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Abstract 

Background: Identification and characterization of new traits with sound physiological foundation is essential for 
crop breeding and production management. Deep learning has been widely used in image data analysis to explore 
spatial and temporal information on crop growth and development, thus strengthening the power of identification of 
physiological traits. Taking the advantage of deep learning, this study aims to develop a novel trait of canopy structure 
that integrate source and sink in japonica rice.

Results: We applied a deep learning approach to accurately segment leaf and panicle, and subsequently developed 
the procedure of GvCrop to calculate the leaf to panicle ratio (LPR) of rice canopy during grain filling stage. Images of 
training dataset were captured in the field experiments, with large variations in camera shooting angle, the elevation 
and the azimuth angles of the sun, rice genotype, and plant phenological stages. Accurately labeled by manually 
annotating the panicle and leaf regions, the resulting dataset were used to train FPN-Mask (Feature Pyramid Network 
Mask) models, consisting of a backbone network and a task-specific sub-network. The model with the highest accu-
racy was then selected to check the variations in LPR among 192 rice germplasms and among agronomical practices. 
Despite the challenging field conditions, FPN-Mask models achieved a high detection accuracy, with Pixel Accuracy 
being 0.99 for panicles and 0.98 for leaves. The calculated LPR displayed large spatial and temporal variations as well 
as genotypic differences. In addition, it was responsive to agronomical practices such as nitrogen fertilization and 
spraying of plant growth regulators.

Conclusion: Deep learning technique can achieve high accuracy in simultaneous detection of panicle and leaf data 
from complex rice field images. The proposed FPN-Mask model is applicable to detect and quantify crop performance 
under field conditions. The newly identified trait of LPR should provide a high throughput protocol for breeders to 
select superior rice cultivars as well as for agronomists to precisely manage field crops that have a good balance of 
source and sink.
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Background
Sustainable improvement in crop production is crucial 
for supporting the demand from an increasing global 
population, particularly considering that there are 821 M 
people who lack sufficient food to support their daily lives 
[1]. Recent technological advances in genome biology 
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like next-generation sequencing, genome editing and 
genomic selection have paved the way for crop breeders 
to identify, characterize, transfer, or modify the genes 
responsible for grain yield or quality traits in a rapid and 
precise way [2]. However, there is a huge gap between the 
fundamental plant sciences and the applied science of 
crop breeding, as reflected by the limited understanding 
of the link between genotype and phenotype. Crop physi-
ology is a key interface between the genome and the plant 
phenotype, and thus is indispensable for hastening crop 
improvement [3]. Accordingly, physiological breeding, 
a methodology for selection of physiological traits such 
as canopy temperature, carbon isotope discrimination, 
and stomatal conductance, was proposed. This approach 
has advantages over conventional breeding such as in 
water stressed Australian environments and in heat and 
drought stressed conditions of the International Wheat 
Improvement Network [4].

Chemically, cereal grain yield consists of photosyn-
thetic assimilates first produced in the leaf source organs 
which are translocated to the sink organ of grain. There-
fore, source and sink relations, the core concept of crop 
physiology, is the critical factor dominating crop yield 
formation. Improving the source activity of leaf photo-
synthesis to harness light irradiation more efficiently is 
one of the major targets of crop breeding. In rice, ideo-
types have long been pursued by breeders, resulting in 
several successfully implemented theories such as the 
New Plant Type, Super Rice, and Ideal Plant Architec-
ture [5–7]. One common future shared by these new 
plant types is the emphasis on leaf erectness, especially 
the top three leaves, which is supposed to be essential for 
improving source activity. However, some of the main 
cultivars with this ideotype had problems of incomplete 
filling of inferior grains, especially for those with large 
numbers of grains, indicating the importance of optimi-
zation of the source-sink ratio [8, 9].

In addition to storing photosynthetic assimilates from 
leaves, sink organs like glumes and awns have photosyn-
thetic activity. Cumulative evidence favors the sizable 
contribution of spike or panicle to grain filling in terms of 
providing carbohydrates as well as nitrogen (N), magne-
sium, and zinc [10, 11]. In wheat and barley, contribution 
of spikes to grain filling has a range of 10% to 76% [12]. 
In rice, gross photosynthetic rate of the panicle is 30% 
of that of the flag leaf, and it was estimated that panicle 
photosynthesis contributed 20% to 30% of the dry matter 
in grain [13]. Thus light interception of the ear or panicle 
should be integrated into the breeding programmes aim-
ing for source-sink balance.

