Sery et al. Behavioral and Brain Functions (2015) 11:10
DOI 10.1186/512993-015-0057-9

BRF BEHAVIORAL AND
BRAIN FUNCTIONS

RESEARCH Open Access

Association between 5g23.2-located
polymorphism of CTXN3 gene (Cortexin 3) and
schizophrenia in European-Caucasian males;
implications for the aetiology of schizophrenia

Omar Sery"?, Jan Lochman', Jana Povové®, Vladimir Janout®, Jiii Plesnik" and Vladimir J Balcar*

Abstract

Background: The objective of the study was to examine several polymorphisms in DISCT and CTNX3 genes as
possible risk factors in schizophrenia. DISCT (disrupted-in-schizophrenia 1) has been studied extensively in relation
to mental disease while CTXN3, has only recently emerged as a potential “candidate” gene in schizophrenia. CTXN3
resides in a genomic region (5g21-34) known to be associated with schizophrenia and encodes a protein cortexin 3
which is highly enriched in brain.

Methods: We used ethnically homogeneous samples of 175 male patients and 184 male control subjects. All
patients were interviewed by two similarly qualified psychiatrists. Controls were interviewed by one of the authors
(0.S)). Genotyping was performed, following amplification by polymerase chain reaction (PCR), using fragment
analysis in a standard commercial setting (Applied Biosystems, USA).

Results: We have found a statistically significant association between rs6595788 polymorphism of CTXN3 gene and the risk
of schizophrenia; the presence of AG genotype increased the risk 1.5-fold. Polymorphisms in DISCT gene showed only
marginally statistically significant association with schizophrenia (rs17817356) or no association whatsoever (rs821597 and
rs980989) while two polymorphisms (rs9661837 and rs3737597) were found to be only slightly polymorphic in the samples.

Conclusion: Evidence available in the literature suggests that altered expression of cortexin 3, either alone, or in parallel
with changes in DISCT, could subtly perturb GABAergic neurotransmission and/or metabolism of amyloid precursor protein
(APP) in developing brain, thus potentially exposing the affected individual to an increased risk of schizophrenia later in life.
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Background

There are numerous reports in the literature, includ-
ing those on genome-wide association studies (GWAS),
proposing putative links between particular genes and
mental diseases such as schizophrenia. DISCI (Disrupted-
in-Schizophrenia 1) is one such “candidate” gene (reviews:
[1,2]) and this is so despite extensive investigations having
produced, to date, little evidence for a direct association
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between any structural changes in DISCI and a specific
disease (review: [3]). However, the protein which DISCI
encodes (DISC1) is known to be involved in the develop-
ment of the central nervous system; neural proliferation
and migration as well as neurite outgrowth are among the
most often cited targets of DISC1 [2,4].

In contrast to DISCI, CTXN3, a three-exon (exons la,
1b, 2 and 3) gene spread over a 9.6-kb region of human
chromosome 5q23.2, has been known and studied for
only a few years [5-8]. In humans, CTXN3 translates into
a protein (cortexin 3 also known as KABE: “Kidney And
Brain Expressed” protein) which is present mainly in
kidney and brain, including foetal brain tissue [5].
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Recently, Panichareon et al. [6] described an associ-
ation between two CTXN3 polymorphisms and schizo-
phrenia in a sample of Thai Asian population. This
finding is intriguing for a variety of reasons. Panichareon
et al. [6] noted a linkage disequilibrium (albeit a moder-
ate one) between SNP’s in CTXN3 and SLCI2A2; both
these genes are within the 5q23 region that has been
identified as a “locus of vulnerability” or a “candidate re-
gion” with respect to genetic risk of schizophrenia
[9-11]. Furthermore, genetic studies have associated a
gene-interplay between SLCI2A2 and DISCI with an al-
tered risk of schizophrenia [12]. In fact, SLCI2A2 has
been linked to DISC]I, also as a result of in vitro experi-
ments [12] and following in vivo measurements of hip-
pocampal activity in humans [13]. By analogy with the
putative role of DISCI, the above observations can be
taken as implying that altered genetics of CTXN3, ei-
ther individually or in conjunction with changes in
DISCI, might represent a significant risk factor in
schizophrenia. This conjecture forms the basis for our
current hypothesis.

