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Abstract

Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at
birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier
capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We
systematically summarize and discuss the current evidence and define knowledge gaps concerning the
maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included
73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and
2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles
and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied
models irrespective of the species origin (i.e, rodent, rabbit, or human) or the complexity (i.e, in vitro,

ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model|,
and surface composition influence maternal-fetal translocation, and (i) no simple, standardized method for
nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence,
research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
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Background

Pregnant women and developing embryos/fetuses com-
prise a particularly vulnerable population, as nanoparti-
cles (NPs) that infiltrate the bloodstream may reach the
placenta and possibly the fetus [1]. Such in utero expos-
ure may not only influence fetal development and
induce adverse pregnancy outcomes, but it can also
adversely affect health in later life since the etiology of
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diseases in adulthood may have a fetal origin [2], as
postulated in the Developmental Origins of Health and
Disease hypothesis [3]. Various epidemiological studies
identified associations between prenatal exposure to (ul-
tra)fine particles and adverse health outcomes (i) at birth
including an increased risk of low birth weight (< 2500
g) [4, 5] and preterm birth (<37 weeks of gestation) [6,
7], and (ii) later in life such as cardiovascular disease [8,
9], respiratory problems [10, 11], and neurodevelopmen-
tal alterations [12, 13]. (Ultra)fine particles refer to the
particles that are incidentally generated and emitted in
the (outdoor) air, often as by-products of fossil fuel com-
bustion or industrial emission. In contrast, NPs are
nanosized particles manufactured through controlled
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engineering processes [14]. Concerning the latter,
Manangama et al. showed a significant association be-
tween maternal occupational NP exposure and small
for gestational age (birth weight < 10th percentile for
gestational age) [15]. Appropriately, the question arises if,
during pregnancy, particles can translocate from the
mother towards the developing fetus. To our knowledge,
this is the first systematic review synthesizing all literature
regarding the maternal-fetal transfer of (ultra)fine particles
and NPs in in vitro, ex vivo, and in vivo settings. The sys-
tematic review aims to (i) evaluate the translocation of (ul-
tra)fine particles and NPs towards and across the placenta
in in vitro cellular barriers, ex vivo placental perfusion
models, in vivo animal, and in vivo human studies, (ii)
summarize the exploited analytical techniques to deter-
mine maternal-fetal NP translocation, and (iii) identify
gaps and further research needs.

Methods
The systematic review was processed according to the
Preferred Reporting Items for Systematic reviews and
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Meta-Analyses (PRISMA) statement [16]. In accordance
with the guidelines, our systematic review protocol was
published by the International Prospective Register of
Systematic Reviews (PROSPERO) on April 28th, 2020
(CRD42020167478, Additional file 1).

Search strategy

The search strategy used to identify relevant studies on
the maternal-fetal transfer of (ultra)fine particles and
engineered NPs was made up of four stages, as depicted
in Fig. 1. In the first stage, articles were identified
through a comprehensive literature search using two
electronic bibliographic databases: MEDLINE (PubMed
interface (www.pubmed.ncbi.nlm.nih.gov)) and Science
Citation Index Expanded (Web of Science interface
(www.webofknowledge.com/WOS)). The full search
strategy was based on the search components “placenta”,
“particles”, and “translocation”. Literature search strat-
egies based on Boolean operators were developed using
related MeSH terms and text words (Additional file 2).
To ensure literature saturation, reference lists in key
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Additional records identified
through other sources

(N=29)

A4 A4
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Records after duplicates removed
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Full-text articles
assessed for eligibility
(N=108)

»| « 72 were not original studies (51 reviews);
364 did not analyze particle exposure/translocation;
10 had smoking as main exposure under study.
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2 had no full text available;
»| * 9 did not measure particle translocation;
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qualitative synthesis
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22 focused on therapeutic/diagnostic NPs;
2 showed data already published in another study
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Fig. 1 Flowchart, following the PRISMA statement guidelines, of the search strategy used to identify studies examining the maternal-fetal transfer
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review papers and included studies were screened to find
additional eligible publications that were not retrieved
from our initial database searches. The literature search
covered articles published in English between January
1st, 1940 and August 11th, 2020.

Selection criteria

We included human studies and animal studies relevant
to human health that addressed the translocation of (ul-
tra)fine particles or NPs across the placenta in an
in vitro, ex vivo, and in vivo context. To maintain the
focus on air pollutants and engineered nanomaterials in
particulate form, we excluded articles examining expos-
ure to tobacco smoke, secondhand smoke, volatile or-
ganic components (e.g, benzene, styrene, or xylene) or
other volatile substances (e.g., carbon monoxide (CO),
ozone (Oj), nitrogen dioxide (NO,), or sulfur dioxide
(SO,)), and nanomaterials characterized by a high aspect
ratio (e.g, nanotubes, nanosheets, or nanowires). Add-
itionally, therapeutic NPs were excluded since these sys-
tems are specifically fabricated to (i) achieve targeted
and increased placental uptake to treat placental compli-
cations (e.g, placenta previa-accreta) [17], (ii) limit
transplacental transfer to protect the developing fetus
while treating the pregnant mother [18, 19], or (iii) allow
transplacental transfer to enable prenatal treatment of
congenital diseases (e.g, congenital adrenal hyperplasia
or fetal cardiac arrhythmia) while avoiding severe mater-
nal side effects [20, 21]; whereas we want to maintain
the focus on unintentional/environmental exposures.

Selection of studies

Two reviewers (EB and TVP) independently screened
the titles and abstracts of all identified papers to exclude
studies that did not fulfill one or more of the a priori set
inclusion criteria. Any disagreement was resolved
through discussion. If no consensus was reached, a third
reviewer (HB) was consulted. In the third stage, the full
text of selected papers was retrieved and underwent a
second screening to see which articles were eligible for
inclusion.

Data extraction process

In the fourth stage, selected studies were grouped ac-
cording to model and characterized as in vitro, ex vivo,
or in vivo (i.e, human or animal) study. The following
data were extracted and registered in a predesigned data
extraction form: authors, model characteristics, experi-
mental information (e.g, nature of particle exposure,
particle size, particle material, surface modification, ex-
posure route, exposure period, and dose), and main find-
ings (e.g., the observation of translocation, and analytical
methods used to visualize or quantify particle transfer).
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Synthesis of results

The diversity in, among others, species origin (i.e., ro-
dent, rabbit, or human) or complexity (i.e, in vitro,
ex vivo, or in vivo) of the applied model, administration
route and particle dose, exposure assessment, and ana-
lytical detection method, did not allow to carry out a
comparative quantitative analysis. Instead, we provided a
qualitative overview of the results on the maternal-fetal
transfer of (ultra)fine particles and NPs. Narrative result
synthesis was achieved via three different steps: (i) sum-
marizing information on the characteristics of included
studies in tables per study model, (ii) identifying the
maternal-fetal transfer of a given particle, and (iii)
grouping those confirmed translocation situations as
quantitative or qualitative.