Technical advances in high throughput field pheno-
typing on a breeding scale in realistic field environ-
ments have strengthened the power of physiological 

breeding [4]. Concurrently, methods for data mining of 
the big data acquired by various phenotyping platforms 
are developed. Among them, deep learning has been 
widely used in image data analysis to explore spatial 
and temporal information concerning crop growth and 
development [14]. Leaf area and number indicate the 
photosynthetic capacity of the crop canopy, and the pre-
cise segmentation and counting of leaves has been one of 
the objectives of image processing. Studies have resulted 
in robust methodology of deep learning for quantifying 
leaf number from 2D images [15] and 3D images [16–18], 
providing effective tools for growth estimation and yield 
prediction of crop plants. Spike (wheat) or panicle (rice) 
number per square meter is the key component of cereal 
grain yield. Numerous attempts have been made to seg-
ment and count this reproductive organ accurately in rice 
[19–21] and wheat [22–24]. Collectively, these robust, 
low-cost and efficient methods to assess the number of 
economic organs are of high relevance for phenotyping 
efforts towards increases in cereal grain yield. However, 
to our knowledge, method development is still neces-
sary to simultaneously extract both leaf and panicle from 
the background of a field crop population, as required by 
the breeder to adopt physiological strategies to balance 
source and sink.

In this study, we applied a deep learning approach to 
accurately extract leaf and panicle image data and sub-
sequently calculate the leaf to panicle ratio (LPR) of rice 
populations during grain filling stage. Of note, the LPR 
is proposed as a proximate estimation of the distribution 
of light interception between leaf and panicle, with an 
assumption that the light captured by the camera is the 
sunlight directly reflected by the leaf or panicle. Images of 
training dataset were captured in the field experiments, 
with large variations in camera shooting angle, the eleva-
tion angle and the azimuth angle of the sun, rice geno-
type, and plant phenological stages. Accurately labeled 
by manually annotating all the panicle and leaf regions, 
the resulting dataset were used to train models of FPN-
Mask (Feature Pyramid Network Mask) [25], consisting 
of a backbone network and a task-specific sub-network. 
The model with the highest accuracy was then selected 
to study the variations in LPR among 192 japonica rice 
germplasms and among agronomical practices. Our aim 
was to provide a high throughput protocol and new phys-
iological trait for breeders to select superior rice cultivars 
as well as for agronomists to precisely manage field crops 
that have a good balance of source and sink.

Methods
We explored an end-to-end semantic segmentation 
method to label each pixel as panicle, leaf or background 
automatically under natural field conditions, and then 
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generated the leaf to panicle ratio (LPR) by division of 
the number of pixels assigned for each class in each 
field image. Figure 1 shows the overall work-flow of this 
method, including two parts. Part 1 is the offline training 
workflow, with the aim of building a deep learning net-
work called FPN-Mask to segment panicle and leaf from 
field RGB images. Part 2 is the procedure of GvCrop to 
develop a software system for calculating LPR.

Experimental setup
In 2018, plots of ongoing field experiments at Danyang 
(31°54′31″N, 119°28′21″E), Jiangsu Province, China were 
selected to take pictures for the training dataset. Of 
note, these experiments were not specially designed for 
a phenotyping study. In brief, plant materials of these 
experiments were highly diverse in genotypic varia-
tion, containing seven main japonica cultivars of Jiangsu 
and 195 mutants with contrasting agronomical traits as 
reported by Abacar et al. [26]. Further, the seven cultivars 
had two sowing dates, resulting in obviously different 
phenotypes for a certain genotype. Thus the diversity in 
plant architecture and canopy structure of tested materi-
als can provide as many kinds of phenotypes as possible 
for image analysis.

In 2019, three experiments were conducted to test and 
apply the proposed FPN-Mask model. (1) Genotypic 
variations in LPR. A total of 192 mutants were investi-
gated. The plot area was 2.4 m × 1.4 m with a row spacing 

of 30 cm and plant spacing 20 cm. Nitrogen, phosphate 
 (P2O5) and potassium  (K2O) fertilizers were applied at a 
rate of 240 kg ha−1, 120 kg ha −1 and 192 kg ha−1, respec-
tively, and were equally separated into basic fertilizers 
(before transplanting) and topdressing (at 4th leaf age in 
reverse order). (2) N fertilization effects on LPR. A japon-
ica rice cultivar, Wuyunjing 30, was selected for field 
experiments with a randomized complete-block design. 
It had three replications, with a plot area of 2.4 m × 1.4 m. 
Total N fertilizer was 240 kg ha−1 N, and two N fertiliza-
tion modes with different base/topdressing ratios were 
applied: (1) N5-5: base/topdressing, 5/5; (2) N10-0: base/
topdressing, 10/0. (3) Regulation of plant growth regu-
lators on LPR. Solutions of 100 µM gibberellin, 100 µM 
uniconazole, 25 µM 2, 4-epibrassinolide, 25 µM brassina-
zole as well as the control, water, were prepared in dis-
tilled water with 0.5% TWEEN-20. One cultivar, Ningjing 
8, from the N treatment was used as material. Spraying 
was conducted at the rate of 500  mL  m−2 after sunset, 
with three times starting at booting stage on August 22 
and with a 2-day interval.

