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Abstract 

HIV preferentially infects activated CD4+ T cells and mutates rapidly. The classical vaccine approach aimed to gener‑
ate broad immune responses to full HIV proteins largely failed to address the potential adverse impact of increased 
number of activated CD4+ T cells as viral targets. Learning from natural immunity observed in a group of HIV resistant 
Kenyan female sex workers, we are testing a novel vaccine approach. It focuses immune response to the highly con‑
served sequences surrounding the HIV protease cleavage sites (PCS) to disrupt viral maturation, while limiting exces‑
sive immune activation. Our pilot studies using nonhuman primate SIV infection models suggest that this approach is 
feasible and promising.
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Background
Worldwide, it is estimated that almost 37 million peo-
ple are living with human immunodeficiency virus type 
1 (HIV-1). In 2015 alone, around 2.1 million individuals 
became newly infected with HIV and 1.1 million peo-
ple died from AIDS, highlighting the urgent need for an 
effective HIV vaccine. Six HIV vaccine candidates to date 
have been tested in Phase IIb clinical trials. The first two 
trials Vax004 and Vax003 sought to induce protection by 
eliciting antibody responses to gp120, but failed to pro-
tect against HIV acquisition [1, 2]. The three other phase 
IIb trials, HVTN502, 503 and 505, attempted to induce 
T cell-based immunity against HIV. All three failed to 
elicit immune responses capable of providing protec-
tion against HIV acquisition [3–5]. The only HIV vaccine 
that has been modestly successful was from the RV144 
trial, in which a recombinant canary pox-based vaccine 
(ALVAC) combined with a recombinant gp120 (AIDS-
VAX) vaccine was tested. The vaccine protected 31% of 
vaccinees against HIV acquisition after a modified inten-
tion-to-treat analysis [6].

HIV primarily infects CD4+ T cells, a critical compo-
nent of the human immune system. As a retrovirus HIV 
mutates rapidly, giving rise to extensive genetic diversity. 
These inherent characteristics underscore the challenges 
for developing a prophylactic vaccine. Novel approaches 
and ideas need to be tested to develop an effective vac-
cine to HIV-1.

Natural immunity to HIV: a new clue to vaccine 
development
Edward Jenner developed the successful smallpox vac-
cine based on the natural immunity observed in milk-
maids. Thus, the correlates of natural immunity to HIV-1 
documented in highly exposed uninfected individuals 
may provide a vital clue for the development of a pre-
ventative vaccine for HIV-1. Several cohort studies have 
documented that there is considerable heterogeneity in 
susceptibility to HIV-1 infection [7–9]. Some individu-
als remain uninfected despite continued high risk expo-
sure to HIV-1 [10]. Understanding why these individuals 
escape HIV-1 infection and the immunologic correlates 
that confer protective immunity in these individuals 
could aid in the development of an effective vaccine.
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The spectra of HIV Gag epitopes recognized by HLA 
alleles are associated with different outcomes 
of HIV‑1 acquisition
Studies showed that the observed natural resistance 
to HIV-1 infection in the Pumwani sex worker cohort 
was associated with several alleles of human leukocyte 
antigens (HLAs) and specific CD8+ and CD4+ T cell 
responses to HIV-1 [11–14]. Therefore, we analyzed 
Gag epitopes of two major HIV-1 subtypes circulating 
in Kenya of two HLA class I alleles associated indepen-
dently with different outcomes of HIV-1 infection. Our 
study showed that the protective allele, A*01:01, only 
recognized three Gag epitopes. In contrast, B*07:02, the 
allele associated with susceptibility, bound 30 epitope 
variants [15]. These two alleles differed most impor-
tantly in the spectrum of Gag epitopes they could pre-
sent, and not in binding affinity, off-rates, the location 
of the epitopes, or epitope-specific Tem/Tcm frequen-
cies [15]. Contrary to the classical HIV-1 vaccine design 
to generate broad and strong immune responses to sev-
eral HIV-1 proteins [16, 17], the allele, which recognizes 
more epitopes and generates stronger IFN-γ ELISPOT 
responses, was associated with an increased susceptibil-
ity to HIV-1 acquisition.

