10

 3
8%

 a
t 

1 
yr

63
.8

11
7.

8
0

Ko
ng

 e
t a

l., 
20

08
 [3

7]
65

4.
3

G
K

16
 G

y
T1

-w
 c

e 
M

RI
10

.6
 (0

.1
–7

9.
6)

N
on

e
N

on
e

4.
6

13
 5

8.
4%

 a
t 

1 
yr

72
13

2
24

.4

Cu
ne

o 
et

 a
l., 

20
09

 [3
8]

49
20

LI
N

A
C

15
T1

-w
 c

e 
M

RI
, 

So
m

e 
PE

T/
C

T

4.
8

0–
1

BE
V

5.
2 

(+
 B

EV
) 

2.
1 

(-B
EV

)
11

.9
 (+

 B
EV

) 
3 

(-B
EV

)
63

.8
12

3.
8

10

Pa
te

l e
t a

l., 
20

09
 [3

9]
26

12
.5

LI
N

A
C

18
 (1

2–
20

)
T1

-w
 c

e 
M

RI
10

.4
N

on
e

CC
N

U
, T

M
Z

N
R

8.
4

90
15

0
4

Po
ur

at
ia

n 
et

 a
l., 

20
09

 
[4

0]

26
N

R
G

K
17

T1
-w

 c
e 

M
RI

21
.3

N
on

e
N

on
e

N
R

9.
4

80
.7

14
0.

7
0

Sk
ei

e 
et

 a
l., 

20
12

 [4
1]

77
8.

9
G

K
12

.2
T1

-w
 c

e 
M

RI
12

.4
N

R
PC

V
6

12
36

.2
96

.2
9.

8

D
od

oo
 e

t a
l., 

20
14

 [4
2]

35
N

R
G

K
20

 (1
4–

22
)

T1
-w

 c
e 

M
RI

4.
8 

(0
.0

3 
−

 3
8.

1)
N

R
N

R
N

R
11

.3
11

0
17

0
23

M
ar

tin
ez

-C
ar

-
ril

lo
 e

t a
l., 

20
14

 [4
3]

46
10

LI
N

A
C

18
 (1

4–
20

)
T1

-w
 c

e 
M

RI
4 

(0
.0

5–
34

.1
)

0–
5

N
R

N
R

7.
5

90
15

0
10

Pi
nz

i e
t a

l., 
20

15
 [4

4]
88

15
C

K
16

–2
2

T1
-w

 c
e 

M
RI

2 
(0

.1
4–

83
)

0–
1

C
H

T,
 2

2 
(t

yp
e 

no
t s

pe
ci

-
fie

d)

N
R

11
.5

 4
8%

 a
t 

1 
yr

63
.8

12
3.

8
6

Bo
ks

te
in

 e
t a

l., 
20

16
 4

5]
33

18
G

K
18

 (1
4–

24
)

T1
-w

 c
e 

M
RI

2.
2 

(0
.2

–9
.5

)
N

R
BE

V,
 6

 T
M

Z,
 

15
5 

(1
.0

–9
6.

4)
15

.9
90

15
0

5.
5

Fr
is

he
r e

t a
i., 

20
16

 [4
6]

42
17

G
K

10
T1

-w
 c

e 
M

RI
5.

1
N

R
TM

Z,
 2

8
4.

4
9.

6
30

90
2.

4

Im
be

r e
t a

l., 
20

17
 [4

7]
17

4
8.

7
G

K
16

 (1
0–

22
)

T1
-w

 c
e 

M
RI

7.
0 

(0
.3

–3
9.

0)
N

R
TM

Z,
 2

0 
CC

N
U

, 1
3 

BC
N

U
, 1

1

N
R

10
.6

72
13

2
13

Ki
m

 e
t a

l., 
20

17
 [4

8]
57

N
R

G
K

15
T1

-w
 c

e 
M

RI
SR

S 
+

 TM
Z,

 9
.8

; 
SR

S,
 1

1
N

R
TM

Z,
 2

8
3.

6 
6 

(+
 TM

Z)
9.

2 
15

.5
 

(+
 TM

Z)
63

.8
12

3.
8

24
.4

Sh
ar

m
a 

et
 a

l., 
20

18
 [4

9]
53

16
G

K
18

 (1
2–

24
)

T1
-w

 c
e 

M
RI

3.
8 

(0
.0

1–
29

.7
)

N
on

e
N

on
e

4.
4

11
.0

90
15

0
4

M
or

ris
 e

t a
l., 

20
19

 [5
0]

45
13

.5
G

K
17

 (1
3–

24
)

T1
-w

 c
e 

M
RI

2.
2 

(0
.1

–2
5.

