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Abstract 

Background:  Regularity, quantified by sample entropy (SampEn), has been extensively used as a gait stability meas-
ure. Yet, there is no consensus on the calculation process and variant approaches, e.g. single-scale SampEn with and 
without incorporating a time delay greater than one, multiscale SampEn, and complexity index, have been used to 
calculate the regularity of kinematic or kinetic signals. The aim of the present study was to test the discriminatory per-
formance of the abovementioned approaches during single and dual-task walking in people with Parkinson’s disease 
(PD).

Methods:  Seventeen individuals with PD were included in this study. Participants completed two walking trials 
that included single and dual-task conditions. The secondary task was word searching with twelve words randomly 
appearing in the participants’ visual field. Trunk linear acceleration at sternum level, linear acceleration of the center of 
gravity, and angular velocity of feet, shanks, and thighs, each in three planes of motion were collected. The regularity 
of signals was computed using approaches mentioned above for single and dual-task conditions.

Results:  Incorporating a time delay greater than one and considering multiple scales helped better distinguish 
between single and dual-task walking. For all signals, the complexity index, defined as the summary of multiscale 
SampEn analysis, was the most efficient discriminatory index between single-task walking and dual-tasking in people 
with Parkinson’s disease. Specifically, the complexity index of the trunk linear acceleration of the center of gravity 
distinguished between the two walking conditions in all three planes of motion.

Conclusions:  The significant results observed across the 24 signals studied in this study are illustrative examples of 
the complexity index’s potential as a gait feature for classifying different walking conditions.
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Background
Researchers have proposed and studied a plethora of 
measures to quantitatively analyze walking [1]. Among 
them, entropy measures, such as Sample Entropy 
(SampEn), have shown great potential to successfully 
discern interrupted gait from uninterrupted [2]. Entropy 
measures represent regularity or predictability of signals 

and have been shown to distinguish between fallers and 
non-fallers [3], single and dual-task walking conditions 
[2], patients with various neurological and/or physical 
impairments and control groups [4]. Although first calcu-
lated for discrete stride-interval time series [5], entropy 
measures are increasingly applied to continuous human 
signals [3, 4, 6–9]. Trunk linear acceleration [4, 8, 10–13], 
lower extremity’s angular velocity [10, 13], and center of 
foot pressure [6] have been used with various entropy 
measures. Unlike inter-stride signals, such as step time, 
kinematic signals offer important information on motor 
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control strategies as they comprise intra-stride details of 
gait cycles [6]. A previous study suggests that the within-
stride phases, such as   the  weight transfer phase, are 
critical for gait stability [14]. These phases are actively 
engaged with intra-stride patterns of cortical activity [15] 
which are involved in steady-speed human locomotion. 
[15, 16].

SampEn, among different types of entropy measures, is 
the most commonly used measure for human gait analy-
sis. This single-scale regularity measure is representative 
of difficultness of describing the patterns of the trajec-
tory of a system [17]. Single-scale analysis, however, is 
not capable of representing the multiscale richness of 
information embedded in a signal. Therefore, multiscale 
sample entropy (MSE) [5], which quantifies regularity on 
multiple scales, was introduced. One limitation of MSE 
is that it is reported as multiple SampEn values over a 
range of scales and does not produce a single value. This 
limitation hinders its application in gait analysis, espe-
cially when single quantitative features are rather desir-
able. Complexity index (CI) [18] calculated as the sum of 
SampEn values over a range of scales was introduced as a 
solution. Both single-scale and multiscale SampEn have 
shown great potential to capture the increased risk of 
fall despite not having incorporated a time-delay greater 
than one [2, 8]. For time series generated by nonlinear 
dynamics that have a long range correlation, it has been 
shown that using a higher time delay can provide addi-
tional information regarding the characteristics of a time 
series when conducting comparative analyses [19, 20]. 
In finite noisy time-series data, an appropriate choice 
of time delay [21] is necessary to properly reconstruct 
the state space as a too small time delay would produce 
a compressed attractor along the identity line  [22]. In 
other words, the time delay is chosen such that the com-
ponents of an embedding window or a template (which 
are the building blocks of nonlinear measures) are inde-
pendent [23]. Incorporating a non-unity time delay has 
been used to calculate other gait stability measures, such 
as largest Lyapunov exponents, when applied to continu-
ous kinematic gait signals [24, 25]. Nonetheless, the influ-
ence of incorporating a non-unity time delay, i.e. a time 
delay greater than one, when studying continuous signals 
with entropy measures is yet to be determined. The three 
approaches mentioned earlier, i.e. single-scale SampEn 
with and without a time delay greater than one, multi-
scale SampEn, and complexity index when calculated for 
continuous signals could somehow yield different results.

As Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disease worldwide, after Alz-
heimer’s Disease, and has an exacerbated fall risk during 
walking, PD provides an opportunity to examine the 
efficacy of the aforementioned entropy metrics [26–28]. 

Epidemiological evidence demonstrates that the inci-
dence of PD ranges between 10 and 50 per 100,000 indi-
viduals and has a prevalence between 100 and 300 per 
100,000 individuals [29, 30]. Additionally, the number 
of individuals diagnosed with PD is expected to dou-
ble worldwide by 2030 [31]. PD is a progressive neuro-
degeneration of dopaminergic neurons within the Basal 
Ganglia [26, 27]. In addition to causing PD’s cardinal 
symptoms (bradykinesia, rigidity, and tremor), the Basal 
Ganglia’s reduced functionality impairs automatic motor 
processes that contribute to effective locomotion [1, 32–
34]. To overcome the impaired automaticity of the Basal 
Ganglia, previous research proposes that individuals with 
PD attempt to recruit relatively intact higher-level corti-
cal structures (pre-frontal and frontal cortices) to direct 
conscious attentional control on their locomotion [32, 
35]. However, when attention is divided between simulta-
neous tasks, the attentional resources required for effec-
tive compensation of impaired neuromuscular pathways 
become strained [32, 35]. For instance, dual-tasking evi-
dence demonstrates that during the presence of a concur-
rent mental task, there is a breakdown in the gait pattern 
for individuals with PD which increases their fall risk [32, 
33, 35, 36]. Hillel et al. discussed that changes in PD gait 
performance during dual-tasks are more representative 
of how these individuals ambulate in their everyday lives 
where multitasking is ever present in constantly changing 
environments [37]. To-date, however, it remains unexam-
ined whether incorporating a non-unity time delay and 
multiscale analysis on SampEn results affects the sensi-
tivity of entropy to respond to dual-tasks.

The main objective of the current study was to inves-
tigate the effect of incorporating a non-unity time 
delay and multiscale analysis on SampEn results. It was 
hypothesized that these approaches would increase the 
ability of SampEn to discriminate between single and 
dual-task trials. In addition, another objective of this 
paper was to determine whether the SampEn of eight 
different signals, each in three directions, would result 
in the same outcome. These eight different signals are 
trunk linear acceleration at sternum level, linear accelera-
tion of the center of gravity, and angular velocity of least-
affected and most-affected feet, shanks, and thighs. It was 
hypothesized that the discriminatory ability of SampEn 
would be greater when calculated for signals in the medi-
olateral direction based on previous studies showing an 
increased demand on mediolateral stability during visual 
perturbations [38–40].

Methods
Participants
Twenty (13 males; 7 females) individuals with idiopathic 
PD (confirmed by a neurologist), aged between 48 and 
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79  years old (age: 63.8 ± 9.0  years, mass: 72.3  kg ± 19.4, 
height: 172.8 cm ± 8.0) were recruited from the Ottawa-
Gatineau region. Due to incomplete data collection, 
only 17 participants (11 males and 6 females, 64.8 ± 7.4) 
were used in the analysis. Participants were assessed 
with the original Unified Parkinson’s Disease Rating 
Scale Motor examination (11 ± 6) and were between I-III 
on the Hoehn and Yahr scale. Average disease duration 
(8.0 ± 5.1  years) and age at onset (56.8 ± 9.6  years) data 
were collected. Further, seven participants reported 
freezing of gait based on the Freezing of Gait Ques-
tionnaire. Participants were tested on their optimally 
medicated state. Exclusion criteria encompassed if par-
ticipants reported any physical discomfort using a virtual 
reality system, reported any injuries and/or orthopedic 
surgeries that could interfere with walking, could only 
ambulate with the assistance of a walking aid and had 
any additional conditions other than PD. All partici-
pants provided written informed consent and the study 
was approved by the University of Ottawa Research Eth-
ics Boards (REB) and Ottawa Hospital Research Institute 
(OHRI) in accordance with the Helsinki protocol.