Results

Study selection

The initial literature search was completed in January
2020 and re-run in August 2020. A total of 647 articles
were identified using PubMed (N = 296) and Web of Sci-
ence (N =351). Additionally, 29 articles were retrieved
from the reference list of included reviews (N = 18) and
other studies (N =11). In total, 105 duplicates were re-
moved using the EndNote software. Titles and abstracts
of 571 papers were screened, and 108 full-text papers
were assessed for eligibility. Thirty-five articles were
excluded because they did not fulfill the following prede-
termined inclusion criteria; 2 had no full text available, 9
did not measure particle translocation across the pla-
centa, 22 focused on diagnostic/therapeutic NPs, and 2
showed data already published in another included
study. The final selection of 73 articles studying trans-
placental particle transfer included: (i) 21 studies using
the ex vivo placental perfusion model and/or in vitro cell
line, (ii) 50 animal model studies, and (iii) 2 studies in a
human population (Fig. 1).

Study characteristics

We have summarized the existing evidence on the
maternal-fetal transfer of (ultra)fine particles and NPs in
in vitro placental barriers (Table 1), ex vivo placental
perfusion models (Table 2), in vivo animal models
(Table 3), and humans (Table 4). The characteristics of
the included studies are summarized in Fig. 2.

In vitro maternal-fetal particle transfer

As summarized in Table 1, a total of 15 in vitro cell line
studies investigated the maternal-fetal transfer of NPs
and (ultra)fine particles. Particle uptake was studied
using trophoblast cells grown to confluence on the
bottom of a well or Petri dish [29, 30]. Moreover, to
study transplacental transfer, cells were cultured on
Transwell inserts, which consist of a permeable
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Table 4 Basic characteristics of the human study included in the present systematic review investigating the maternal-fetal transfer

of ambient (ultra)fine particles

Ref Sample Exposure Detection technique Main findings
size Particle Route Dose Quantitative Qualitative
[11 20 BC particles  Real-life  06-24pg/m*®  Two-photon fs pulsed  TEM Ambient BC particles found in all screened
exposure laser microscopy placentas and positively associated with the
mother’s residential BC exposure during
pregnancy.
[93] 100 Metallic NPs ~ Real-life  n.d. ICP-OES SEM/EDX High prevalence of essential trace elements Cu,
exposure Fe, and Zn in the nano/ion fraction observed in

amniotic fluid of pregnant women. In contrast,
low concentrations and low prevalence of other
elements. No conclusions on transplacental NP
transfer.

Abbreviations - BC black carbon, Cu copper, Fe iron, fs femtosecond, ICP-OES inductively coupled plasma-optical emission spectrometry, m3 cubic meter, um
micrometer, n.d. not defined, NPs nanoparticles, SEM/EDX scanning electron microscopy/energy-dispersive X-ray spectroscopy, TEM transmission

electron microscopy
“predominantly inhaled

membrane separating an apical and a basolateral com-
partment. Transwells were used to study uptake and
transplacental transport of NPs across (i) placental
trophoblast monolayers of human placental choriocar-
cinoma (BeWo b30) cells that strongly resemble cytotro-
phoblast cells (N =6) [22-26, 28], human SV40-
transformed trophoblast (3A-sub-E) cells (N =1) [27], or
human first trimester trophoblast cells (HTR-8/SVneo
(ATCC®, CRL-3271™)) (N =2) [29, 30] (ii) co-cultures of
trophoblastic cells (i.e, BeWo b30) and endothelial cells
(i.e, primary human placental pericytes (hPC-PL) or hu-
man SV40-transformed microvascular placental venous
endothelial cells (HPEC-A2) (N =5) [31, 33-36], and
(iii) a 3D co-culture of trophoblastic cells (i.e, BeWo
b30) and fibroblastic cells (i.e, human villous mesenchy-
mal fibroblasts) (N =1) [32]. Transwell inserts were
made from polycarbonate [31, 33-36] or polyethylene
terephthalate [34] with a 0.4 pm [22-26, 28] or 3 um

[31, 33-36] pore size. Moreover, a total of 4 studies
[31, 34-36] pre-coated the insert with human placen-
tal collagen IV to aid cell adherence and growth. Al-
most all in vitro studies adopted a 24h NP
incubation period, while other studies used 4h [27],
6h [24], or 48 h [29, 30] of incubation. The in vitro
translocation of 8 different engineered NP types was
studied in the included articles: 7 metallic NP types
(i.e., silver (Ag), silver sulfide (Ag,S), gold (Au), mag-
netite (Fe3Q,), silicon dioxide (SiO,), titanium dioxide
(TiO,), superparamagnetic iron oxide NPs (SPIONSs)),
and one polymeric NP type, namely polystyrene (PS)
NPs. Moreover, the transplacental in vitro transloca-
tion of airborne (ultra)fine particles, namely wood
smoke particles [30] and particulate matter <2.5pm
(PM,5) [29], was assessed.

Overall, the NP transport from the apical to the baso-
lateral side was limited. Aengenheister et al. showed a

A Model

B 64% In vivo - animal
19% In vitro

I 14% Ex vivo

B 3% Invivo - human

C Kinetics

W 12% In vitro - placental accumulation
M 10% Ex vivo - placental accumulation
I 10% Ex vivo - placental transfer

7% In vitro - placental transfer

7% No accumulation/transfer

M 28% In vivo - fetal/embryonic accumulation
26% In vivo - extra-embryonic accumulation

Fig. 2 Pie charts describing the characteristics of the included studies. Different models (a) were used to assess if (ultra)fine particles and NPs (b)
can bypass the placenta (c) using a variety of detection methods (d). NPs: nanoparticles

B Particles

B 75% Engineered metallic NPs

15% Engineered polymeric NPs
I 7% Airborne (ultra)fine particles
B 3% Engineered carbonaceous NPs

D Method of detection

B 45% (Semi-)Quantitative
40% (Semi-)Quantitative and qualitative
M 15% Qualitative
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translocation success of 0.2 and 1.3% across a BeWo b30
monolayer, 0.1 and 3.6% across an HPEC-A2 monolayer,
and 0.1 and 0.6% across the detailed co-culture, respect-
ively for 3 nm poly(ethylene glycol) (PEG)-coated and 4
nm carboxylated Au NPs [31]. Additionally, the same re-
search group reported a negligible transplacental transfer
of carboxylated and aminylated TiO, NPs across similar
cellular barriers [34]. Multiple studies focused on the
effect of particle size and concluded a size-dependent
particle transport as larger particles were primarily inter-
nalized by the cells with limited transfer to the basolateral
compartment [26, 27, 32]. Moreover, surface modification
was found to steer particle transport and cell-particle in-
teractions [22, 24, 31-33]. Sodium oleate-coating in-
creased both transcellular transport and cellular uptake,
while PEGylation or poly(ethyleneimine) (PEI)-coating re-
sulted in enhanced placental cell association and thus less
transport. On the other hand, carboxylation, starch-, or
dextran-coating were shown to enhance the transport
across the cell barrier while decreasing cell-particle inter-
actions and thus internalization [22, 24, 31-33].