2)
N

on
e

BE
V

5.
2

13
.3

80
.7

14
0.

7
0



Page 5 of 14Minniti et al. Radiat Oncol           (2021) 16:36 	

survival time after concurrent SRS and temozolomide is 
around 9–15  months; some [44, 46, 48, 51], but not all 
[36, 47], studies showed significant survival benefit fol-
lowing chemoradiation over SRS alone, especially in 
patients with O6-methylguanine-DNA  methyltrans-
ferase  (MGMT) gene promoter methylation. Since its 
approval by the US Food and Drug Administration for 
the treatment of patients with recurrent GBM in 2009, 
the efficacy of the anti-vascular endothelial growth fac-
tor (VEGF)-A humanized monoclonal antibody beva-
cizumab in combination with SRS has been evaluated 
in several studies [38, 50, 52]. In a series of 49 patients 
with recurrent GBM who received SRS with or without 
concurrent and adjuvant bevacizumab, Cuneo et al. [38] 
observed median progression-free survival and over-
all survival times from SRS of 6 months and 10 months, 
respectively. The 1-year overall survival time was 50% for 
patients who received SRS and bevacizumab and 22% for 
patients receiving SRS alone (p = 0.005), with respective 
median progression-free survival times of 5.2  months 
and 2.1 months (p = 0.014). The superiority of combined 
treatment versus SRS alone has been seen in other small 
retrospective series [50, 52]; of note, the safety of SRS 
plus bevacizumab has been confirmed in several studies, 
with patients receiving bevacizumab who were less likely 
to develop grade III adverse radiation effects.

As shown in Table  1, the reported risk of sympto-
matic radiation necrosis for sixteen studies including 928 
patients varies from 0 to 24.4%, being mainly related to 
radiation dose and treated volume. Using the cumula-
tive EQD2 as predictor of the risk, we found that val-
ues around 120  Gy were generally associated with a 
risk < 10% for a median tumor volume of approximately 
10  ml, whereas a higher risk up to 24% was observed 
for cumulative EQD2 values of > 132  Gy. Considering 
an EQD2 of 60  Gy for the initial standard chemoradia-
tion, this means that SRS reirradiation doses of 15–16 Gy 
(EQD2 = 63.7–72  Gy) carry an acceptable risk of radia-
tion necrosis, at least for patients with relatively small 
recurrent tumor volumes. In a systematic review and 
analysis of treatment technique of reirradiation for recur-
rent high-grade gliomas including results of 70 studies 
with 3302 patients, the median unadjusted rate of brain 
necrosis after SRS was 8% for patients with a median 
treatment volume of 10.1  ml and a median dose per 
fraction of 15  Gy [53]. These values are consistent with 
those observed in the RTOG study 90–05 that evaluated 
the risk of radiation necrosis following SRS reirradia-
tion of primary brain tumors and brain metastases with 
doses of 15–24  Gy [54]. This means in clinical practice 
that small CTV/PTV margins of 0–2  mm are generally 
utilized during SRS reirradiation to minimize the risk of 
brain necrosis, especially when treating larger tumors 

with cumulative EQD2 exceeding 120 Gy. In contrast, the 
interval between radiation treatments and the use of con-
current systemic therapies did not emerge as independ-
ent factors associated with the development of radiation 
necrosis in several studies.

Hypofractionated SRT
Hypofractionated SRT with or without systemic ther-
apy has been frequently used in the setting of recur-
rent GBM. Treatments include moderately (generally 
2.5–3.5 Gy per fraction) and high-dose (5 Gy or more per 
fraction) hypofractionated schedules (Table  2) [12, 13, 
55–69]. Because of its higher degree of precise patient 
positioning and accurate dose delivery, SRT has super-
seded conventional RT in clinical practice in the last 
two decades for the treatment of patients with recur-
rent tumors. Results of eighteen studies including 976 
patients who received stereotactic reirradiation between 
2005 and 2020 are shown in Table 2. Using total doses of 
30–45 Gy delivered in 2.5–4.0 Gy per fraction, ten stud-
ies including 733 patients showed a median overall sur-
vival time ranging from 7.5 to 12.5  months [12, 57–59, 
65–70]. A similar survival time of 7.3 to 12.5 months has 
been observed in eight studies including 272 patients 
who received high-dose hypofractionated SRT at doses 
of 25–35 Gy in 5–7 Gy per fraction [13, 55, 56, 60–64]. 
Using a dose of 35 Gy in 10 fractions of 3.5 Gy per frac-
tion, Fogh et al. [58] reported an overall survival time of 
11 months in 105 patients with recurrent GBM. A total 
dose of > 35  Gy resulted in an improved overall survival 
with no significant differences amongst patients who had 
chemotherapy and those who did not. Similar survival 
times of 8 to11 months have been observed in large ret-
rospective multicentric studies using either SRS or hypo-
fractionated SRT [71, 72].