Procedures
Participants completed two treadmill walking trials, 
where they walked on a straight path (i.e. the treadmill 
belt) with their preferred walking speed, that included 
single and dual-task conditions. These two trials were 
part of a larger protocol [41, 42]. The single-task trial 
had a duration of three minutes while the dual-task trial 
lasted two minutes. Prior to data collection, participants 
walked for approximately 20  s to achieve steady-state 
walking. The dual-task consisted of a word searching 
task with twelve words randomly appearing in the par-
ticipants’ visual field. Words were projected one at a time 

duration of each word was 3 s with a 2–4 s pause between 
following words. Participants verbally called out the 
words as they appeared [41]. The word searching task 
was chosen as a more ecologically representation of a 
potential secondary task that individuals would encoun-
ter in their daily lives when walking. Specifically, this task 
reflects scanning the environment for relevant visual cues 
such as when passing by signs which provide direction.

Three-dimensional motion analysis was completed 
using the CAREN-Extended System (Motek Medical, 
Amsterdam NL). This system combines a six degrees-
of-freedom motion platform with an embedded dual-
belt treadmill, 12 camera Vicon motion capture system, 
180-degree projector screen, and a safety harness. A 
57-marker set for tracking full body kinematics was used. 
Kinematic data were collected at 100 Hz.

Regularity measures
We briefly describe SampEn and define its single-scale 
and multiscale implementation with and without a non-
unity time delay. Next, complexity index as a summariz-
ing index of MSE is explained.

Consider a time series of length N  given below:

The value for template size ( m ) is chosen to construct 
series of pairs, size m as:

Next, matching templates are found by comparing their 
Chebyshev distance (denoted as d|.| ) to a pre-determined 
threshold size ( r ) while excluding self-comparison. Next, 
the variable Bi , which is the number of pairs satisfying 
the aforementioned criteria, is built.

Next, Bm(r) is defined as:

This process is repeated for m+ 1 and r to form Am(r):
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on a screen directly in front of the participants. Words 
appeared randomly on either the left or right side of the 
screen at angles varying between 20 and 70 degrees. The 
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Lastly, single-scale SampEn [43] is calculated based on 
Bm(r) and Am(r) as

where m , r and N  are the template size (i.e., the length 
of template vector), tolerance size and the length of time 
series, respectively [6].

For MSE, consecutive coarse-grained time series are 
constructed by averaging a successively increasing num-
ber of data points in non-overlapping windows. The 
number of data points in each window is determined by 
the scale factor which ranges from 1 to 20 in this study. 
MSE is usually presented as SampEn for each one of the 
coarse-grained time series plotted as a function of scale 
factor. And the complexity index is defined as the sum of 
the SampEn values of different scales [18].

In order to incorporate a non-unity time delay, a time 
delay (τ ) , which has been calculated using the minimum 
average mutual information method [22], is used when 
constructing the templates in [2] as below while the rest 
of the calculation process remain the same.

Data processing
Markers data were processed in Vicon Nexus (Nexus 2.6, 
Oxford, UK) and 3D kinematic calculations were per-
formed in Visual 3D. A 4th order, low-pass Butterworth 
filter with a 10  Hz cut-off frequency was used to filter 
marker data. Visual 3D calculates the center of gravity 
based on the anthropometric data provided by Hanavan 
[44]. Center of gravity velocity and acceleration were cal-
culated as the first and second derivative of the center of 
gravity’s position. For this study, only trunk linear accel-
eration at sternum level (SternumLA), center of grav-
ity linear acceleration (COG-LA), foot angular velocity 
(FootAV), shank angular velocity (ShankAV), and thigh 
angular velocity (ThighAV), each in mediolateral (ML), 
anteroposterior (AP), and vertical (V) directions were 
exported from Visual 3D (see Fig.  1). Subsequently, the 
exported data were analyzed in MATLAB R2019b. For 
angular velocity signals, results are reported for the most 
affected (MA) and the least affected (LA) foot, shank, and 
thigh instead of left and right categorization.