In addition, a dynamic canopy light interception simu-
lating device (DCLISD) was used to capture images that 
reflect the sun’s perspective (Fig. 2). The bottom part of 
it consists of four pillars with wheels and the upper is 
comprised of two arches consolidated by two steel pipes, 
and a moveable rail for mounting the RGB camera. The 
sun’s trajectory is simulated by two angles, the elevation 
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Fig. 1 The overall work-flow of panicle-leaf quantification. The upper shows the training procedure of the FPN-Mask model implemented in this 
study. The bottom depicts the GvCrop working procedure to calculate the LPR (leaf to panicle ratio). (1) Generating 1896 patches by random 
manual cutting. (2) Manual labelling of every pixel to panicle, leaf and background. (3) Brightness enhancement of patches, normalization to [0, 
1] and resizing to 256 × 256 pixels. (4) Training the FPN-Mask model. (5) Daily validation of FPN-Mask with field images and iterative addition of 
negative samples. (6) Integration of the saved model to semantic segmentation of field images by GvCrop. (7) Manual modification of the predicted 
result by super-pixel segmentation method integrated in GvCrop
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angle and the azimuth angle, calculated according to the 
latitude, longitude, as well as the growth periods at the 
experimental site.

Image acquisition
Images of the training dataset were captured in the field 
experiments in 2018, reflecting the large variations in 
camera shooting angle, the elevation angle and the azi-
muth angle of the sun, rice genotype [27], and plant 
phenological stages (Fig.  3). Images for validation and 
application of the proposed model were acquired in 2019. 
For the three treatments of genotypes, N fertilization, and 
spraying, an angle of 40° was selected for the tripod. The 
height of the camera (Canon EOS 750D, 24.2 megapixels) 
was 167.1 cm, the average height of a Chinese adult, and 
the distance between the central point of the target area 
and vertical projection of the camera on the ground was 
90 cm. The camera settings were as follows: focal length, 

18  mm; aperture, automatic; ISO, automatic; and expo-
sure time, automatic. In the experiment with DCLISD, 
the camera model was SONY DSC-QX100, with settings 
were as follows: focal length, 10 mm; aperture, automatic; 
ISO, automatic; and exposure time, automatic.

Dataset preparation
Training dataset
Taking into consideration camera angle, solar angle, 
panicle type and growth stage (Fig.  3), we prepared a 
training dataset with 360 representative images from the 
2018 dataset (Additional file 1: Table S1). The GG (Green 
panicle with Green leaf ) growth stage, YG (Yellow pani-
cle with Green leaf ) growth stage and YY (Yellow pani-
cle with Yellow leaf ) growth stage were represented by 
113, 104, and 143 images, respectively. Figure  1(1–3) 
shows the preparation of training data. Considering 
that the original size of these field images is as large as 

Fig. 2 Dynamic canopy light interception simulating device (DCLISD). a sketch design of DCLISD. b sketch design of unit for simulating the sun’s 
trajectory by two angles, the elevation and the azimuth angle. c RGB camera mounted on the simulation unit; d working scene of DCLISD

Side-view Oblique-view Top-view

a Camera shooting angles

GG YG YY

b Solar angles

6:30 15:3012:30

c Panicle types

EP CT LP

d Phenological stages

Fig. 3 Images selected as training dataset under different field conditions in 2018. a camera shooting angles, including side-view (180°), 
oblique-view (45°) and top-view (90°); b solar angles in the morning (5:30 a.m.–10:00 a.m.), at noon (11:00 a.m.–13:00 p.m.) and in the 
afternoon(15:30 p.m.–18:30 p.m.); c cultivars with three panicle types, EP (erect panicle), CT (chicken toe), and LP (loose panicle), according the 
classification by Zhang et al. [27]; d phenological stages, GG (Green panicle with Green leaf ) at early, YG (Yellow panicle with Green leaf ) at middle, 
and YY (Yellow panicle with Yellow leaf ) at late stage of grain filling
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4864 × 3648 pixels, they were cropped to a size between 
[150,150] and [600,600] using the Paint.Net software. 
After obtaining these patches, we labeled pixels of each 
patch as panicle, leaf and background manually using the 
Fluid Mask software. Finally, a total of 1896 representa-
tive patches were selected as the final training sample 
set. Among them, 1210 samples were added continu-
ously during the late daily tests of the model. Further, to 
increase the diversity of the training dataset and avoid 
overfitting, we performed basic data enhancements to the 
training set, including random horizontal/vertical flips, 
rotations by 90°, and histogram equalizations. To reduce 
illumination effects, we performed random brightness 
enhancements on the image. All the input images were 
resized to 256 × 256 pixels. And for a faster and more sta-
ble training model, all the input images were normalized 
to [0,1] [28, 29].

Testing dataset
We divided all 2018 collected images into three groups 
based on rice growth stage. From each group, we ran-
domly selected 35 testing images and finally selected 
105 images as the testing dataset (Additional file  1: 
Table S2). These selected testing images included extra-
neous objects, such as tracks, chains, neighbor plots and 
color-charts.