Several studies has been evaluated the use of SRT 
in combination with systemic therapies, as shown in 
Table  2. In a series of 36 patients with recurrent GBM 
who received moderately fractionated SRT (37.5  Gy in 
15 fractions) and concurrent temozolomide at Univer-
sity of Rome Sapienza, Sant’Andrea Hospital, median 
overall survival and progression-free survival times were 
9.7 months and 5 months, respectively [59]. Using hypo-
fractionated SRT (30 Gy in six fractions) with or without 
concurrent temozolomide, Grosu et  al. [13] observed 
a median survival time of 11  months after chemoradia-
tion and 6 months after SRT alone (p = 0.04), and simi-
lar survival benefits have been reported in other few 
series using high-dose hypofractionated SRT (25–35 Gy 
in five fractions) and temozolomide [62, 63]. In all above 
mentioned studies, longer survival time was associated 
with the presence of tumors with a methylated enzyme 
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O6-methylguanine-DNA methyltransferase (MGMT) 
gene promoter.

Survival benefits have been reported following frac-
tionated SRT and concurrent bevacizumab [12, 55, 60, 
64–68]. Gutin et al. [55] observed a median overall sur-
vival time of 12.5 months and 1-year survival rate of 54% 
in twenty patients who received 30  Gy in 5 fractions to 
the recurrent tumor with SRT; median progression-free 
survival time and 6-month rates were 7.4  months and 
65%, respectively. In a small retrospective study com-
paring hypofractionated SRT (25  Gy in 5-Gy fractions) 
plus bevacizumab or the alkylating agent fotemustine, 
median survival times and 12-month survival rates were 
11  months and 30% for patients treated with SRT and 
bevacizumab and 8.3  months and 5% for those treated 
with SRT and fotemustine (p = 0.01); respective median 
progression-free survival times were 6 and 4  months 
(p = 0.01). In a recent multi-institutional, prospective 
randomized phase II trial (NRG Oncology/Radiation 
Therapy Oncology Group (RTOG) trial 1205) designed to 
evaluate the safety and efficacy of reirradiation for recur-
rent GBM with modern radiation techniques, a simi-
lar survival of 10.1 months has been observed following 
hypofractionated SRT (35  Gy/10 fractions) and concur-
rent bevacizumab [68].

A risk of radiation necrosis less than 10% is generally 
reported after SRT for cumulative EQD2 doses less than 
120  Gy following either moderately or high-dose frac-
tionated schedules (Table  2). Of note, the risk remains 
low despite:—higher median treated volumes in the 
range of 8.5–34  ml and 33–145  ml for high-dose and 
moderately fractionated radiation schedules, respectively, 
and—the use of GTV-to-CTV margins up to 5  mm. In 
the respect of relatively few reported cases, radiation 
necrosis is usually observed in recurrent tumors that 
generally receive cumulative EQD2 doses > 120 Gy to vol-
umes > 40 ml [13, 63–65]. Of note, the risk remains low 
after SRT in combination and concurrent systemic ther-
apy, with a reported lower risk in patients receiving SRT 
and bevacizumab [12, 64, 68, 73]

Conventionally fractionated SRT
Several series reported on the efficacy and safety of 
conventionally fractionated SRT in patients with recur-
rent gliomas (Table 3) [30, 74–79]. Using a median dose 
of 36  Gy delivered in 18 fractions of 2  Gy per fraction, 
the reported median survival time ranges from 6.7 to 
11.5 months and progression-free survival time from 2.5 
to 5 months. In a large series of 172 patients with recur-
rent low- and high-grade gliomas treated with a second 
course of conventionally fractionated SRT (36 Gy in 2-Gy 
fractions), Combs et  al. [74] reported median overall 

survival and progression-free survival times of 8 and 
5 months, respectively, for 59 patients with GBM.