70 strides of each signal were resampled to have the 
same 108× 70 data points, where 108 was the average 
number of data points per stride for 17 participants. This 
data manipulation was recommended to account for 

(7)Am(r) =
1

N −m

∑N−m

i=1
Am
i (r)

(8)SampEn(m, r, N) = −ln
Am(r)

Bm(r)

(9)
Xm(i) =

{

x(i + kτ ) : 0 ≤ k ≤ m− 1
}

, 1 ≤ i ≤ N −m+ 1

variant gait speed among participants and across trials 
[6]. Next, SampEn was calculated for each signal using a 
template size of 4, a tolerance size of 0.2 times the stand-
ard deviation of all time-series, and a time delay of one. 
Similarly, SampEn was recalculated for all signals using a 
template size of 4, a tolerance size of 0.2 times the stand-
ard deviation of all time-series, and a specified non-unity 
time delay. A systematic parameter selection [6] was fol-
lowed to select template size and tolerance size, and the 
minimum average mutual information method was used 
to calculate the time delay [22]. A range of time delay val-
ues was obtained for each signal when calculated for dif-
ferent participants [45–47], and the median values were 
selected for the analysis (see Table 1). The dominant fre-
quency of intrinsically periodic human gait signals is dif-
ferent across body segments, and it affects the calculated 
time delay [47]. Signals with less stride-to-stride changes 
have larger time delay values; i.e. fewer data points are 
needed to accurately reconstruct the state-space using a 
single time-series data [22].

Subsequently, consecutive coarse-grained signals were 
constructed by averaging a successively increasing num-
ber of data points (up to 20) in non-overlapping windows. 
Next, SampEn was calculated for each coarse-grained 
signal using a template size of 4, a tolerance size of 0.2 
times the standard deviation of all time-series of the 
same body segment, and a specified time delay greater 
than one. Time delay at each scale was the quotient of the 
division of the time delay at scale 1 by the scale values. 
For quotient values below 2, a time delay of 2 was cho-
sen. This approach to time delay selection was developed 
after calculating the time delay for select signals using the 
minimum average mutual information method. Finally, 
the complexity index was computed by summing up 
SampEn values over scales 1 to 20.

Statistical analysis
The normality of all dependent variables was checked 
using the Shapiro–Wilk normality test. Paired t-test and 
Wilcoxon signed ranks test were used respectively for 
variables normally distributed and non-normally distrib-
uted to investigate the effect of dual-tasking. A p-value 
less than 0.05 was considered significant in all tests.

Results
For single-scale SampEn with a time delay of one (see 
Table  2), there was no significant change from single-
task to dual-task walking conditions, except for verti-
cal MA-FootAV (Z = −  2.580, p = 0.010) where SampEn 
increased significantly. For single-scale SampEn with 
a larger time delay (see Table  3), dual-tasking elicited a 
statistically significant change in LA-ThighAV in AP 
direction (t = −  3.898, p = 0.001), MA-ShankAV in AP 
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direction (t = − 3.031, p = 0.008), COG-LA in ML direc-
tion (t = −  2.818, p = 0.012), and SternumLA in ML 
(t = −  2.574, p = 0.020) and V direction (t = −  2.767, 
p = 0.014).

Figure  2, 3, 4, and 5 show that SampEn values vary 
with each scale. Nonetheless, the directional change 
from single-task to dual-task walking condition remains 
consistent for the examined signals. In other words, the 
SampEn of various signals tends to increase when par-
ticipants engage in dual-tasking. A closer look reveals 

Fig. 1  A 7-s segment of biological data for continuous foot angular velocity (FootAV), shank angular velocity (ShankAV), thigh angular velocity 
(ThighAV), COG linear acceleration (COG-LA), and sternum linear acceleration (SternumLA) in ML (left), AP (middle) and V (right) directions

Table 1  Median time delay in  mediolateral, 
anteroposterior, and vertical directions