Network structure
In this study, we proposed a deep learning-based method 
for rice panicle segmentation, called FPN-Mask. The 
method consists of a backbone network and a Task-spe-
cific subnetwork. The Feature Pyramid Network (FPN) 
[25] was selected as the backbone network for extracting 
features over the entire input data. Originally designed 
for object detection, it has the advantages of extracting 
a multi-level feature pyramid from an input image with 
a single scale. The subnetwork is referenced from the 

Unified Perceptual Parsing Network [30], which performs 
semantic segmentation based on the output of the back-
bone network (Fig. 4).

Backbone network for feature extraction: The FPN [25] 
is a standard feature extractor with a top-down architec-
ture and lateral connections. The top-down architecture 
is based on Residual Networks (ResNet) [31], with four 
stages denoted as  C2,  C3,  C4 and  C5, respectively. We 
denoted the last feature map of each stage in ResNet as 
{C2,  C3,  C4,  C5}. In our backbone network, we removed 
the global max pooling layer before  C2, because it will 
drop out semantic information. Therefore, the rates of 
each stage {C2,  C3,  C4,  C5} were down-sampled from 
{4,8,16,32} to {1,2,4,8}. The down-sampling rates of the 
feature maps derived by FPN {P2,  P3,  P4,  P5} were {1, 2, 
4, 8}, respectively, meaning that the size of  P2 is the same 
as the original image size of 256 × 256, while that of  P5 
is 32 × 32. The number of feature maps output for each 
stage in ResNet is equal to 32.

Subnetwork for semantic segmentation: the subnet-
work is based on the multi-level features extracted from 
the backbone network. Each level of the features will be 
fused together as an input feature map for semantic seg-
mentation, which has been proved to outperform that 
only using the highest resolution feature map [30, 32]. To 
up-sample the low-level feature maps {p3,  p4,  p5} to get 
the same size feature as the original image, we directly 
adopted the bilinear interpolation layer instead of the 
time-consuming deconvolution layer, and attached a 
1× 1 convolution layer followed by each interpolation 
layer to refine the interpolation result. After up-sam-
pling, different levels of the features were concatenated as 
the final semantic feature. The concatenated multi-level 
features were convoluted by a 3× 3 convolution layer to 
refine the result and a 1× 1 convolution layer to reduce 
the channel dimensions. The 3× 3 convolution layer was 
attached to a batch normal layer and a relu layer. Finally, 

Fig. 4 Network architecture. The input layer is a normalized patch, shown in color images. The output consists of the segmented pixels in different 
colors: green (panicle), blue (leaf ), and black (background)
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we obtained a 3-channel semantic segmentation result, 
representing background, leaf and panicle, respectively.

Loss function for semantic segmentation
The cross-entropy loss function is a standard classifica-
tion method [33]. In practical application, due to the une-
ven number of pixels from different categories, the loss 
calculated by the cross-entropy loss function is not realis-
tic [34]. Thus we used the focal loss, which is specifically 
designed to solve the imbalance problem by focusing on 
the more difficult classification locations through chang-
ing the weight of different categories [34].

Training
We experimented with ResNet-18 as the FPN backbone. 
All convolutional layers were initialized as in He et  al. 
[35]. Batch layers were simply initialized with bias b = 0 
and weight σ = 0 . The mini-batch size was 24, optimi-
zation was based on the Adam method, and the train-
ing process lasted for 7 days with the base learning rate 
of 0.001. All the training were conducted on a high-per-
formance computer with Intel 3.50  GHz processor and 
128 GB of memory. Two NVIDIA 1080 GeForce graph-
ics processing unit (GPU) has a 12 GB memory used to 
accelerate the training of our model.

During training, we tested the model performance 
with all the collected images and selected supplementary 
training samples for the images that did not perform well 
to make sure that the training samples covered all the 
cases of the 6 GB images obtained in 2018 (except the 90 
testing images). Sixty images generating 302 patches were 
added as supplementary training samples, being about 
40 samples per day. The performance standards (good or 
bad) were judged by observation. The training continued 
until the testing performance of all images visually met 
the accuracy requirements and the loss function curve 
was smooth without fluctuations.

PostProcess
Although a deep network is well suited for process-
ing semantic segmentation problems, errors can not be 
completely avoided. To lessen the influence of segmenta-
tion errors, we further developed a tool, called GvCrop, 
for manually modifying the auto segmentation results. 
The software does not only integrate the pixel-wise seg-
mentation method (Fig.  1(6)), but also integrates the 
ability to modify the segmentation results by human 
interaction (Fig.  1(7)). Because pixel-level labelling of 
the wrong location is time consuming, processing the 
image regions with homogeneous characteristics instead 
of single pixels can help us accelerate the manual label-
ling speed (Fig. 1(7)). According to the image color space 
and boundary cues, we used the gSLICr algorithm to 

group pixels into perceptually homogeneous regions 
[36]. gSLICr is the Simple Linear Iterative Clustering 
(SLIC) implemented on GPU using the NVIDIA CUDA 
framework, 83 × faster than the SLIC CPU implementa-
tion [37]. The gSLICr has three parameters: S, C and N. 
S stands for super pixel size, C the compact coefficient 
degree, and N the number of iterations. In this study, 
S was set to 15, C to 0.2, and N to 50. After super pixel 
segmentation, users can modify the auto-segmentation 
results based on super pixels.