Lessons from natural immunity to HIV‑1: more 
might not be better
Two things can be learned from our studies: (a) broad 
immune responses do not necessarily provide protec-
tion and may in fact promote infection; (b) narrowly 
targeted T cell response can be associated with protec-
tion against infection and may be an alternative strat-
egy for an anti-HIV vaccine. Infection of CD4+ T cells 
is the key difference between HIV-1 and other infectious 
pathogens and activated CD4+ T cells are the primary 
targets for HIV-1, thus a narrow spectrum of epitope 

presentation by a protective allele appears to make sense. 
Theoretically, recognizing more epitopes will activate 
more CD8+ T cells to destroy the virally infected cells. 
However, it could also activate more bystander CD4+ 
T cells via cytokines produced by epitope-recognizing 
CD8+ T cells. The increased CD4+ T cell activation 
and recruitment to mucosal sites could increase the risk 
of HIV acquisition. This may explain why the B*07:02 
allele, capable of recognizing a broader spectrum of Gag 
epitopes, was associated with rapid seroconversion. Ide-
ally, an effective preventative vaccine to HIV-1 should be 
able to destroy the infecting virus or infected cells with-
out causing excessive immune activation. The narrow 
and focused Gag epitope presentation by A*01:01 might 
provide such balance enabling the destruction of initially 
infected cells with minimum immune activation. Fur-
thermore, recent studies have shown that in most cases 
mucosal acquisition of HIV-1 typically resulted from a 
single or a few founder viruses [18, 19]. Immune mech-
anisms preventing the establishment of a few founder 
viruses are likely different from the ones dealing with a 
full-blown viral infection after the virus has been well 
established in the host. It is possible that a lower mag-
nitude, narrowly focused, well maintained virus-specific 
CD8+ T cell response to multiple subtypes is sufficient 
to destroy and eliminate a few founder viruses without 
inducing inflammatory responses that may activate more 
CD4+ T cells and provide more targets for HIV.

Sequences around the HIV protease cleavage sites 
are viable vaccine targets
The only Gag peptide recognized by A*01:01 with relative 
high affinity and normal off-rate is a 9-mer peptide that 
covers the protease cleavage site at p17/p24 (Fig. 1a) [15]. 
This region is relatively conserved among major HIV 
subtypes (A1, B, D, and G). We tested 8 peptide variants 

(See figure on previous page.) 
Fig. 1 a Translation of HIV Gag and Pol genes produces two large polyproteins, Pr55Gag and Pr160Gag‑Pol, which are cleaved at 12 protease 
cleavage sites (PCS) to produce 13 proteins in a mature HIV virion. Cleavage of Pr55Gag polyprotein by HIV protease at PCS1 produces matrix p17 
(MA), at PCS2‑capsid p24 (CA), PCS3‑p2, PCS4‑nucleocapsid/p1 (NC), PCS5‑p1 and PCS6‑p6gag. The cleavage of the Pr160 Gag‑Pol polyprotein that 
is derived from ribosomal frame shifting results in the production of viral enzymes. Cleavage at PCS7 produces the transframe protein (TFP), at 
PCS8 produces  p6Pol, PCS9‑protease (PR), PCS10‑reverse transcriptase (RT‑p15), PCS11‑RT‑RNase H (RTp66)‑integrase (IN) and PCS12‑Nef [25–27]. 
b HIV envelope proteins gp120 and gp41 expression on the plasma membrane (PM) of infected cells occurs through secretory pathway involv‑
ing the endoplasmic reticulum (ER), Golgi apparatus (GA) and membrane‑bound vesicles. Transcription of HIV mRNA produces a precursor Gag 
polyprotein (Pr55Gag) containing HIV MA, CA, NC and p6 proteins. A precursor GagPol polyprotein (Pr160Gag‑Pol) is synthesized by a frameshifting 
during transcription of Gag‑encoding viral RNA and contains MA, CA, NC, PR, RT and IN domains. Viral assembly occurs on the inner surface of the 
PM, beginning with the binding of Gag on Pr55Gag and Pr160Gag‑Pol to lipid rafts, and in the process Env (gp120 and gp41) is incorporated to the 
assembling complex [28]. The complex guides the budding leading to the formation of an immature virion, which eventually matures into an infec‑
tious virion after protease cleavage of Pr55Gag and Pr160Gag‑Pol polyproteins incorporated in the virion. The PCS vaccine under evaluation uses 12 
different recombinant vesicular stomatitis viruses (rVSV), each expressing a 20‑amino acid peptide overlapping one of the 12 PCS. Vaccination with 
a combination of the 12 rVSVs in macaques elicits anti‑PCS antibodies targeting different PCSs. The potential mechanism of the rVSV PCS vaccine 
may involve disrupting one or multiple stages of viral maturation and mediating cytotoxic killing of infected cells through antibody dependent 
cytotoxic cellular activity or cytotoxic T lymphocyte reactions
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of the HIV-1 subtype consensus sequences and found 
that A*01:01 can bind to all of them with similar affin-
ity and off-rates [15]. Thus, despite A*01:01 being able to 
only present a narrow spectrum of Gag epitopes, it can 
tolerate variations of the specific epitope. Why is this 
region important for HIV-1? The protease of HIV-1 is a 
small 99-amino acid aspartic enzyme that mediates the 
cleavage of Gag, Gag-Pol and Nef precursor polyproteins 
(Fig. 1a). The process is highly specific, temporally regu-
lated and essential for the production of infectious viral 
particles (Fig. 1b). Because a total of 12 proteolytic reac-
tions are required to generate a viable virion, a vaccine 
generating immune responses to the sequences around 
the 12 protease cleavage sites of HIV-1 might be able to 
destroy virus-infected cells, drive viral mutations to gen-
erate non-infectious virus and take the advantage of the 
rapid mutations of HIV-1 (Fig. 1).