ML AP V

FootAV 22 10 10

ShankAV 12 7 6

ThighAV 16 7 6

COG-LA 21 7 10

SternumLA 7 9 10



Page 6 of 14Ahmadi et al. J NeuroEngineering Rehabil           (2021) 18:20 

that LA-ShankAV and MA-ShankAV in AP direction 
(see Fig. 3), LA-ThighAV and MA-ThighAV in AP direc-
tion, LA-ThighAV in V direction (see Fig. 4), and COG-
LA and SternumLA in ML direction (see Fig.  5) better 
distinguish between single-task and dual-task walking 
condition. These signals show significant changes across 
many time scales unlike the rest of the signals which dis-
criminate between single and dual-task conditions only 
at sparse time scales.

Finally, the complexity index is presented in Table  4. 
The values for foot, shank, and thigh angular velocity in 
AP and V directions are significantly greater when dual-
tasking. No significant changes were observed in the ML 
direction. For the COG-LA signal, the complexity index 
increased significantly in all three directions. SternumLA 
signal, however, was able to discriminate between the 
single and dual-task walking conditions in ML and V 
directions.

Discussions
In this paper, a specific condition was used to investigate 
the efficacy of SampEn when a non-unity time delay and 
multiscale analysis were employed. The specific condi-
tion was comparing single and dual-task walking trials in 
people with PD. Both approaches enhanced the efficacy 
of single-scale SampEn measure regarding discriminating 
between single and dual-task trials. Complexity index, 
which is the summary of multiscale SampEn analysis, was 
the most effective index of increased risk of fall, showing 
a significant increase from single-tasking to dual-task-
ing. Furthermore, while the complexity index of angular 
velocity signals yielded similar results, they were differ-
ent from the results of trunk linear acceleration signals. 
Trunk linear acceleration was the only signal that was 
able to distinguish between the two walking conditions in 
three directions (ML, AP, and V).

It has previously been recommended that a time-
delay greater than one be incorporated for discrete [19] 
and continuous time series [48]. However, it was not 
clear whether SampEn results would be any different if 

Table 2  Descriptive results (mean ± SD) and  pairwise comparisons of  the  SampEn (with a  time delay of  one) of  single-
task and dual-task trials

Values in bold indicate a significant (p < 0.05) difference. Dual-task interference (DTI) is calculated as DTI (%) = [(dual-task feature—single-task feature)/single-task 
feature] × 100

Signal Direction Single-task Dual-task t or Z p-value DTI (%)

LA-FootAV ML 0.064 ± 0.007 0.065 ± 0.007 − 1.007 0.329 1.4

AP 0.332 ± 0.104 0.325 ± 0.103 − 0.544 0.586 − 2.0

V 0.119 ± 0.044 0.125 ± 0.043 − 1.586 0.113 4.8

LA-ShankAV ML 0.117 ± 0.022 0.117 ± 0.018 − 0.002 0.999 0.0

AP 0.314 ± 0.087 0.311 ± 0.059 0.132 0.897 − 0.7

V 0.389 ± 0.076 0.384 ± 0.070 0.613 0.549 − 1.3

LA-ThighAV ML 0.165 ± 0.035 0.168 ± 0.035 − 0.689 0.501 2.0

AP 0.424 ± 0.068 0.431 ± 0.069 − 0.667 0.514 1.8

V 0.486 ± 0.063 0.480 ± 0.062 0.776 0.449 − 1.3

MA-FootAV ML 0.063 ± 0.007 0.064 ± 0.009 − 1.076 0.298 2.3

AP 0.271 ± 0.065 0.286 ± 0.068 − 1.475 0.160 5.5

V 0.099 ± 0.034 0.111 ± 0.040 − 2.580 0.010 11.6
MA-ShankAV ML 0.115 ± 0.021 0.117 ± 0.022 − 0.687 0.502 2.1