Accuracy assessment
To quantify the performance of the proposed method, 
we employed three standard metrics to quantify seman-
tic segmentation tasks. (1) Pixel Accuracy (P.A.) indicates 
the proportion of correctly classified pixels to the total 
number of pixels. (2) IoU indicates the Intersection-over-
union between the ground truth and the predicted pix-
els, averaged over all classes. (3) Area under the receiver 
operating characteristic (ROC) curve [38].

    where n is the number of classes, pij is the number of 
pixels of class i predicted to belong to class j, pii is the 
true positive, pij is the false negative, pji is the false posi-
tive, pjj is the true negative.

Calculation of leaf‑panicle ratio (LPR)
The software GvCrop was developed to calculate LPR 
based on the quantity of pixels contained in the leaf (L) 
and panicle (P) regions in an image and is calculated as: 
LPR = L/P.

Results
Accuracy verification
The semantic segmentation of the 105 field images was 
assessed both visually (Fig. 5) and quantitatively (Table 1). 
In addition, we added extra datasets that include non-
vegetated objects to evaluate the performance of our pro-
posed method. Fifteen field images at 3 growing stages, 
5 images per stage, were added to the testing dataset. 
The segmentation results using FPN-Mask segmentation 
method were shown in Additional file 1: Fig. S1, and the 
corresponding accuracy assessment results were pre-
sented in Table 1.

Figure 5 shows some examples of semantic segmenta-
tion results. Visual assessment suggested that the tested 

(1)P.A. =

∑n
i pii∑n

i=0

∑n
j=0

pij
(1)

(2)mIoU =
1

n+ 1
×

∑n
i pii∑n

i=0
pij +

∑n
j=0

pji − pii
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results and real data were very similar in different con-
ditions. However, we still found some subtle segmenta-
tion errors: (1) The background and shadow pixels of 
the leaves were very similar visually, resulting in some 
shadow pixels being misclassified as background; (2) The 
segmentation was a little poor at the edges of the plant 
parts, with pixels at the junction between leaf and pani-
cle being misclassified into error categories; (3) Some 
scattered small patches on the leaves were misclassified 
as panicle. The area under the ROC curve by using our 
model with the testing datasets were 0.95, 0.94 and 0.94 
for GG, YG, and YY, respectively (Fig. 6).

Table 1 provides a quantitative evaluation of the com-
plete test set, showing the high accuracy of all the testing 
images. Differences between images and growth stages 
were quite small. Additional file  1: Table  S3 shows the 
model can reach 99% accuracy for panicles pixels, fol-
lowed by leaf pixels (97.6% to 98.3%), while the worse was 
for background pixels, ranging from 81.4 to 89.4%.

The efficiency of a training model can also be described 
in terms of training data loss. Additional file  1: Fig. S2 
exhibits that there was a rapid decline in loss over sub-
sequent epochs of training, although the loss was initially 
high. To avoid overfitting and improve the robustness of 
our model, we iteratively added samples to the training 
dataset (Fig.  1(5)) and performed basic data enhance-
ments randomly to the training set before putting it into 
the model.

Verification and application of the FPN‑Mask model
The most important output of this FPN-Mask model is 
to estimate the distribution of light interception between 
leaf and panicle. Using GvCrop, we calculated the LPR 
values of the crop stand for various field experiments and 
detected large spatial and temporal variations as well as 
genotypic differences. Overall, these results suggest the 
feasibility of the model in detecting and quantifying crop 
performance under field conditions.

Top Oblique Side Morning AfternoonG1 G2 G3 Noon

GG

YG

YY

Fig. 5 FPN-Mask segmentation results for 27 selected samples at three growth stages of GG, YG, and YY. At each stage, there are three blocks with 
9 images from the left to the right, showing differences in genotype (G1, G2, and G3), camera angle (top, oblique, and side views), and solar angle 
(morning, noon, and afternoon), respectively. Within each block, rows from upper to bottom show the original image, the manually labeled ground 
truth, and the predicted results, respectively
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Daily changes of LPR
LPR showed an obvious pattern of daily change, being 
higher after sunrise and before sunset but lower at noon 
(Fig. 7). The larger values of LPR in the morning or after-
noon can be explained by the shading of leaves when the 
solar angle of incidence is lower.