Only 2 studies examined the transfer of ambient air
pollution particles across the in vitro placental barrier,
more specifically across placental first-trimester tropho-
blast cells [29, 30]. Both wood smoke particles [30] and
PM, 5 [29] accumulated in the exposed placental cells as
observed by transmission electron microscopy (TEM).

Ex vivo maternal-fetal particle transfer in placental
perfusion models

Table 2 gives an overview of the 11 included studies on
maternal-fetal particle transfer that employed an ex vivo
placental perfusion model to mimic the maternal and
fetal blood circulation in the placenta. All placental sur-
rogate models used human term placentae, except for
one study that used a rat placenta to investigate trans-
placental particle transfer [38]. Almost all included stud-
ies adopted a 6 h placental perfusion duration (N =10)
with the most frequently used NPs being PS (N =4)
[40-43] and Au (N = 3) [23, 31, 38]. A total of 4 studies
combined results from in vitro cell barriers and ex vivo
placental perfusion studies to gain additional insights on
the kinetics of particles at the placenta [23, 25, 31, 34].
Overall, the ex vivo placental transfer studies reported a
substantial decrease in particle concentration in the
maternal perfusate over time, without a corresponding
increase in the fetal circulation, indicating NP accumula-
tion in the placental tissue. Accordingly, accumulation
of Au NPs [23, 31], SiO, NPs [25], and TiOy NPs [34]
was observed in the human placenta, both in vitro and
ex vivo. Au NPs [31] and SiO, NPs [25] were mainly
found in the outer surface of the chorionic villi (i.e., syn-
cytiotrophoblasts), which is in agreement with the ob-
served apical accumulation of the NPs in a BeWo cell
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monolayer. After 6 h of perfusion, very limited transfer
of small (3—4nm) PEGylated Au NPs [31], and SiO,
NPs (25 and 50 nm) [25] was observed in the fetal circu-
lation. For example, after 6 h of perfusion, a placental ac-
cumulation of 4-7 pg/g and 2—14 pg/g was observed for
3 nm PEGylated and 4 nm carboxylated Au NPs, respect-
ively, while the respective particle concentration in the
fetal perfusate was only 0.0031 pg/mL and 0 ug/mL [31].
As observed for in vitro studies, an association between
placental transfer and particle size is present; an in-
creased placental transfer was observed for perfusions
with smaller particle sizes [37, 40—43]. For instance,
Wick et al. found that PS NPs up to 240 nm were able
to cross the placenta and reach the fetal circulation
already after a few minutes of perfusion, while 500 nm
PS NPs were mainly retained in the placental tissue and
maternal circuit [43]. 4 included ex vivo perfusion stud-
ies emphasized the effect of surface modification (e.g.,
PEGylation and carboxylation) on the transplacental pas-
sage of engineered NPs [31, 37, 41, 42]. The overall con-
sensus was that PEGylation increases the transplacental
particle transport, while carboxylation (e.g, COONa-
and COOH-modification) resulted in enhanced placental
accumulation. One study also reported increased placen-
tal accumulation of aminylated compared to carboxyl-
ated TiO5 NPs [34].

In vivo maternal-fetal particle transfer in animal models
In total, 49 animal studies on maternal-fetal particle
transfer were included. Forty-three studies showed quan-
titatively and/or qualitatively that particles reached the
placenta after gestational exposure, among which 16
studies observed bioaccumulation of nanosized particles
in tissues collected during the embryonic (i.e, organo-
genesis) and/or fetal period (Table 3). As depicted in
Fig. 3a, rodents were the primary animal model used in
the included studies (either mouse (N =29) or rat (N =
18)), whereas only 2 studies used rabbits as a model for
gestational particle translocation [91, 92]. Moreover, the
latter are the only studies examining transplacental
translocation of airborne (ultra)fine particles, whereas
the remainder of in vivo animal studies focused on engi-
neered NPs.

Engineered NPs

A total of 48 animal studies examined the transplacental
transfer of engineered NPs, including (i) metallic NPs
(N =43) (i.e, Ag, alumina (Al,O3), Au, quantum dots
(QDs), cadmium oxide (CdO), cerium dioxide (CeO,),
Cu (copper), iron oxide (Fe,Os), platinum (Pt), SiO,,
TiO,, and zinc oxide (ZnQO), zirconium dioxide (ZrQ,)
NPs), (ii) carbonaceous NPs (N =2) (ie, fullerene
(C60)), and (iii) polymeric NPs (N = 3) (i.e, poly(glycidyl
methacrylate) (PGMA), and PS) (Table 3). Fetal/
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; B
Animal model Exposure route
M 53% Intravenous injection
27% Oral exposure
M 60% Mice M 10% Nose-only exposure
36% Rats I 4% Whole-body exposure
W 4% Rabbits 4% Intraperitoneal injection
2% Subcutaneous injection

Fig. 3 Pie charts describing the characteristics of the animal studies included in the review. In vivo maternal-fetal particle transfer was assessed in
animal models (a) exposed to (ultra)fine particles and NPs via different methods of administration (b). NPs: nanoparticles

J

embryonic NP accumulation was observed in 32 of the
included animal studies, more specifically NPs were de-
tected in the fetal brain [27, 44, 48, 52, 60, 73, 78, 80, 81,
91], fetal liver [27, 48, 50, 52, 60, 69, 73, 83, 84, 86], fetal
lung [27, 48, 52, 75], fetal kidney [48, 52, 84], fetal
gastrointestinal tract (GIT) [88], and fetal blood [92].
The preferred method for NP administration was intra-
venous (i.v.) injection (N =27) or gavage (N =14) (Fig.
3b). The iv. route is preferred to examine tissue distri-
bution and elimination of NPs while avoiding absorption
by the GIT and first-pass elimination in the liver; on the
other hand, the oral route is used to assess the ingestion
of NPs. Fennell et al. used both i.v. injection and oral ad-
ministration to expose pregnant rats to 20 nm and 110
nm Ag NPs, and showed increased placental Ag NP
levels compared to fetal levels regardless of the adminis-
tration route [51]. Despite inhalation exposure being the
primary route in environmental and occupational set-
tings, only 6 animal studies [47, 66, 68, 77, 91, 92] exam-
ined particle translocation following this exposure route.
While the studies are limited, the conclusion is unam-
biguous. All studies except two [68, 77] showed the
translocation of Ag NPs [47], CdO NPs [66], and DEPs
[91, 92] to the placenta and/or fetus following maternal
inhalation exposure. In total, 7 included in vivo animal
studies revealed a size- or dose-dependent distribution
of NPs from mother to fetus, meaning that smaller parti-
cles administered in higher doses tend to accumulate
more in placental and embryonic/fetal tissue [27, 46, 55,
57, 62, 73, 85]. For instance, measured cadmium (Cd)
levels in mice pups were positively associated with the
injected CdTe/CdS QD dose their mothers received.
Moreover, a smaller QD size was found to be associated
with increased accumulation of Cd in the pups [62].
Also, 1.4, 18, and 80 nm negatively charged Au NPs were
found in placentae and amniotic fluid samples of i.v.
injected pregnant rats. Only fractions of the initial dose
of 1.4 and 18 nm Au NPs reached the fetal tissue, sug-
gesting a size-dependent maternal-fetal translocation of
Au NPs [57]. The effect of surface charge on