As we have previously carried out several successful
case-control association studies between schizophrenia
and SNP’s in OPRMI1, DRD3, SNAP-25, MTHFR and
ADRAZ2A genes in samples of typical European popula-
tion [14-16] we decided to use a similar approach to test
the present hypothesis and include both CTXN3 and
DISCI gene polymorphisms in our investigation. We
now report on the rs6595788 polymorphism of CTXN3
gene and the rs17817356, rs821597, rs9661837, rs980989
and rs3737597 polymorphisms of DISCI gene and dis-
cuss them as possible risk factors for pathophysiology of
schizophrenia in a group of male patients and controls.
All these polymorphisms have been studied by other au-
thors in associations studies related to psychiatric
diseases [17-21].

Methods

Subjects

In order to eliminate from our data possible confound-
ing influence of sex-differences in the aetiology of
schizophrenia [22], we used all-male samples of both pa-
tients and controls. The total of 359 males of Czech na-
tionality (Caucasians) entered the study. The group of
patients with schizophrenia included 175 males (mean
age 35.5 = 10.9) hospitalized at the Department of
Psychiatry, Faculty Hospital, Brno and the Psychiatric
Hospital, Jihlava. The patients were diagnosed according
to ICD-10 criteria (International Classification of Dis-
eases, 10th Edition) and according to DSM-IV criteria
(APA, 1994). All patients underwent structured inter-
views with qualified psychiatrists (cf. Acknowledgments).
Patients with psychiatric comorbidities were excluded
from the study.
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The control group included 184 males (mean age 48.2 +
13.8). They were volunteers recruited from blood donors
at Blood Bank Brno, patients treated for erectile dysfunc-
tion at Trauma Hospital Brno, among employees of pri-
vate companies in Brno, agriculture farms in the area
around Brno, university academics and employees of Na-
tional Theatre in Brno. The Mini-International Neuro-
psychiatric Interview (M.LN.L) was performed with each
member of the control group [23]. Any individuals sus-
pected of not being fully mentally healthy were excluded
from the group. In order to minimize personal bias, all
screening and interviewing was done by only two psy-
chiatrists with similar backgrounds who closely com-
municated with each other, or, in the case of control
subject, by one of the authors (O.S.) assisted by a quali-
fied psychologist.

All participants, whether they entered as patients or
controls, signed an informed consent to participate in
the study. Genotypes of the participants were analysed
only after the interviews with psychiatrists had been
completed. The project was approved by the Ethical
Committee of the Faculty Hospital, Brno.

Genotyping

DNA was extracted from 200 mL of EDTA-anticoagulated
whole blood using an UltraClean Blood DNA Isolation Kit
(Mobio, USA). Six SNPs (rs6595788, rs17817356,
rs821597, rs9661837, rs980989 and rs3737597) were
assayed using multiplexed polymerase chain reaction
(PCR) amplification, followed by single base extension
(SNaPshot, Applied Biosystems, USA). The primers used
for multiplexed PCR and the SNaPshot method are listed
in Table 1. Each multiplex polymerase chain reaction was
done in a final volume of 20 mL. The reaction mixture
consisted of 2 mL of DNA template (50 ng/mL), 0.2 mM
primers (Table 1) and 2 x Kappa 2G FAST Ready Mix
(Kappa Biosystems). After initial denaturation at 95°C for
3 min, samples were amplified through 40 cycles (95°C for
10 sec, 60°C for 20 sec with 50% ramp, 72°C for 50 sec),
followed by holding at 72°C for 10 min in a Veriti thermal
cycler (Applied Biosystems, USA). After purification with
PCR ExoSAP (Fermentas, Lithuania), PCR products were
mixed and 1 mL of mixture was added to SNaPshot reac-
tion mix (Applied Biosystems, USA) in a total volume of
10 mL. Cycling conditions were set up according to the
manufacturer’s instruction manual. After the SNaPshot re-
action, SAP (Fermentas, Lithuania) treatment was carried
out for 30 min at 37°C. One microliter of each sample was
then added to 9 mL of deionized formamide and 0.4 mL
of standard size LIZ 120 (Applied Biosystems, USA) be-
fore analysis on a 3100 DNA Fragment Analysis System
(Applied Biosystems, USA) in a 36 cm capillary array
using the POP-7 polymer.
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Table 1 Sequences of the primers used for genotyping by Multiplex PCR and SNaPshot analysis