Genotypic variations in LPR
Large genotypic differences in LPR were detected 
among the 192 mutants, ranging from 1.37 to 5.60 
(Additional file  1: Table  S4). As shown in Fig.  8, the 
six panicle types showed marked differences in LPR. 
Generally, cultivars with compact panicle (CP) had 

Table 1 Accuracy assessments of the automatic leaf-panicle segmentation results

GG green panicle with green leaf, YG yellow panicle with green leaf, YY yellow panicle with yellow leaf, mIoU mean intersection-over-union, PA pixel accuracy, Min 
minimum, Max maximum, Std standard error of mean

ID GG YG YY

mIoU PA mIoU PA mIoU PA

1 0.861 0.937 0.846 0.912 0.900 0.950

2 0.851 0.945 0.860 0.921 0.899 0.952

3 0.840 0.946 0.830 0.902 0.866 0.933

4 0.849 0.958 0.844 0.915 0.861 0.934

5 0.842 0.959 0.845 0.919 0.854 0.936

6 0.837 0.954 0.846 0.921 0.850 0.940

7 0.833 0.954 0.850 0.927 0.856 0.944

8 0.822 0.948 0.847 0.923 0.837 0.933

9 0.825 0.950 0.847 0.924 0.842 0.936

10 0.881 0.987 0.887 0.959 0.890 0.945

11 0.869 0.984 0.864 0.943 0.874 0.931

12 0.857 0.978 0.855 0.934 0.887 0.942

13 0.846 0.979 0.845 0.925 0.889 0.941

14 0.837 0.978 0.841 0.928 0.881 0.935

15 0.847 0.976 0.851 0.936 0.880 0.938

16 0.851 0.978 0.856 0.938 0.885 0.943

17 0.852 0.978 0.860 0.942 0.872 0.937

18 0.863 0.974 0.863 0.946 0.875 0.938

19 0.825 0.962 0.867 0.948 0.880 0.942

20 0.824 0.961 0.871 0.949 0.873 0.938

21 0.824 0.961 0.871 0.950 0.871 0.938

22 0.831 0.960 0.870 0.949 0.871 0.939

23 0.838 0.959 0.868 0.947 0.874 0.941

24 0.837 0.960 0.876 0.948 0.874 0.942

25 0.836 0.961 0.880 0.948 0.874 0.942

26 0.833 0.962 0.879 0.947 0.874 0.942

27 0.833 0.963 0.877 0.947 0.872 0.940

28 0.832 0.962 0.877 0.947 0.871 0.940

29 0.831 0.962 0.869 0.942 0.870 0.941

30 0.833 0.963 0.867 0.942 0.871 0.942

31 0.889 0.966 0.931 0.974 0.934 0.986

32 0.879 0.968 0.934 0.973 0.953 0.986

33 0.901 0.970 0.934 0.973 0.960 0.985

34 0.914 0.973 0.941 0.975 0.968 0.986

35 0.912 0.972 0.939 0.974 0.976 0.989

Mean 0.850 0.964 0.871 0.941 0.970 0.987

Min 0.822 0.937 0.830 0.902 0.837 0.931

Max 0.914 0.987 0.941 0.975 0.976 0.989

Std 0.025 0.012 0.014 0.014 0.014 0.005
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the highest value, while those with loose panicle and 
awns (LPA) had the lowest. The former can be asso-
ciated with the high density of spikelets on the pani-
cle that caused smaller panicle area. The latter can be 
explained by the large panicle area due to sparse spike-
lets. Temporal variations of LPR were revealed show-
ing a diminishing trend from the early stage to the late 
stage of grain filling. This means the relative area of 
leaf was reduced, as it is partly due to the increased 
area of panicle that changes its shape from erect and 
dense at early stage to loose and drooping at late stage.

N effect on LPR
N fertilization mode exerted substantial influence on 
LPR. On average, N topdressing of the N5-5 increased 
LPR by 0.45 and 0.76 at middle and late stage, respec-
tively, compared with N10-0 (Fig.  9). The promoting 
effect of N topdressing is associated with the elongation 
of flag leaf (Fig. 9). Similarly, LPR decreased gradually as 
grain filling progressed for both N treatments.

Modification of LPR by plant growth regulators
Plant growth regulators like brassinolide, brassinazole, 
gibberellin, and uniconazole obviously reshaped the 
canopy architecture (Fig. 10). The effects of these regula-
tors agreed well with their well-documented phenotypes, 
for example, the drooping flag leaf caused by brassi-
nolide spraying [39, 40] and the elongated upper inter-
node caused by gibberellin [41]. More importantly, LPR 
can be either up-regulated or down-regulated by these 
regulators, depending on growth stages. As shown in 
Fig. 10, LPR at grain filling stage was increased by brassi-
nazole and uniconazole, whereas reduced by brassinolide 
and gibberellin. In addition, the degree of increase or 
decrease depended on regulators, with uniconazole hav-
ing the most significant influence.