transplacental transfer of engineered NPs was discussed
in cited studies [69, 74, 89]. Polymeric NPs coated with
PEI (i.e, cationic polymer) preferentially accumulate in
the rat placenta over negatively charged polymeric NPs
[89] as confirmed by Di Bona et al. who showed an in-
creased placental crossing and consequent elevated fetal
levels of PEI-coated Fe,O3 NPs in iv. injected pregnant
mice as opposed to negatively charged poly(acrylic acid)
(PAA)-coated Fe,O3 NPs [69]. Additional studies on sur-
face composition were included [49, 61, 90]; one showed
a reduction in maternal-fetal transfer after chitosan-
coating of Ag NPs [49]. Other studies reported a time-
dependent accumulation of Ag NPs, CeO, NPs, and ful-
lerenes as they found that the fetal NP concentration in-
creased over time, reached a peak, and then declined
[54, 67, 87]. Moreover, critical exposure windows during
gestation were evaluated by defining changes in particle
transfer after varying the day of NP exposure [60, 61, 70,
71, 87]. Pregnant rats were divided into five groups and
differently exposed with radioactively-labeled fullerenes
(**C(C60)) via single iv. injection. The experimental
groups covered different stages of pregnancy and varied
in exposure duration and period until examination. The
percentage of radioactivity recovered in rat placenta was
higher at later stages of pregnancy (2% recovery at gesta-
tional day (GD) 18, compared to 0.05% at GD11). On
the other hand, radioactivity detected in fetuses was
lower at later stages compared with earlier stages of ges-
tation (0.2% at GD11 and 0.04% at GD18), which can be
explained by the lack of a developed placenta during
early gestation [87]. Seven animal studies did not find
evidence of maternal-fetal transfer of engineered NPs
[56, 63, 68, 72,77, 79, 82].

Airborne (ultra)fine particles

Only 2 animal studies examined the maternal-fetal
translocation of ambient air pollution particles [91, 92].
Black particles were observed by TEM in the maternal
lungs and blood vessels of pregnant rabbits after expos-
ure for 2 h/day, 5 days/week to 1 mg/m?® of 69 nm diesel
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exhaust particles (DEP) from GD3 to 27. Non-
aggregated and NP-like particles were detected in the
placenta, maternal blood space, trophoblastic cells, and
in fetal blood [92] as well as in the fetal olfactory tissue
[91]. However, the identification of these particles in the
tissues was solely based on TEM observations of black
particles without confirming their origin from the diesel
aerosols [91, 92].

In vivo maternal-fetal particle transfer in humans

Only 2 studies examined the maternal-fetal transfer of
(ultra)fine particles and NPs under real-life exposure
conditions [1, 93] (Table 4). Bové et al. performed a
study on a subset of term placentae from 20 healthy,
non-smoking mother-newborn pairs enrolled within the
Belgian ENVIRONAGE (ENVIRonmental influence ON
early AGEing) birth cohort [94]. Ambient black carbon
(BC) particles were found in all screened placentae, and
the placental BC load was positively associated with the
mothers’ residential BC exposure during pregnancy. The
average (SD) placental BC load was 0.95 x 10* (0.66 x
10% and 2.09 x 10* (0.90 x 10%) particles per mm?® for
low- and high-exposed mothers, respectively [1]. Raia-
Barjat et al. assessed NP crossing over the human pla-
centa by investigating the NP loading in amniotic fluids
collected from 100 pregnant women. A high number of
pregnant women with a substantial concentration of the
essential trace elements iron (Fe), copper (Cu), and zinc
(Zn) in the nano/ion fraction was observed. In contrast,
the prevalence of women with a substantial concentra-
tion of aluminum (Al), silver (Ag), beryllium (Be), cobalt
(Co), chromium (Cr), nickel (Ni), silicon (Si), titanium
(Ti), and tungsten (W), was relatively low (i.e, under
20%). Nonetheless, the authors acknowledged that this
does not necessarily indicate the presence of NPs since
the used technique, ICP-OES, is not able to discriminate
NPs from ions [93].

Analytical methods to visualize and quantify maternal-
fetal particle transfer

A variety of analytical methods were used to quantify
(i.e, (semi-)quantitative techniques) and/or visualize (i.e.,
qualitative techniques) the gestational transfer of parti-
cles by their identification in relevant tissues (e.g., pla-
cental or fetal tissue). Included studies based their
results on (semi-)quantitative detection techniques (N =
33), qualitative methods (N =11), or a combination of
both (N =29). In total, 26 different techniques were used
in the studies discussed in this review, as summarized in
Table 5.

Qualitative techniques
Qualitative microscopy-based methods employed in the
discussed  studies  included  bright-field light,
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fluorescence, and confocal microscopy as well as trans-
mission and scanning electron microscopy (TEM and
SEM), and X-ray microscopy. The most frequently used
qualitative technique was TEM (N =22). Analytical
tools, such as energy-dispersive X-ray spectroscopy
(EDX) or Raman spectroscopy, can be coupled to elec-
tron microscopes for additional elemental composition
analysis [45, 47, 75, 80, 93]. For example, Takeda et al.
used field emission-type SEM (FE-SEM)/EDX to show
the transfer of nanosized TiO, from pregnant mice into
the brain and testis of their offspring [80]. Autometallo-
graphy, a histochemical technique based on silver en-
hancement, is also used to allow light and electron
microscopic visualization of metallic NPs in biological
tissues and cells (N =4). Using TEM and silver enhance-
ment, 10 and 15 nm Au PEGylated NPs could be visual-
ized in the trophoblastic cell layer of the placenta after 6
h of re-circulating perfusion, yet no particles were quan-
tified in the fetal circulation [23].