The superiority of combined chemoradiation versus 
radiation alone remains to be better defined [30, 76, 78, 
79]. Schnell et  al. [78] conducted a retrospective three-
arm study of 105 patients with recurrent malignant glio-
mas who were treated with conventionally fractionated 
SRT (36  Gy in 2-Gy fractions) and concurrent bevaci-
zumab with or without maintenance therapy, or bevaci-
zumab/irinotecan between 2008 and 2014. The authors 
observed a significantly improved median post-recur-
rence survival time of 13.1  months for patients receiv-
ing reirradiation in combination with concurrent and 
maintenance bevacizumab compared to a survival time 
of 8  months for those receiving systemic therapy only 
or concurrent reirradiation and bevacizumab without 
maintenance therapy. A recent SRT-specific update of 
the same study group (n = 161) could not confirm long-
term differences according to maintenance therapy; post-
recurrence survival time was 9 months in both arms, but 
toxicity was significantly reduced among bevacizumab 
patients compared to those receiving reirradiation alone 
[30].

Using conventionally fractionated SRT, a low risk of 
radiation necrosis of 0.8% to 6.8% has been observed in 
six studies including 439 patients with recurrent GBM 
(Table  3). With a median total dose of 36  Gy deliv-
ered in 18 fractions of 2  Gy per fraction (cumulative 
EQD2 = 96 Gy), the risk remains low even in series with 
a median target volume of about 100  ml or higher and 
when using large safety margins up to 10  mm with the 
aim of including potential microscopic spread.

Prognostic factors and scores for reirradiation
Several prognostic factors have been correlated with 
clinical outcomes following reirradiation in patients with 
GBM. Age at reirradiation, Karnofsky performance status 
(KPS), tumor grade (grade III versus grade IV glioma) are 
well recognized prognostic factors associated with longer 
survival, whereas the role of other factors, including 
tumor volume, surgery before reirradiation, time interval 
from first course of RT, use of concurrent systemic ther-
apy, and MGMT promoter methylation remains contro-
versial [43, 54, 56–58, 64, 69, 71, 74, 75, 80–85]. In this 
regard, some, but not all, studies failed to demonstrate 
the favorable impact of surgery before reirradiation [57, 
80, 82, 84, 93] and time interval between initial standard 
chemoradiation and reirradiation [56, 58, 64, 75, 81, 82, 
85]; however, the majority of authors suggest a minimum 
interval of six month-interval between the two radiation 
courses.

Several prognostic scores have been developed to 
assess the clinical prognosis of patients undergoing 
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reirradiation and to assist with patient selection [71, 75, 
79, 85–93]. Using several prognostic factors, includ-
ing WHO grade, age, gender, MGMT methylation sta-
tus, time interval between first and second course of RT, 
and KPS, Niyazi et al. [92] developed a reirradiation risk 
score to independently predict survival in 565 patients 
from the German Cancer Consortium (DKTK)/radiation 
oncology group (ROG) database. Based on multivariate 
analysis, three prognostic groups were identified based 
on age, glioma grade and KPS, with longer survival in 
younger patients with better performance status and a 
grade III glioma. Another report of DKTK-ROG aimed to 
validate two different prognostic scores previously gener-
ated by Combs et al. [89], which included primary histol-
ogy, time from primary RT to reirradiation, and age, and 
by Kessel et  al. [90], created by adding values for KPS, 
irradiated volume, and performed resection. Data dem-
onstrated a significant correlation between both scores 
and overall survival after reirradiation; however, salvage 
surgery before reirradiation and the time between radia-
tion courses did not emerge as independent prognostic 
factors for survival, consistent with results of other stud-
ies [56, 57, 64, 75, 80–82, 84, 85, 93]. Overall, prognostic 
scores incorporating both tumor and patient character-
istics are useful to provide recommendations to bear on 
clinical decisions. In this regard, the impact of other 
potential prognostic factors, e.g. tumor molecular mark-
ers, extent of resection, and concurrent systemic thera-
pies, should be evaluated and validated in large series of 
irradiated gliomas.

Conclusions
Reirradiation is an effective and safe treatment in the 
management of recurrent GBM. For appropriately 
selected patients, both SRS and SRT, either hypofraction-
ated or conventionally fractionated regimens, are feasible 
therapeutic options associated with similar median over-
all survival in the range of 6 to 12 months and relatively 
low toxicity.

Several studies have investigated the effect of reirradia-
tion in combination with systemic therapy, although its 
favorable impact on survival remains controversial. Con-
comitant and/or adjuvant treatment with temozolomide 
has resulted in longer overall survival and progression-
free survival times compared with radiation alone, but 
this is generally limited to MGMT methylated tumors 
[13, 48, 63, 72]; in addition, no clear survival advantages 
have been observed by other authors [58, 74, 85]. Some 
studies suggested significantly longer survival with the 
addition of bevacizumab to both SRS and fractionated 
SRT compared to reirradiation alone [38, 50, 52, 76, 
78]; in contrast, other studies failed to demonstrate sur-
vival advantages [30, 68, 69, 85]. Overall, the different 

prognostic impact of chemoradiation over radiation 
alone in patients with recurrent GBM remains to deter-
mined in prospective trials.