Because of its essential role in the production of infec-
tious virions, HIV protease has been a major therapeutic 
target. Protease inhibitors have been successfully used to 
treat HIV-1 infection and are essential component of suc-
cessful HAART therapies. Most of the protease inhibi-
tors were designed to compete with its natural substrates 
based on the structure of the active binding site [20]. 
Recently, drugs that target Gag to inhibit protease-medi-
ated processing at specific Gag cleavage sites have also 
been developed [21]. Studies have shown that the process 
of protease cleavage requires a tightly controlled, ordered 
sequence of proteolytic processing events mediated 
by different rates of cleavage at the different processing 
sites [22]. Even the subtle disturbances may be sufficient 
to interrupt this delicately balanced process and drive 
it toward a non-productive end [22]. Therefore, a vac-
cine targeting the 12 protease cleavage sites (PCS) could 
be effective. Furthermore, since the PCS are highly con-
served among major subtypes of HIV-1, direct immune 
responses against these cleavage sites would yield several 
major advantages [23]. First, the host immune response 
could destroy the virus before it can establish itself per-
manently in the host. Second, the vaccine could force the 
virus to mutate, thus eliminating viable virions by abol-
ishing the normal function of the HIV protease. Third, 
restricting the immune responses to these sites can 
avoid distracting immune responses that often generate 
unwanted inflammatory responses and excessive immune 
activation leading to more targets for HIV-1 infection, 
establishment and spread. A vaccine focusing on the 
sequences around the 12 PCS of HIV-1 is like a surgical 
attack of the function of HIV protease with 12 bullets, 
in the meantime minimizing the level of mucosal T cell 
activation, which has been proposed as a critical factor 
in developing an effective mucosal AIDS vaccine [24]. 
Since all 12 protease cleavage reactions have to be carried 

out successfully to generate an infectious virus, vaccines 
generating immune responses against the 12 substrates of 
HIV-1 protease could make it more difficult for the virus 
to escape in the meantime avoiding unfavorable effect.

Evaluation of a PCS‑targeting vaccine in nonhuman 
primates
Nonhuman primates (NHP) are the best animal mod-
els to evaluate candidate vaccines for human pathogens. 
PCS peptides delivered by recombinant vesicular stoma-
titis virus and nanoparticles (PCS vaccine) were tested 
in a pilot study as a preventative vaccine candidate using 
a cynomolgus macaque SIV infection model. Based on 
promising results from this pilot study, the vaccine is 
currently being validated and further characterized in a 
larger-scale study, in comparison with vaccines against 
full Gag and Env proteins.

Conclusion
Based on the correlates of natural immunity to HIV 
resistance and our preliminary data from nonhuman pri-
mate study, the new vaccine strategy targeting the viral 
protease cleavage sites is feasible and promising. It needs 
to be further studied and refined towards the develop-
ment of an effective HIV vaccine.
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