Quantitative techniques

One of the included human studies on maternal-fetal
particle transfer employed a novel detection technique
based on the white-light generation by carbonaceous
particles under near-infrared femtosecond pulsed illu-
mination [1, 105]. This label-free confocal microscopic
technique showed the presence of BC particles originat-
ing from ambient exposure at the fetal side of the hu-
man placenta [1]. Label-free detection of NPs in cells
and tissues is not straightforward and, therefore, NPs are
often labeled using fluorophores, radiolabels, or contrast
agents. For quantitative visualization of non-fluorescent
NPs in biological systems, fluorescent labeling (e.g.,
using fluorescein isothiocyanate [71] or rhodamine [24,
25]) can be employed followed by fluorescence detection
methods. Melnik et al. used the radioactive silver isotope
1OmAg to label and track PVP-stabilized 34.9 nm Ag
NPs with gamma spectrometry, showing their accumula-
tion in placental and fetal tissue following oral adminis-
tration to pregnant mice on GD20 [53]. Moreover,
Sweeney et al. functionalized mesoporous SiO, NPs with
gadolinium oxide (i.e, magnetic resonance imaging
(MRI) contrast agent) and trifluoropropyl groups (i.e.,
ultrasound contrast agent) to allow multimodal imaging
of silica NPs in pregnant mice. A time-dependent trans-
fer was observed as SiO, NPs were only detected in the
pups following maternal i.v. injection during early gesta-
tion (GD9) and not late gestation (GD14) [71]. Other
quantitative analysis methods are mainly based on elem-
ental analysis. Inductively coupled plasma (ICP) tech-
niques, including ICP-optical emission spectroscopy
(OES) and ICP-mass spectrometry (MS), are powerful
tools for the detection and analysis of trace elements in
homogenized tissue samples. ICP-MS, or a variant of it
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(i.e, single particle, sector field, and laser ablation ICP-
MS), was the most frequently used quantitative tech-
nique (N =29) among the included studies. In addition,
6 of the included studies used atomic absorption spec-
trometry (AAS) as elemental analysis tool for detection
of metallic NPs in maternal-fetal tissue [33, 44, 48, 49,
59, 66].

Combination of qualitative and quantitative techniques

In total, 29 included studies combined quantitative and
qualitative methods to gain complementary insights on
the maternal-fetal transfer of NPs. For example, Ho
et al. combined findings from quantitative (i.e., magnetic
resonance imaging and fluorometry) and qualitative as-
sessments (i.e, fluorescence and confocal imaging) to
determine the biodistribution of cationic and anionic
multimodal (i.e, fluorescent and paramagnetic) poly-
meric PGMA NPs in a pregnant rat model at different
stages of gestation. While the quantitative methods were
unable to unambiguously determine tissue uptake, con-
focal microscopy confirmed a differential charge-based
accumulation of the NPs in the rat placenta [89]. The
time-dependent transfer of SPIONs with a differential
surface charge through a BeWo/pericyte co-culture was
measured by magnetic particle spectroscopy and con-
firmed by AAS. As previously observed, neutral and
negatively charged iron oxide NPs were able to pass the
cell layer, whereas positively charged NPs primarily
interact with the BeWo cells [33].

Discussion

Placenta models used to study maternal-fetal NP
translocation

As visualized in Fig. 2a, only 2 included studies exam-
ined the transplacental passage of (ultra)fine particles or
NPs in a human population under real-life exposure
conditions [1, 93]. The majority of the cited studies in-
vestigated maternal-fetal particle transfer and distribu-
tion in animal models, hence, in biological systems
under controlled conditions. Mainly rodents (i.e, mice
and rats) were used as animal model (Fig. 3a). Both ro-
dents and rabbits are easy to breed and handle and their
small size facilitates large scale/high throughput studies,
making them cost-efficient models [119, 120]. However,
placentation differs between species [121]. To compare
data on transplacental NP transfer, it is necessary to
understand both the physiological and anatomical differ-
ences between humans and the employed animal models
[122]. Humans, rodents, and lagomorphs (rabbits) all
share a discoid, hemochorial placenta, denoting that ma-
ternal blood comes in direct contact with fetal tropho-
blastic tissue. More specifically, hemomonochorial
(human at term), hemodichorial (rabbit and human in
their first trimester), and hemotrichorial (rat and mouse)
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placentae, with one, two, and three trophoblastic epithe-
lial layers separating maternal and fetal blood, respect-
ively [121]. Rodents are the most widely used animal
model in developmental toxicology, yet there are struc-
tural differences between rodent and human placentae.
Rodents (i) reach their definitive placental structure in a
later stage, (ii) have less invasive trophoblast cells, and
(ili) have a labyrinthine as opposed to a villous
organization in human placentae [123, 124]. Rabbit pla-
centae also have a labyrinthine structure, yet they are
hemochorial with two trophoblast layers, a syncytium
and a cytotrophoblast layer, which more closely resem-
bles the human placenta. Moreover, critical exposure
windows can be defined more precisely in rabbits as
ovulation is induced by mating, resulting in the exact
timing of fertilization and pregnancy stages. Rabbit pla-
centae appear to resemble more the human placentae
than that of rodents. Therefore, rabbits are considered
the preferable animal model to study gestational particle
exposure [120, 125]. Keeping in mind that the placenta
is the most species-specific mammalian organ, various
human model systems have been developed to mimic
the in vivo situation in pregnant women as closely as
possible.

Ex vivo perfusion of human term placentae is used as
a surrogate to study the transplacental transport of NPs.
It is considered as the “gold standard” among currently
available translocation models as it preserves the struc-
tural complexity of a full-term placenta and resembles
its dynamic environment, enabling to study ex vivo
transplacental NP passage without harming the mother
and/or fetus [126]. Nonetheless, perfusion studies (i)
predominantly use full-term placentae and, hence, do
not allow to estimate NP transfer during earlier and
more vulnerable stages of pregnancy, (ii) are limited to a
few hours (4—8 h) of perfusion due to tissue degradation,
which is insufficient to observe chronic effects, (iii) have
a low success rate of perfusion (i.e, 30%), and (iv) are
time-consuming [126, 127].

To overcome the aforementioned limitations, in vitro
models using human cell cultures (primary cytotropho-
blasts or choriocarcinoma cell lines) are attractive as
they allow high-throughput testing of transplacental
transfer of various NPs. However, models like the com-
monly employed BeWo b30 Transwell model also have
their limitations [128]. In vitro placental transfer models
do not fully resemble the physiological structure of the
in vivo placenta as they lack anatomical integrity and
blood flow. Moreover, monolayers form a simplified pla-
cental barrier. Co-cultures, on the other hand, attempt
to more closely mimic the complex in vivo placenta that
constitutes multiple cell layers (e.g, trophoblast and
endothelial cell layer) across which particles have to be
transported and where cell-cell interactions among
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various cell types can happen [129, 130]. In this regard,
Muoth et al. used a 3D co-culture microtissue model to
more closely resemble the human placental structure,
and to study Au NP uptake and penetration in an orga-
notypic environment. Higher uptake and deeper pene-
tration were observed for the smaller carboxylated Au
NPs in comparison to the larger PEGylated Au NPs [32].
Interestingly, a lower degree of NP transport was ob-
served across co-culture placental models compared to
monolayer cultures. For instance, Cartwright et al. ex-
posed a BeWo b30 monolayer to PS NPs with sizes up
to 100 nm and was able to detect those particles in the
basal compartment after 24 h of exposure [26]. Corres-
pondingly, Aengenheister et al. exposed a BeWo b30/
HPEC-A2 co-culture to PS NPs with particle sizes up to
70 nm under similar conditions and found only low
amounts of 49 nm PS NPs and no 70 nm PS NPs in the
basal compartment after 24 h of exposure [35]. Addition-
ally, Au NPs (+14nm) were able to transport across
BeWo b30 and HVMF monolayers, while they barely
passed the co-culture of both cell types [32]. Nonethe-
less, most in vitro models lack a physiological micro-
environment as they are exposed to NPs under static
conditions.