AP 0.300 ± 0.055 0.307 ± 0.048 − 0.829 0.419 2.2

V 0.360 ± 0.075 0.362 ± 0.066 − 0.239 0.814 0.4

MA-ThighAV ML 0.164 ± 0.036 0.169 ± 0.045 − 1.087 0.293 3.4

AP 0.409 ± 0.064 0.418 ± 0.050 − 0.834 0.417 2.3

V 0.459 ± 0.062 0.460 ± 0.054 − 0.828 0.407 0.3

COG-LA ML 0.323 ± 0.055 0.345 ± 0.054 − 1.617 0.125 6.5

AP 0.450 ± 0.072 0.449 ± 0.059 0.114 0.911 − 0.2

V 0.329 ± 0.041 0.329 ± 0.037 0.080 0.938 − 0.1

SternumLA ML 0.363 ± 0.042 0.359 ± 0.048 0.710 0.488 − 1.1

AP 0.474 ± 0.051 0.483 ± 0.058 − 1.065 0.287 2.0

V 0.324 ± 0.052 0.330 ± 0.049 − 1.328 0.203 2.0
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a non-unity time delay was used. In the present study, 
when SampEn was calculated with a time delay of one, 
only one out of 24 signals was able to distinguish between 
the two conditions. This was improved when a non-unity 
time delay was used, and 6 out of 24 signals showed a sig-
nificant increase from single to dual-task walking condi-
tions. Interestingly, however, the SampEn of MA-FootAV 
in the vertical direction, which increased significantly 
when using a time delay of one, did not change signifi-
cantly when incorporating a non-unity time delay. Nev-
ertheless, there was an increasing trend from single-task 
to dual-task. This observation might suggest that the sig-
nificant difference found for the SampEn of MA-FootAV 
with a unity time delay is not a true finding and is rather a 
false positive or a type I error.

Kinematic and kinetic human signals resemble peri-
odic signals with fluctuations from stride to stride. The 
dependency of the points of kinematic or kinetic signals 
to their neighboring points might jeopardize the discrim-
inatory ability of the entropy measures. By incorporating 
a non-unity time delay, templates are constructed such 

that there is the least dependence between elements of 
each template [22]. As a result, this preprocessing would 
help reveal small differences between the two conditions 
(e.g. single vs. dual tasking) that might have been masked 
because of the strong periodicity of the signals. In other 
words, periodic signals result in smaller entropy values 
compared to non-periodic signals. A non-unity time 
delay addresses this issue, which yields greater entropy 
values, and, consequently, increases the discriminatory 
ability of entropy measures.

Similar to incorporating a non-unity time delay, our 
study confirms that multiscale SampEn [5] rather than 
single-scale SampEn can better discriminate between 
different walking conditions. In addition to a consist-
ent increasing trend from walk only to dual-task walk-
ing condition, there were some time scales where values 
calculated for the dual-task walking condition were sig-
nificantly larger. The accumulation of these pronounced 
values resulted in the superior efficacy of the complexity 
index which is the summary of multi-scale SampEn val-
ues. This index was able to successfully detect the effects 

Table 3  Descriptive results (mean ± SD) and pairwise comparisons of the SampEn (with a non-unity time delay) of single-
task and dual-task trials

Values in bold indicate a significant (p < 0.05) difference. Dual-task interference (DTI) is calculated as DTI (%) = [(dual-task feature—single-task feature)/single-task 
feature] × 100

Signal Direction Single-task Dual-task t or Z p-value DTI (%)