Discussion
Weakness of the methodology and improvement
In this study, we built a robust and highly accurate deep 
learning network, FPN-Mask, which can easily segment 
panicle, leaf and background at a pixel level from a field 
RGB image. We also developed the GvCrop software, 
which not only included some basic image processing 
functions such as I/O, cut, rotation, zoom in/out, trans-
lation, but also integrated the above-mentioned auto 

Fig. 6 ROC curves and the area under the ROC curves for test dataset 
at three growth stages of GG, YG, and YY. ROC, receiver operating 
characteristic

LPR=2.12 b

5:55 

a

LPR=1.79 b

9:00

b

LPR=1.77 b

12:00 

c

LPR=1.90 b

15:00

d

LPR=2.80 a

17:56 

e

Fig. 7 Daily variations in LPR. a 5:55 a.m.; b 9:00 a.m.; c 12:00 a.m.; d 15:00 p.m.; e 17:56 p.m.. Pictures were taken on October 3, 2019 at Danyang 
station. Cultivar used was Wuyunjing 29. Mean values with different letters are significantly different according to the shortest significant ranges 
(SSR) test (P < 0.05)
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semantic segmentation method, manual modification 
of auto-segmentation result function and export of LPR 
report function.

This work represents a proof of concept that deep 
learning can be used for accurate organ level (panicle, 
leaf ) pixel-wise segmentation of field images. The LPR 
proposed is a novel trait in plant biology, and it is the deep 
learning method that make it possible to be detected and 
estimated. Deep learning has been applied to segment 
plant organs like leaf [15–18] and spike/panicle [19–24], 
with the aim of counting the number of them and thereby 
estimating crop yield. This study is totally different from 

the previous ones, because the newly developed trait of 
LPR here is based on simultaneous segmentation of leaf 
and panicle, neither counting the number nor separately 
detecting them. However, there are several challenges to 
be tackled in the future.

First, segmentation accuracy was quite high for these 
6  GB datasets, but if objects were not included in the 
training dataset, it would have not performed as well. In 
other words, the robustness of a deep learning model is 
partially dependent on the diversity of the training data-
set. In the future, we will seek to improve the robustness 
of FPN-Mask by collecting a wider range of field data. 

c

a

LPR=4.03 c LPR=5.80 b LPR=7.42 aCPWT CTP

LPR=3.10 d LPR=2.47 eLPR=3.18 dIP LP LPA

LPR=5.51 a LPR=1.88 cLPR=2.00 cWT CP CTP

LPR=2.36 b LPR=1.46 dLPR=2.11 bcIP LP LPA

b

d

LPR=1.94 c LPR=6.04 a LPR=1.63 dWT CP CTP

LPR=1.44 dLPR=2.28 bLPR=2.08 bcIP LP LPA

LPR=2.30 d LPR=4.40 a LPR=1.72 eWT CP CTP

LPR=2.60 c LPR=1.36 fLPR=3.23 bIP LP LPA

Fig. 8 LPRs of cultivars with six panicle types at different growth stages. a 0 DAA (days after anthesis); b 15 DAA; c 30 DAA; d 45 DAA. WT wild type, 
CP compact panicle, CTP chicken toe panicle, IP intermediate panicle, LP loose panicle, LPA loose panicle with awns. The CTP is a special type of 
LP with more secondary branches on the upper part of the axis, with the lower rachis branches being curved into different directions similar to a 
chicken foot
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Second, the shadow on leaves and background exhibited 
very similar visual patterns. It is difficult to distinguish 
red, green and blue in the visible band. The junctions 
between different parts of plants are also quite difficult 
to distinguish. This explained most of the low precision 
for the semantic segmentation, and these types of errors 
occurred in every image in the testing dataset. Other 
studies also encountered the same problem [18].

Third, perspective photography can cause the deforma-
tion of objects projected into 2D images, which in turn 
affects the accuracy of LPR. However, our method has 
an advantage of reliably calculating the relative value of 
leaf to panicle ratio using 2D photos, on which the leaf 
and panicle in the 3D stand is compressed proportion-
ally according to the imaging principle of the camera. 
Recently, light detection and ranging (LiDAR) has shown 
its advantages for showing high resolution 3-dimen-
sional (3D) structural information of terrain and veg-
etation [42–44] and the advantage for segmentation of 
plant organs [16, 45, 46]. Shi et al. [18] also showed that 
a multi-view 3D system can avoid these errors. In the 
future, we will combine plant height provided by LiDAR 
to texture and color information provided by the RGB 
image to distinguish object categories more effectively 
and accurately.