Although a variety of placental models are currently
available, the preconditions of each model should be
taken into consideration depending on the research ob-
jective. High-throughput in vitro transfer models are
useful to pre-screen a variety of NPs and to provide
mechanistic insights, yet, further improvements (e.g,
microfluidic approaches to develop a dynamic model)
are needed to enhance their predictive value. Ex vivo
placental perfusion studies provide transfer data with
high in vivo relevance, at least for term pregnancy. On
the other hand, exposure of pregnant animal models can
provide important insights on the biodistribution of NPs
in a living organism, including potential translocation to
the fetus. Nevertheless, data extrapolation from animals
to humans remains challenging as the placenta is the
most species-specific mammalian organ. Despite tech-
nical challenges and ethical constraints, term human pla-
centae form the ideal model to study transplacental NP
transfer.

Evidence of maternal-fetal NPs translocation

The majority of the cited studies observed transplacental
transfer of (ultra)fine particles and NPs (Fig. 2c). This
supports the finding that the placenta is not an impene-
trable barrier, as already confirmed for other xenobiotics
such as drugs and alcohol [131]. In animal models,
transplacental passage has been reported for Ag NPs
[47-54], Al,O3 NPs [44], Au NPs [57, 59-61], CeO,
NPs [67], DEP [91], QDs [62], SiO, NPs [70, 71, 73, 74],
TiO, NPs [73, 75, 76, 78, 80, 81], ZnO NPs [83-85],

Page 18 of 26

ZrO, NPs [86], Fe,O; NPs [69], C60 fullerenes [87],
PGMA NPs [89], and PS NPs [27]. Among these parti-
cles, only Ag NPs [37], Au NPs [31, 38], and PS NPs
[40-43] showed transplacental transfer in an ex vivo
perfusion model, whereas SiO, NPs [25] and TiO, NPs
[34] were retained in the placental tissue. Similarly, Ag
NPs [22], Au NPs [31, 32], iron oxide NPs [24, 33], SiO,
NPs [24], and PS NPs [35] were shown to cross the
in vitro placental barrier. Solely 22 studies based their
findings on visual confirmation of particle presence or a
significant difference in NP content from the control
group in the fetal compartment/tissue. Moreover, 22
studies substantiated their evidence for maternal-fetal
NP translocation by determining the limit of detection,
i.e, values exceeding the empirically defined size and/or
concentration limits. Nonetheless, other studies reported
contradictory results and report the absence of NP pla-
cental transfer or fetal uptake of Au NPs [56], Cu NPs
[68], Pt NPs [72], TiO, NPs [77, 79], QDs [63], and ZnO
NPs [82]. Yet, this may be due to inadequate size and
concentration detection limits of the employed tech-
niques, as discussed in the section “advantages and dis-
advantages of methods used to assess maternal-fetal NP
translocation”.

Factors that influence maternal-fetal translocation
Various studies showed the influence of different factors
on maternal-fetal particle translocation, including par-
ticle size, particle material, dose, particle dissolution, and
surface composition, as well as NP administration route
and the gestational stage of the study model.

First, the effect of particle size on transplacental trans-
fer was addressed by 6 included studies [27, 55, 57, 62,
73, 85]. For instance, Yamashita et al. i.v. administered
70, 300, or 1000 nm SiO, particles to pregnant mice and
concluded that only the 70 nm particles could reach the
placentae, fetal liver, and fetal brain tissue [73]. Similar
size-dependent transplacental transfer was observed for
PS NPs in the ex vivo placental perfusion [40, 42, 43]
and in vitro [26, 27, 35] studies. Different size-
dependent mechanisms of placental NP exchange have
been proposed, including passive and facilitated diffusion
via transtrophoblastic channels (i.e, canaliculi) and ac-
tive transport (e.g., receptor-mediated endocytosis), yet
mechanistic insights on transplacental NP transfer re-
main scarce [39]. Despite the use of various placental
transporter inhibitors, no major influence on the trans-
location of 50 nm PS NPs in the in vitro BeWo transfer
model was observed, which indicates preferential NP
translocation by passive diffusion [28]. In contrast, bidir-
ectional ex vivo placental perfusion studies showed an
increased fetal to maternal transfer of 50 nm PS NPs
suggesting an active, energy-dependent transplacental
transport mechanism for PS NPs [41]. Additionally,
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upregulation of clathrin- and caveolin-mediated endo-
cytosis was observed following i.v. administration of 20
and 50 nm Au NPs [55] and oral administration of 16
nm ZrO, [86] in pregnant mice. Noteworthy, the particle
cut-off size, above which no transplacental particle
translocation is observed, appears to be influenced by
the particle material. Aengenheister et al. showed the
in vitro transplacental transfer of 50 nm PS [35] but not
4-8 nm TiO, NPs [34] across a BeWo/HPEC co-culture.
The study also showed that the 4—8 nm TiO, NPs were
not able to cross the placenta in an ex vivo perfusion
model [34], whereas PS NPs up to 240 nm have been
shown to reach the fetal circuit [43] in a similar perfu-
sion study. In agreement, in pregnant mice, 5nm TiO,
did not cross the placenta [79], while PS NPs up to 500
nm could be observed in various organs of fetuses [27].
Moreover, Kloet et al. observed a difference in transloca-
tion behavior of PS NPs with a similar size and surface
charge but acquired from different manufactures [28].
This reflects the difficulty to compare results between,
and even within, studies due to variations in NP charac-
teristics on top of differences in the employed detection
technique.