LA-FootAV ML 0.572 ± 0.096 0.599 ± 0.111 − 1.112 0.266 4.8

AP 1.296 ± 0.220 1.327 ± 0.202 − 1.633 0.102 2.4

V 1.281 ± 0.340 1.313 ± 0.344 − 1.739 0.101 2.5

LA-ShankAV ML 0.439 ± 0.054 0.455 ± 0.063 − 1.464 0.163 3.5

AP 0.827 ± 0.204 0.840 ± 0.161 − 0.358 0.725 1.6

V 1.165 ± 0.140 1.180 ± 0.147 − 0.902 0.380 1.3

LA-ThighAV ML 0.544 ± 0.091 0.570 ± 0.123 − 1.642 0.120 5.0

AP 1.210 ± 0.154 1.303 ± 0.158 − 3.898 0.001 7.7
V 1.317 ± 0.185 1.350 ± 0.193 − 1.963 0.067 2.5

MA-FootAV ML 0.539 ± 0.073 0.560 ± 0.105 − 1.325 0.204 3.8

AP 1.174 ± 0.174 1.220 ± 0.186 − 1.561 0.138 4.0

V 1.142 ± 0.286 1.193 ± 0.302 − 1.857 0.082 4.4

MA-ShankAV ML 0.442 ± 0.049 0.455 ± 0.056 − 1.541 0.143 3.1

AP 0.825 ± 0.172 0.881 ± 0.201 − 3.031 0.008 6.8
V 1.108 ± 0.173 1.127 ± 0.162 − 1.228 0.237 1.8

MA-ThighAV ML 0.511 ± 0.073 0.544 ± 0.098 − 1.662 0.116 6.6

AP 1.178 ± 0.105 1.213 ± 0.102 − 1.108 0.284 2.9

V 1.283 ± 0.161 1.321 ± 0.134 − 1.563 0.138 2.9

COG-LA ML 1.004 ± 0.139 1.061 ± 0.164 − 2.818 0.012 5.7
AP 1.090 ± 0.123 1.114 ± 0.120 − 2.015 0.061 2.2

V 1.049 ± 0.139 1.067 ± 0.138 − 0.969 0.347 1.7

SternumLA ML 1.077 ± 0.143 1.122 ± 0.128 − 2.574 0.020 4.2
AP 1.405 ± 0.139 1.435 ± 0.157 − 1.121 0.279 2.1

V 0.992 ± 0.161 1.033 ± 0.182 − 2.767 0.014 4.1
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of dual-tasking using 17 out of 24 signals. The results of 
our study were similar to the results by Ihlen et al. [3] in 
terms of the sparsity of significant results in multiscale 
SampEn plots. Furthermore, in both our study and in 
the study by Ihlen et  al. [3], the direction of change in 
entropy measure was consistent for all scales. In other 
words, if one condition resulted in smaller entropy val-
ues, this decreasing effect held throughout all time scales.

Each signal in this study was presented in three planes 
of motion, mediolateral, anteroposterior, and vertical 
plane. It was hypothesized that the discriminatory ability 

of SampEn values in the mediolateral direction would be 
greater using either approach. This was confirmed only 
for linear acceleration signals obtained from COG and 
sternum. Bauby and Kuo [49] demonstrated that unlike 
the AP direction, lower extremity movement in the ML 
is controlled by higher level cortical structures actively 
processing visual information. Therefore, the differences 
in the ML direction for the COG and sternum plausibly 
arose when visual attention was divided between control-
ling the upper extremity and performing the visual word 
searching task. Interestingly, however, no concurrent 

Fig. 2  The SampEn of the least-affected (left column) and most-affected (right column) foot angular velocity (FootAV) in the ML (top row), AP 
(middle row), and V (bottom row) directions versus time scale for single-task (ST) and dual-task (DT) walking condition. Scales highlighted in green 
elicited significant increase (p < 0.05) in SampEn from ST to DT
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differences occurred in lower extremity ML motion. In 
healthy young adults, disruptions to the trunk’s trajec-
tory during walking can be offset by appropriate adapta-
tions in the lower extremity to maintain postural control 
and dynamic balance [42]. This is primarily due to the 
fact that the neuromuscular system determines the step-
ping foot’s final placement (in the AP and ML directions) 
on its ability to predict the trunk’s future position and 
velocity [50, 51]. Lack of task differences in our lower 
extremity ML parameters may suggest a lack of appro-
priate adaptation in individuals with PD to assess trunk 

movement changes and alter their base of support [41, 
42]. In other words, since COG changes between single 
and dual-task condition, but there is no parallel change 
in lower extremity ML parameters, this might suggest 
that participants were unable to adapt their foot place-
ment to modify their base of support in the ML direction. 
This may have arisen from differences in task prioritiza-
tion in people with PD compared to both aged matched 
controls and young adults [35, 52]. Dual-tasking evi-
dence posits that performance during dual-tasking is not 
only dictated by two simultaneous tasks competing for 