SNP Primers Multiplex Primer for SNaPshot extension

rs6595788 GATGGGCTGTTTTGACACCTA A (M) 12 TGGTTTAGGAATATTTAAAATACAGACAGC
CAACGCCAAATGATGGTAGAT

rs17817356 GGAGAATGTGAGTCATGATGTGA A (M4ATAACTAAACGTTCAAGTATTTCCCT
ATCTGACCAAAATCAGGCACA

rs821597 GGTCCAGAGACATGAGTTTGC A (MoGAGTTTGCCATCAGGCAATAATGAATT
ATGGCCAAACCTTGCTTTAGT

rs9661837 ATGAACTGGTCACATGGCACT B (M4TGGCACTTGGAATCCTTGAGTT
CACTTGGGCTAGTGACGGTTA

rs980989 CCAGAAACATGTAACGGTTGG B TGCCATGCTAAGCCCTTTACA
ATGCTGCCTGTCTCTGACTGT

rs3737597 CAAATGGCACAGGAAAAAGAG B (M)1oCTATTCTCAAATCCTGTGGAAGACATTC
CAGTGGAAAGGTGGTTCATGT

Statistical analysis

The CSS Statistica software (StatSoft, USA) was used for
statistical evaluation of the results. The chi-square test
was used for the comparison of genotype frequencies in
the studied groups. Odds ratios (OR’s) and 95% confi-
dence intervals (95% CI) as estimates of relative risk for
the schizophrenia associated with the genotypes were
calculated using logistic regression. To minimize false-
positive results potentially caused by multiple testing, we
applied the Bonferroni correction for three independent
loci genotyped. The level of statistical significance was
adjusted to P =0.008. Hardy-Weinberg equilibrium was
tested by chi? test.

Results

Allele and genotype frequencies of all analysed poly-
morphisms are displayed in Table 2. Preliminary statis-
tical evaluation indicated no genetic linkages among
the studied DISC1 gene polymorphisms (data not
shown). We found a statistically significant association
between schizophrenia and rs6595788 polymorphism of
CTXN3 gene. The frequency of G allele is significantly
higher in schizophrenic patients in comparison with
control subjects (p=0.0018). Genotype frequencies are
significantly different between patients and controls (p =
0.004). The presence of G allele in the genotype increased
the risk of schizophrenia (Odds Ratio = 1.6923; 95% CI
of OR = 1.2231 - 2.3414, Risk Ratio = 1.1674; 95 % CI
of OR = 1.0602 - 1.2855).

Only a marginal statistically significant difference be-
tween patients and controls was noted in rs17817356
polymorphism of DISCI gene, with AG genotype appar-
ently more frequent in patients (p = 0.01). When analys-
ing rs9661837 polymorphism, we found no GG genotype
in either schizophrenics or controls. AG genotype was
present in 6 schizophrenic patients and in only one con-
trol subject and the statistical significance of difference

in allele frequencies (p =0.06) and in genotype frequen-
cies (p =0.048) could be considered as marginal at best.
For rs9661837 and rs3737597 polymorphisms we did
not perform OR and RR analyses because of too low
minor allele frequencies. We detected no relationship
between schizophrenia and rs821597, rs980989 and
1rs3737597 polymorphisms of the DISCI gene.

Genotypic frequency of rs17817356 polymorphism
(DISC1) in schizophrenic patients but not in the controls
deviated from Hardy-Weinberg equilibrium (p < 0.03).
The interaction between rs6595788 and rs17817356
polymorphisms appeared significant, too (p < 0.002); the
genotype AGAG having been found to be about 2x more
frequent in schizophrenic patients than in control sub-
jects (Table 3). This genotype alone could, therefore,
contribute to a higher risk of schizophrenia.

Discussion
There have been two previous attempts to establish an
association between polymorphisms of CTXN3 gene and
schizophrenia. One was performed in the United States
using brain in vivo imaging as a quantitative trait (QT)
enhancement of statistical power in a genome-wide as-
sociation study (QT-GWAS; [7]), the other one was a
case-control association analysis of a group of Thai
Asians [6]. The present study is, therefore, the first one
of its kind carried out entirely within Europe on a sam-
ple of typical European-Caucasian population [24]. It is
also, to date, the largest case-control study, in terms of
the number of subjects surveyed, of association between
a CTXN3 polymorphism and any mental disease.
Cortexin 3 belongs to “cortexin family” that includes
three proteins: cortexin 1, cortexin 2 and cortexin 3.
Cortexin 3 displays amino acid sequences very similar
(about 43% homology in humans) to those found in a
protein cortexin 1 (encoded by CTXN1 gene), previously
identified in the cerebral cortex [25]. Human CTXNI
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Table 2 Genotype frequencies of CTXN3 and DISC1 gene polymorphisms among cases and controls
Genes SNP Genotype Controls (N = 184) Patiens (N = 175) OR (95% Cl) P
Number (%) Number (%) value
CTXN3 16595788 AA 106 576 70 40.2 1.00 - -
AG 67 364 86 494 1.94 (1.52-3.02) 0.003
GG 11 6.0 18 104 248 (1.10-5.65) 0.025
AG+GG 78 424 104 59.8 202 (1.33-3.08) 0.001
DIsC1 1517817356 GG 74 40.2 50 289 1.00 - -
AG 80 435 99 57.2 1.83 (1.15-2.91) 0.010
AA 30 16.3 24 139 1.18 (0.62-2.26) 0.609
AG+AA 110 59.8 123 71.1 1.65 (1.06-2.57) 0.025
DISC1 15821597 GG 74 40.2 70 40.2 1.00 - -
AG 89 484 78 44.8 0.93 (0.59-1.45) 0.737
AA 21 114 26 15.0 1.31 (0.68-2.54) 0424
AG+AA 110 59.8 104 59.8 1.00 (0.66-1.53) 0.998
DIsC1 rs980989 CcC 123 66.9 108 62.1 1.00 - -
AC 53 288 59 339 127 (0.81-1.99) 0.303
AA 8 43 7 4.0 1.00 (0.35-2.84) 0.995
ACHAA 61 331 66 379 1.23 (1.80-1.90) 0.345
DIsC1 1s9661837 AA 183 99.5 169 96.6 NC*
AG 1 0.5 6 34
GG 0 0.0 0 00
AG+GG 1 05 6 34
DISC1 1s3737597 CcC 171 929 166 954 NC**
cT 13 7.1 7 40
T 0 0 1 0.6
CT+TT 13 7.1 8 46