Another important question to be solved is the poten-
tial superiority of concurrent/adjuvant systemic therapy 
in combination with reirradiation over systemic treat-
ment alone. In a secondary analysis of NRG Oncology/
RTOG trial 0525 evaluating dose-dense versus stand-
ard dose temozolomide in newly diagnosed GBM, Shi 
et  al. [94] investigated the effect of reirradiation or sys-
temic treatment after tumor progression in 637 patients 
who received systemic treatment (44%, bevacizumab 
for almost all patients), reirradiation alone (4%), com-
bined radiation and systemic therapy (10%), or no treat-
ment (42%). Median survival times were 4.8, 8.2, 10.6, 
and 12.2  months for patients who received no treat-
ment, radiation treatment only (SRS, fractionated RT or 
brachytherapy), systemic therapy, or radiation and sys-
temic therapy, respectively. Patients receiving no salvage 
treatment had significantly lower survival than those 
receiving radiation alone, systemic therapy or a combina-
tion of both; however, survival analysis showed no signifi-
cant difference among patient groups who received some 
form of treatment. In the NRG Oncology/RTOG 1205 
phase II randomized trial evaluating the efficacy and 
toxicity of hypofractionated SRT and concurrent beva-
cizumab versus bevacizumab alone in 182 patients with 
recurrent GBM, Tsien et al. [68] observed an equivalent 
median survival time of 10.1 months for patients receiv-
ing the combined treatment and 9.7  months for those 
receiving bevacizumab alone; however, the combined 
treatment was associated with better 6-month progres-
sion free survival (54% vs 29%, p < 0.001). The treatment 
was well tolerated with few acute (5%) and no delayed 
grade 3 or more toxicity, confirming the safety of reirra-
diation using modern RT techniques.

Appropriate patient selection is the key to improve 
clinical outcome. International guidelines recommend to 
consider reirradiation for recurrent or progressive GBM 
in young patients with good performance status, espe-
cially after a long period from prior radiation [95, 96]. In 
this regard, recent prognostic scoring models based on 
patient and tumor characteristics can be used as guide-
lines for clinical decision.

The risk of severe radiation-induced complications 
after reirradiation is a major concern in patients pre-
viously exposed to high doses of RT, even with the 
further optimization obtained with the use of ste-
reotactic techniques. Clinical deterioration due to 
radiation necrosis has been reported in up to 25% of 
patients. Reirradiation doses and treatment volumes 
must both be considered when evaluating the risk of 
brain necrosis. This risk remains generally low (less 
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than 10%) for cumulative EQD2 doses around 100–
110  Gy, but may increase up to 25% for cumulative 
EQD2 > 130  Gy. Beyond the limit of linear quadratic 
model when comparing the relative  biologic  effective-
ness of  large fraction doses with typical conventional 
fractionated regimens [29], differences in cumulative 
EQD2 between the reirradiation techniques may, at 
least in part, explain the higher risk of brain necrosis 
after SRS and high-dose hypofractionated SRT versus 
conventionally fractionated or moderately hypofrac-
tionated SRT. This means in clinical practice that SRS 
or high-dose fractionated SRT would be used for small 
targets of 5–15  ml, while fractionated SRT using 1.8–
2.5  Gy fractions should be preferred for large tumors, 
particularly if located close to eloquent structures. An 
advantage of fractionated schedules is the use of larger 
GTV-to-CTV margins to cover microscopic spread of 
disease compared with SRS, where the extent of tumor 
is usually defined by the lesion visible on postcontrast 
T1-weighted MR imaging; in this regard, the use of 
PET-CT for tumor definition may improve tumor defi-
nition and ensure better coverage of tumor [13–19].

In conclusion, reirradiation has emerged as an effec-
tive and safe treatment option for selected patients 
with recurrent GBM. Using similar biologically equiva-
lent dose, different radiation techniques result in simi-
lar survival outcomes. Treatments are associated with 
a relatively low risk of toxicity when the appropriate 
radiation technique is carefully chosen on the basis of 
the size and location of the tumor and in the respect 
of recommended cumulative dose limits for the brain. 
Future research includes the use of advanced imaging 
for tumor definition and the survival impact of different 
dose-fractionation schedules with or without concomi-
tant/adjuvant systemic therapy. Additionally, studies 
should report data on tolerance dose of normal brain 
tissue to reirradiation, as well neurocognitive status 
and quality of life of patients undergoing the treatment.
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