Significance of LPR for crop breeding and management
To some degree, the essence of crop sciences is the 
knowledge of selection (by breeders) or regulation (by 
agronomists) of agronomical traits. Traditionally, crop 
scientists heavily depend on visual inspection of crops in 
the field as well as their evaluation of target traits based 
on their experience and expertise of the crop, which 
is labor intensive, time consuming, relatively subjec-
tive, and prone to errors [14, 47]. In addition, the tar-
get traits are mainly morphological traits including leaf 

senescence, plant height, tillering capacity, panicle or 
spike size, and growth periods, while fewer physiological 
traits are monitored and analyzed. With the development 
of plant phenotyping techniques, image-based meth-
ods have been successfully applied to obtain phenotypic 
data related to crop morphology and physiology [16]. In 
wheat, high throughput methods for a large array of traits 
are available for the breeders, including canopy tempera-
ture, normalized difference vegetation index (NDVI), and 
chlorophyll fluorescence [48]. However, the capacity for 
undertaking precision phenotyping of physiological traits 
is lagging far behind the requirement of crop sciences.

In this study, we propose a new physiological trait, 
LPR, based on deep learning. Physiologically, LPR indi-
cates the distribution of light interception within the 
canopy between the source organ leaf and the sink organ 
panicle. Historically, breeders and agronomists focused 
on improvement in source activity, with traits of the leaf 
such as photosynthesis, erectness, and stay-green as the 
main targets. On the other hand, the role of panicle was 
largely overlooked, with less attention except for grain 
number per panicle or erectness of the panicle [7]. The 
significance of the panicle has been increasingly recog-
nized in terms of its substantial contribution of carbohy-
drates, nitrogen, and minerals to grain filling. Therefore, 
light interception of panicles is dispensable for yield for-
mation, and there should be a suitable LPR value for a 
crop stand growing in a given ecological condition.

The trait of LPR should provide crop scientists with 
new insights into the physiological status of the crop 
stand from the perspective of source and sink balance. 
For breeders, large genotypic variations in LPR are 
detected among the 192 germplasms, with a range of 
1.37 to 5.60, indicating the possibility to select elite par-
ents for target hybridization and future studies on the 
morphological and physiological foundations of LPR. 

Heading stage Filling stage Mature stage

LPR=3.41 a LPR=2.65 a LPR=2.62 a

a

LPR=3.20 a LPR=2.20 b LPR=1.86 b

b
Heading stage Filling stage Mature stage

Fig. 9 Effect of N fertilization modes on LPR during grain filling. Japonica rice cultivar Wuyunjing 30 is used for representation. A, N5-5, N 
fertilization treatment with a base/topdressing ratio of 5:5; B, N treatment of N10-0
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For agronomists, LPR is affected by nitrogen fertilization 
mode, and high yielding practice of N5-5 showed a rela-
tively higher LPR value than that of N10-0, explaining the 
yield promotion effect of nitrogen topdressing in terms 
of source-sink relations. Further, LPR was sensitive to 
foliar application of plant growth regulators like BR and 

GA, and can be increased by brassinazole and unicona-
zole, or reduced by brassinolide and gibberellin. Thus it 
is possible to develop methods for targeted regulation of 
crop stands with a desirable LPR by chemical interven-
tion. In addition, LPR can be easily measured by digital 
camera and even a smartphone camera (data not shown). 

CK BR BRZ GA UNI

a

LPR=5.45 b LPR=5.83 b LPR=2.30 d LPR=8.23 aLPR=3.13 c

LPR=4.20 a LPR=2.28 c LPR=3.86 bLPR=2.54 cLPR=3.60 b

b

LPR=2.74 ab LPR=2.39 c LPR=2.61 bc LPR=2.95 aLPR=1.86 d

c

Fig. 10 Response of LPR to plant growth regulators. Ningjing 8 is used for representation. a Heading stage; b grain filling stage; c mature stage. CK, 
water spraying; BR, brassinolide; BRZ, brassinazole; GA, gibberellin; UNI, uniconazole
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Considering that the measurement of LPR is vulnerable 
to variations in lighting conditions, we are currently con-
ducting an experiment to identify the timing that can 
represent the average or general value of LPR for the 
whole daytime, which could facilitate the use of LPR by 
crop scientists. Nevertheless, more work is needed when 
applying LPR in crop breeding or management, in par-
ticular elucidating the inherent link between LPR and 
yield, and proposing a set of suitable LPR values for dif-
ferent environments or plant types.

Conclusion
The work represents a proof of the concept that the deep 
learning can achieve high accuracy in simultaneously 
detecting panicle and leaf data from complex rice field 
images. The FPN-Mask model is applicable for detect-
ing and quantifying crop performance under field condi-
tions. The proposed trait of LPR displayed large spatial 
and temporal variations as well as genotypic differences. 
It was also sensitive to agronomical practices such as 
nitrogen fertilization and spraying of plant growth regu-
lators. Therefore, LPR, the novel trait indicative of source 
and sink relation, should provide a high throughput pro-
tocol for breeders to select superior rice cultivars as well 
as for agronomists to precisely manage field crops to have 
a good balance of source and sink. However, there are 
several challenges to be handled in future work, in par-
ticular combining plant height by LiDAR with the texture 
and color information from RGB image to distinguish 
object categories more effectively and accurately.
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