Second, numerous studies reported that the surface
composition of the particles has a tremendous influence
on their in vivo translocation [22, 24, 31-34, 37, 41, 42,
61, 62, 69, 74, 89, 95, 96]. Accordingly, Yang et al.
exploited three types of surface modifications to assess
the effect of surface functionality on maternal-placental-
fetal biodistribution of 13 nm Au NPs in fetuses of mice;
coating with (i) endogenous proteins (i.e, ferritin) for
optimal biocompatibility, (ii) stealth groups (i.e, PEG
polymer chains) to increase circulation time by avoiding
recognition and phagocytosis by the mononuclear
phagocytic system, and by reducing NP-cell and NP-
protein interactions, and (iii) stabilizing anionic material
(i.e, citrate) to explore the effects of negative charge on
placental and fetal distribution. Substantially less uptake
of 13 nm citrate-capped Au NPs in fetal tissues has been
found compared to ferritin-modified or PEGylated Au
NPs with an identical size [61]. A similar effect of sur-
face charge on the transplacental crossing of metal oxide
NPs was demonstrated by coating 14 nm Fe,Os; NPs
with either negatively charged PAA-groups or positively
charged PEI-groups. Pregnant mice intraperitoneally ex-
posed to 10 mg/kg Fe,O3-PEI for eight consecutive days
(i.e, GD9 to 16) had significantly increased iron levels in
their placentae and the livers of their offspring compared
to mice exposed to Fe,O3-PAA [69]. In general, an in-
creased transplacental transfer for PEGylated NPs was
observed among the included studies, while carboxylated
NPs were mainly retained inside placental tissue [31, 37,
41, 42]. In accordance, Aengenheister et al. showed that
both carboxylated and PEGylated Au NPs crossed the
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placental co-culture in low amounts. Despite the higher
cellular uptake of carboxylated Au NPs, increased trans-
location was observed for PEGylated Au NPs. In con-
trast, only PEGylated particles reached the fetal
circulation in the dynamic ex vivo placental perfusion
model [31]. Possible explanations given by the authors
for the absence of carboxylated particles in the fetal cir-
culation were: (i) the agglomeration behavior of carbox-
ylated Au NPs, and (ii) the non-specific adherence of
carboxylated Au NPs to the perfusion system, both
markedly reducing the cellular available dose. In all
cases, the carboxylated particles were larger than the
PEGylated NPs, which can partially explain the reduced
transfer.

Third, another factor with considerable influence on
maternal-fetal NP transfer is particle dose as discussed
in 9 included studies [24, 45, 48, 62, 66, 76, 79, 81, 86].
By increasing the dosage of iv. injected 3-
mercaptopropionic acid (MPA)-coated QDs in pregnant
mice, Chu et al. observed a corresponding increase in
Cd concentration in the pups [62]. Similar results were
observed for TiO, NPs [76, 81] and ZrO, NPs [86] in a
pregnant mouse model. However, a lack of dose-
response was observed for CdO [66] NPs and Ag NPs
[45, 48], possibly because the tissue saturation limit was
not reached by the administered NPs, as suggested by
Austin et al. [45, 48]. In general, NP uptake and trans-
location do not only depend on their physicochemical
properties, surface modification, and particle concentra-
tion but also on particle dissolution. The latter is an im-
portant property to consider because it alters the
particle presence. Accordingly, translocation may be ob-
served which cannot only be attributed to intact NPs
(e.g, Ag NPs, CdO NPs, and ZnO NPs), but also re-
leased ions, precipitates, or a combination. NP dissol-
ution has been reported by 7 [22, 37, 45, 47, 48, 66, 85]
of the included studies yet only 2 distinguished between
the translocation and uptake of actual particles or dis-
solved Ag in an in vitro placental barrier model [22] and
ex vivo placental perfusion model [37]. Both studies
showed a favorable transplacental transport of ionic over
particulate Ag and highlighted the need to consider the
uptake of Ag ions and/or dissolution of Ag NPs in the
cellular barrier or tissue followed by re-precipitation to
Ag NPs in the basolateral compartment or fetal circula-
tion, respectively. On the other hand, Wang et al
showed that the integrity of ZrO, NPs was not altered
upon encountering biological barriers in a pregnant
mouse model as the ionic Zr content was fewer than 1%
after incubation of ZrO, NPs with water or artificial gas-
tric fluid for 5 h [86].

Fourth, the administration route in in vivo animal
studies is an important factor influencing particle trans-
location. As depicted in Fig. 3b, inhalation exposure



Bongaerts et al. Particle and Fibre Toxicology (2020) 17:56

(N =6) remains fairly understudied in gestational trans-
location studies despite being the main entry route in
environmental and occupational settings. Among the in-
cluded studies, i.v. administration (N =27) is mainly
used as route of exposure. i.v. NP injection allows to
control the systemically available dose as NPs do not
have to cross primary biological barriers (e.g., lung or in-
testinal epithelium), which would result in limited trans-
fer across the placenta and thus unfeasible detection
limits that restrain the visualization and quantification of
NPs in embryonic/fetal tissue [132]. However, the data
from iv. route studies cannot directly be extrapolated to
the real-life scenario of inhalation exposure due to dif-
ferences in the systemic distribution pattern [133]. For
example, the differences in the overall distribution pat-
terns might be determined by the different protein coro-
nae that arise when particles come into contact with
bronchoalveolar fluid compared to plasma [134—136].

Fifth, the previously highlighted interspecies differ-
ences are further complicated by dissimilarities in pla-
cental anatomy and physiology between the various
stages of pregnancy, making it necessary to focus on a
critical exposure period in animals that reflects an
equivalent stage in human development [137]. Align-
ment of rodent and lagomorph reproductive timelines
with that of humans is based on Theiler (mouse) [138],
Witschi (rat) [139], Edwards (rabbit) [140], and Carnegie
(human) [141] stages of development. The included
studies employed various gestational windows of NP ex-
posure ranging from exposure during early or late gesta-
tion [60, 67, 70, 71, 74, 85, 89] to continuous exposure
during the whole pregnancy [1, 52, 68, 72, 76, 81, 92, 93]
to assess the time-dependence of transplacental particle
transfer. In this regard, polymeric NPs accumulated in
different compartments of the rat conceptus during early
(GD10), but not late (GD20) gestation, consistent with
the lack of a developed placenta during early gestation
[89]. Similarly, Wang et al. reported a higher transloca-
tion of ZrO, NPs to the mouse placenta, fetal brain, and
fetal liver following oral exposure during early stages of
pregnancy (ie, GD9-11 and GD13-15) compared to
NP administration later in gestation (ie, GD16-18)
[86]. On the other hand, Pietroiusti et al. detected 25
and 60 nm SiO, NPs in the mouse conceptus after iv.
administration at GD5.5 and GD12.5. At later stages
(GD16.5), when the placenta acquired higher permeabil-
ity, larger 115nm SiO, NPs were able to reach the
mouse conceptus [74].

Methods used to assess maternal-fetal NP translocation

Studies on gestational NP biodistribution demand highly
sensitive visualization and quantification methods be-
cause the accurate detection of the fetoplacental accu-
mulation of nanomaterials at very low levels is required.
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The uptake of particulates into the systemic circulation
is limited and often amounts less than a few percent of
the total administered dose [142]. For example, Hesler
et al. showed a lack of transport of 50 nm carboxylated
PS NPs across a placental co-culture using an asymmet-
rical flow field-flow fractionation (AF4) system. Still,
they recognize that it cannot be excluded that a small
number of particles, below the detection limit of the
AF4 system, could have been translocated [36]. This de-
tection limit is possibly confirmed by other studies that
were able to show a size-dependent translocation of
similar PS NPs in mice [27] as well as in an ex vivo pla-
cental perfusion model [41, 42].