Fig. 3  SampEn of the least-affected (left column) and most-affected (right column) shank angular velocity (ShankAV) in the ML (top row), AP 
(middle row), and V (bottom row) directions versus time scale for single-task (ST) and dual-task (DT) walking condition. Scales highlighted in green 
elicited significant increase (p < 0.05) in SampEn from ST to DT
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attentional resources, but also from an individual’s abil-
ity to correctly prioritize the tasks [35]. Indeed, healthy 
young adults, and to some extent elderly adults, prioritize 
gait stability (“posture first” strategy) over performance 
of a secondary cognitive tasks, while people with PD 
utilize a “posture second” strategy where they prioritize 
performance of the secondary task over their gait stabil-
ity [35]. The inability to correctly prioritize gait over the 
secondary tasks has been associated with deterioration in 
the prefrontal and anterior cingulate cortices, two higher 
level cortical structures implicated in the compensation 
of impaired basal ganglia functionality, in people with PD 

[35]. However, as this study did not examine differences 
between people with PD and aged matched controls, the 
extent to which prioritization affected Entropy measures 
cannot be elaborated on.

This study investigated the efficacy of SampEn in dis-
criminating between different walking conditions in 
people with PD when a non-unity time delay and mul-
tiscale analysis were used. The results of the complexity 
index were promising as it was able to highlight small 
changes made to the signals due to performing a simple 
secondary task while walking. However, there are a few 
limitations that need to be considered when interpreting 

Fig. 4  SampEn of the least-affected (left column) and most-affected (right column) thigh angular velocity (ThighAV) in the ML (top row), AP 
(middle row), and V (bottom row) directions versus time scale for single-task (ST) and dual-task (DT) walking condition. Scales highlighted in green 
elicited significant increase (p < 0.05) in SampEn from ST to DT
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the findings. The secondary task, although being repre-
sentative of similar situations in every-day life, was not 
very challenging. 12 out of 17 participants were able to 
successfully complete the secondary task, i.e. calling out 
12 out of 12 words. Moreover, the remaining 5 partici-
pants managed to verbally call out the majority of words 
(mean ± SD, 10 ± 1.5). Additionally, the effect of dual-
tasking on entropy measures may vary depending on the 
relative complexity of the secondary mental task as well 
as the stage of disease progression in PD.

The question of whether SampEn with and without 
a non-unity time delay would show more significant 
results if a more challenging task was used should be 
investigated in a future study. In addition, although 
treadmill walking is an efficient and commonly used 
method to collect data from several strides [41, 53], it 
may reduce the effect of dual-tasking on gait charac-
teristics [54]. However, it has also been reported that 
the difference between overground walking and tread-
mill walking are generally small [53]. Therefore, as the 
objective of this study was to find the most effective 

Fig. 5  SampEn of the linear acceleration of COG (COG-LA) (left column) and linear acceleration of sternum (SternumLA) (right column) in the 
ML (top row), AP (middle row), and V (bottom row) directions versus time scale for single-task (ST) and dual-task (DT) walking condition. Scales 
highlighted in green elicited significant increase in SampEn from ST to DT
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entropy metric rather than generalizing the results to 
overground walking, this limitation would have a mini-
mal effect on the findings. Finally, performing the sec-
ondary task while walking on the treadmill would make 
participants rotate their head left and right. However, 
the majority of head rotations were less than 20 degrees 
as the far left/right displayed words were still in the 
peripheral vision of our participants. Therefore, they 
only needed to slightly rotate their head when needed. 
Nevertheless, not studying the possible effects of this 
left/right head rotations on the results could be consid-
ered as a limitation of this study.

Conclusions
In summary, the three approaches used in the current 
study, i.e. single-scale SampEn with and without incor-
porating a non-unity time delay, multiscale SampEn, and 
summarizing feature called complexity index, showed 
different discriminatory performance across 24 continu-
ous signals when comparing single and dual-task walk-
ing in people with Parkinson’s disease. Incorporating a 

non-unity time delay improved the discriminatory effi-
cacy of SampEn of 6 signals and the multiscale approach 
proved that not all scales could distinguish between the 
two walking conditions. The complexity index of the 
majority of signals (17 out of 24), however, successfully 
distinguished normal single-task walking from dual-task 
walking. Therefore, the complexity index of continuous 
signals can be used as a gait feature for classifying differ-
ent treadmill walking conditions.
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