All chi-squared tests are two-tailed. Alpha value is adjusted by Bonferroni correction and statistically significant results (P<0.008) are marked bold.

NC - minor allele frequency to low to calculate precise OR and P values.

*the statistical significance of difference in allele frequencies by Fisher's exact test is p = 0.06.
**the statistical significance of difference in allele frequencies by Fisher’s exact test is p = 0.4.

gene is located on the chromosome 19p13.2 and it has 2
exons, CTXN2 with 5 exons is located in 15q21.1
chromosome region (according to recent information
from GenBank). Two alternative variants of CTXN3
c¢DNA sequences differ in the 5" untranslated region im-
plying a possibility of alternative splicing regulating
tissue-specific expression of the gene. Indeed, in silico
cloning has indicated that brain and kidney each express
own forms of cortexin 3 which differ from one another,
particularly in the region encoded by exon 1 [5]. Add-
itional theoretical considerations [5] indicated that cor-
texin 3 could be an integral membrane protein involved
in extracellular or intracellular signalling.

Using expressed sequence tag (EST) analyses of cDNA
libraries, orthologs of cortexin 3 with highly conserved
sequences have been identified in mouse, rat, cow, dog,
zebrafish, chicken, chimpanzee, Rhesus monkey and frog
([5]; cf. GenBank). Non-human forms of cortexin 3 have
species-characteristic tissue distributions but seem to be

always enriched in brain. Cortexins 1-3 should not be con-
fused with another “cortexin” (“(r)-cortexin”), a 43 kDa ni-
tric oxide synthase activating protein from kidney, studied
mostly in the context of blood pressure regulation and re-
lated disorders [26,27]. “Cortexin” may promote growth of
neurites [28] and it has been claimed that it can restore
cognition after ischemic stroke [29].

While we found little or no association between the
status of the subjects and polymorphisms in DISCI, in
the case of CTXN3, there was a clear, statistically sig-
nificant, albeit quantitatively modest, link between
rs6595788 and schizophrenia. This observation could
have implications for the aetiology of schizophrenia, at
least for the male form(s) of the disease. What would
be the most likely responsible mechanism(s)?

CTXN3 - in analogy to DISCI - has been shown to
interact with SLCI2A2 [6,8,10,12,13]. CTXN3 and
SLCI2A2 genes are located at chromosome 5, in the re-
gion that is highlighted as the second most important
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Table 3 Frequencies of the most important haplotypes in patients with Schizophrenia versus Control Subjects

Genes SNPs p-value SNPs Estimated frequencies
(chi-squared test) alleles Case Control
CTXN3*DISC1 1s6595788 * rs17817356 0.002 AG*AG 0.283 0.125
AA*GG 0.116 0.201
GG*AG 0.075 0.022
region linked to the schizophrenia in a meta-analytical difference in the developmental timing of the

study by Lewis et al. [10]. It is also within the region
linked to neurocognitive traits associated with higher
risk of schizophrenia as reported by Almasy et al. [30].
According to our in silico analysis, both polymorphism
described by Panichareon [6] as associated with the
schizophrenia (rs 698172 and rs245178) are located in
an intergenic region adjacent to CTXN3 gene that has
recently been shown to contain a sequence correspond-
ing to a non-coding RNA of unknown function. The
rs6595788 polymorphism, which is a subject of our
study, is located directly at 5'-end of CTXN3 gene, its
precise locus being at a distance of 16787 bp from the
proximate polymorphism studied by Panichareon [6]
(rs698172) found in the intergenic region at the opposite
side of the CTXN3 sequence i.e. downstream of 3'-end
of the gene.