As summarized in Table 5, a multitude of imaging ap-
proaches was used to visualize NPs in an in vitro,
ex vivo, and in vivo context. Some included studies in-
vestigated maternal-fetal NP distribution at the whole-
body level by using magnetic resonance imaging [71,
89], in vivo/ex vivo fluorescence imaging [61, 62, 73, 89],
or radiolabeling techniques [53, 57, 70, 87]; whereas
other reports focused on the subcellular localization of
NPs by exploiting transmission [23, 24, 27, 29-32, 41,
43, 45, 47, 49, 52, 54, 57, 58, 60, 61, 73, 75, 91, 92] or
scanning electron microscopy [75, 80, 93]. Fluorescence
microscopy is generally the method-of-choice to monitor
the cellular and tissue-level distribution of fluorescent
NPs [143]. However, visualization of fluorescent NPs,
even with high-resolution confocal microscopy, is lim-
ited because of their sizes (typically being between 1 and
100 nm), which is below the Abbe’s diffraction limit of
~ 250 nm. An additional consideration when using fluor-
escent NPs is dye leakage [144]. Stable incorporation of
dyes within the NPs is a prerequisite as the fluorescence
from leaked dyes may cause wrong interpretation of NP
biodistribution [145]. Accordingly, the in vitro stability
of the fluorescent dye in different solutions, including
perfusion medium [42, 43], and phosphate buffered sa-
line [73], was measured in some of the included studies
to exclude false-positive results. Moreover, the detection
of fluorescent NPs may be hindered by the autofluores-
cence of the biological samples, which hampers the
visualization of small aggregates [143]. Kenesei et al.
employed spectral imaging fluorescence microscopy to
distinguish  fluorescence, originating from the iv.
injected carboxylated or PEGylated PS NPs, from tissue
autofluorescence in mice. The study revealed no placen-
tal penetration but retention of PS NPs by the reticulo-
endothelial system regardless of surface functionalization
[90]. In general, fluorescence microscopic techniques are
hampered by the risk of sample photobleaching com-
bined with limited particle size detection and the neces-
sity to fluorescently couple the NP under study. The
latter is facilitated in the case of (i) QDs [62—65], which
possess inherent fluorescence, or (ii) carbonaceous
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particles, which generate white-light under femtosecond
pulsed laser illumination [1, 105]. Such label-free detec-
tion methods allow the direct analysis of maternal-fetal
NP uptake. Chu et al. used fluorescence imaging to in-
vestigate whether intact QDs can transfer across the ro-
dent placenta to reach the fetus. Penetration of the
placenta by intact QDs was hard to demonstrate using
in vivo fluorescence imaging, possibly due to a low fetal
concentration combined with a reduction in fluores-
cence intensity due to background tissue-endogenous
fluorescence (i.e, autofluorescence). Nonetheless, in-
creased Cd levels, originating from QDs, were measured
in mouse fetuses and pups using ICP-OES [62]. Another
study indicated that the Cd ions originating from CdO
NPs, instead of the particles themselves, were able to
translocate across the placenta of a pregnant mice model
[66]. In agreement, favorable transport of ionic silver
over pristine Ag NPs was observed across the in vitro
placental cell layer and in the ex vivo placental perfusion
model [22, 37]. High concentrations of dissolved ions
may overestimate the concentration of materials present
in nanoparticle form when using chemical analysis-
based methods (e.g, ICP-OES and ICP-MS) that meas-
ure the total elemental concentration in a sample [146].
In contrast, single-particle ICP-MS (spICP-MS) allows
determination of the elemental composition of single
particles and provides information on the NP size distri-
bution. Furthermore, spICP-MS can distinguish between
dissolved and nanoparticulate forms of a certain material
[147]. In this regard, Abdelkhaliq et al. showed the
transport of ionic silver and Ag NPs across an in vitro
BeWo b30 model using ICP-MS and spICP-MS, respect-
ively [22]. In addition, separation techniques are often
used to remove target particles from interfering matrix
components to meet the quantification limits of the de-
tection methods. Accordingly, chromatography-based
techniques such as field-flow fractionation and high-
performance liquid chromatography (HPLC) are used
for high-resolution sizing and separation of a wide range
of diverse particles [148, 149]. Coupling of the chroma-
tographic instruments with other spectroscopic tech-
niques, such as light scattering or light absorption
methods, can be used to enhance the characterization
power as it allows the physicochemical characterization
and elemental analysis of the size-separated particles
[150]. In this regard, Hesler et al. used an AF4-UV
method for size analysis and quantification of carboxyl-
ated PS NPs across an in vitro placental co-culture [36].
To summarize, quantification and reliable detection of
NPs in maternal-fetal tissue remain one of the main
challenges in transplacental transfer studies, especially
under realistic exposure conditions where transfer rates
are expected to be lower. Quantification of maternal-
fetal NP uptake is often achieved at the cost of spatial
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resolution, whereas intracellular NP localization is often
qualitatively defined. Hence, techniques are best com-
bined to gain complementary and profound insights in
transplacental particle transfer. Moreover, progress
should be made towards standardization and validation
of methods used to detect (ultra)fine particles and NPs
with high specificity to ensure reliable detection of the
particles of interest. Such implementation of standard-
ized protocols would facilitate the comparison between
different studies on particle exposure and the assessment
of associated health and safety risks.

Conclusion and future directions

Exposure to (ultra)fine particles and NPs in daily life is
unavoidable, and this is no different for pregnant
women. This systematic review summarizes the evidence
that particles can bypass the placenta as observed in (i)
in vitro monolayers and co-cultures of different placental
cells (e.g., trophoblasts, fibroblastic cells, and endothelial
cells), (ii) ex vivo placental perfusion models, and (iii)
in vivo rodent and rabbit models and humans. Almost
all types of particles tested, ambient or engineered,
seemed to be able to reach and/or cross the maternal-
fetal barrier, even if merely in trace amounts. Transpla-
cental particle transport is affected by the particle size,
particle material, dose, particle dissolution, and surface
modification, as well as the NP administration route and
gestational stage of the employed model. Results on pla-
cental NP transfer must be interpreted with care seeing
differences in the species origin (i.e, rodent, rabbit, or
human) and complexity (i.e., in vitro, ex vivo, or in vivo)
of the applied model as well as in particle properties and
routes of NP exposure/administration. To obtain sub-
stantial and complementary results on developmental
toxicity following prenatal exposure, it will be essential
to test realistic doses (extrapolated from population-
based studies) and exposure routes. The number of stud-
ies on transplacental NP transfer remains limited. More
studies on the topic are paramount and in particular on
inhalation exposure since this is the primary route of en-
vironmental and occupational exposure and largely
understudied.

Moreover, to date, little is known about the kinetics
and bioavailability of NPs as no simple nor standardized
method for NP detection and/or quantification in bio-
logical settings is available. This urges the need to come
up with standardized protocols and to develop state-of-
the-art methods to accurately detect and quantify the
fetoplacental accumulation of low particle levels in tis-
sues, such as in fetal samples.

To conclude, further research on particle uptake, accu-
mulation, and translocation at the placenta is indispens-
able to predict potential fetal exposure and adverse
health effects during fetal development and later in life.
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