SLCI2A2 encodes a transporter which co-transports
Cl, Na* and K* (NKCC1 ak.a. SLC12A2; solute carrier
12A2). NKCCI1 carries CI” into the cells and is function-
ally closely linked to the ionotropic GABA receptors
(iGABAR’s) which function as Cl-permeable ligand-
(GABA-) gated channels. However, the relationship
between iGABAR’s and NKCC1 exists mainly in the de-
veloping brain tissue, resulting in GABA acting on iGA-
BAR’s as a neuron-depolarizing (i.e. “excitatory”) signalling
molecule. In fact, it has been known for some time that, in
the developing rat cortex, GABA is released in a controlled,
stimulus-coupled, Ca**-dependent fashion well before the
formation of GABAergic synapses [31], probably as a
regulator of neuronal network development [32]. Tran-
sition to the adult function of GABA as an inhibitory
neurotransmitter occurs when NKCCI1 is supplanted by
KCC2 (SLC12A5), a transporter that carries ClI” out of
the cells thus allowing iGABAR’s to become hyperpo-
larizing (review: [33]). It has been suggested that per-
turbations in the timing of the transition from NKCC1
to KCC2 and the ensuing switch from depolarization to
hyperpolarisation could cause subtle structural and
functional changes in brain tissue eventually leading to
mental disease [34] (review: [33]). This could constitute
the mechanism for the polymorphisms in the SLCI2A2-
associated genes DISCI and CTNX3 to influence the
developmental process and contribute to the aetiology
of schizophrenia. Moreover, there is a male v. female

depolarization/hyperpolarization switch [35]. If this dif-
ference translates into sex-specific effects on the brain
development (and a sex-specific effect on the risk of
schizophrenia), our choice of all male population in-
creased homogeneity of the sample and could have sig-
nificantly improved the statistical power of the present
study.

Presence of another potentially relevant mechanism
involving cortexin 3 has been indicated by a recent
report by Chouraki et al. [36]. They performed a
genome-wide association meta-analysis on more than
three thousand healthy subjects studying plasma levels
of amyloid beta (AP) peptides. They established that the
plasma levels of AP ;.4 were most closely associated
with the rs11241936 polymorphism of CTXN3 gene.
Subsequent in vitro studies showed that cortexin 3 inter-
fered with amyloid precursor protein (APP) metabolism
and decreased the secretion of AB-fragments. Involve-
ment of APP and AP fragments in Alzheimer's disease is
well known (reviews: [37-39]) but their role in the nor-
mal brain, particularly during the development, has been
given less attention [40]. In fact, APP is present in
growth cones and it has a role in the formation of neur-
ites and synaptogenesis [41]. Mice lacking APP displayed
dramatically altered brain morphology [42] possibly as a
result of disrupted migration of neural precursor cells in
the developing cortex [43]. DISC1 has also been studied
in the context of neuronal development and migration
and shown to interact with APP [4] thus providing an-
other biochemical locus where cortexin 3 and DISC1
could act together.

APP has also been shown to influence the expression
of NR1, a protein subunit of critical importance in the
formation of functional NMDA receptors [44]. Changes
in cortexin 3/DISC1/APP interactions could, therefore,
result in altered expression and distribution of NMDA
receptors as has been observed in schizophrenia [45] (re-
view: [46]). Any such relationships are, however, likely to
be extremely complex and involve additional genetic (or
epigenetic) mechanisms [45]; their detection may de-
pend on the development and application of new analyt-
ical technologies (review: [47]).

In conclusion, we report a strong association between
schizophrenia and a single nucleotide polymorphism in
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the CTXN3 gene (cortexin 3) in an ethnically homogenous
group of male patients. In contrast, we found only
weak or no associations between schizophrenia and
several polymorphisms in DISCI gene. Available evi-
dence suggests that cortexin 3 is involved in brain on-
togeny, particularly in the development of GABAergic
neurotransmission and metabolism of APP which
could, in turn, impact on neuronal maturation, migration
and synaptogenesis. Taking into account the developmen-
tal hypothesis of schizophrenia, we conjecture that any
genetic variations in the CTXN3 gene affecting expres-
sion and/or characteristic of cortexin 3 protein would
have a potential to contribute to the aetiology of com-
plex mental diseases.
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