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Abstract

Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario
are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in
proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of
aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by
activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with
biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been
described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many
inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data,
we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked;
potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging
processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies,
atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute
the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself.
According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of
nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or
prevent the onset of age-releated diseases.
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Background
Aging is an agglomerate of biological long-lasting pro-
cesses that result being inevitable. It is correlated to
gradual and autonomous biochemical and physiological
changes, which often leads to an increased diseases sus-
ceptibility. The key players in this scenario are both
long-term inflammation and oxidative stress [1]. The
aging process is dynamic and characterized by a con-
tinuous remodelling. DNA repair, apoptosis, immune re-
sponse, oxidative stress and inflammation contribute to
this dynamic process [2]. The natural deduction is that
oxidative stress and aging are strictly connected.

Reactive oxygen species (ROS) are a critical class of DNA
detrimental agents and, unfortunately, they are constantly
produced in human cells in response to toxicant either gen-
erated from our own metabolism and/or exposure to envir-
onmental agents [3–5]. ROS include different chemical
species such as superoxide anion radical (O2-), hydrogen
peroxide (H2O2), hydroxyl radical (·OH), and singlet oxy-
gen (O2). Mitochondrion and NADPH oxidases are con-
templated major sources of ROS generation in cells. In
mitochondria, electrons slipping from the electron trans-
port chain, in the course of mitochondrial respiration, can
combine with oxygen in generating O2; O2 itself could sub-
sequently be converted to H2O2 by superoxide dismutase
(SOD) [6]. The oxidative process could affect many redox-
sensitive biological molecules (i.e. amino acids) depending
on the site of ROS production [5, 6]. Inflammatory cells, re-
cruited after a chemical, physical or biological damage,
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promote the activation or the induction of different
oxidant-generating enzymes. These enzymes generate high
levels of reactive oxygen, nitrogen, and halogen species on
site of the inflammation process. Some of these species are
i.e. superoxide anion, nitric oxide, peroxynitrite, hydrogen
peroxide, hypochlorous acid, and hypobromous acid. Their
main objective is neutralizing invading pathogens, but often
their action could lead to the DNA damage of host cells as
side effect [5, 6]. It has been proved that oxidative stress in-
duce alteration in proteins and this fact itself is critically im-
portant in the pathophysiological mechanisms leading to
diseases typical of aging, extending from atherosclerosis to
neurodegenerative disorders [7] as well as other inflamma-
tory and immunological diseases [8, 9].
The maintenance of optimal conditions in an organism

in order to contrast aging is accomplished by a complex
network of longevity assurance processes that are con-
trolled by Vitagenes, a group of genes aimed at preserving
cellular homeostasis during stressful conditions; in par-
ticular Vitagenes encode the genes for the formation of
Hsp (heat shock proteins), useful to counteract the forma-
tion of miticondrial ROS and thus, the progression of un-
successful aging [10]. Vitagens have also been studied in
diseases typical of the old age such as neurodegenerative
ones [11]. In recent years, many scientific researches were
aimed to refine new techniques based on proteomics,
which lead to the discovery of new proteins and molecules
having a key role in oxidative stress and aging processes,
and for the identification of selected proteins to be used in
a specific therapeutic targets [12].
Among the above cited reactive species, chlorine ones

such as hypochlorous acid (HOCl) are cytotoxic oxidants
produced by activated neutrophils during chronic inflam-
mation processes [13]. Neutrophils and some monocyte-
macrophage line cells generate HOCl by the myeloperoxi-
dase (MPO) enzyme intervention. HOCl is a powerful
cytotoxic oxidant acting a main role in fighting microbial
pathogens. By the way it can also cause damages by react-
ing with biological molecules (i.e. amino acids, lipids, nu-
cleic acids) sustaining its inflammation. Proteins are the
most common targets of HOCl and for this reason
changes induced in their sub-elements (peptides and
amino acids) have been largely examined [5, 6, 13]. HOCl
oxidizes cysteine and methionine, leading to the produc-
tion of disulfides, oxyacids, sulfoxides, and molecules
where sulfur is linked to nitrogen. Other reactive species
could generate oxygenated sulfur products too, but they
are useless as biomarkers for HOCl-induced damage [14].
HOCl is generated by the heme enzyme myeloperoxi-

dase [15]. MPO is a glycosylated heme-enzyme stored in
neutrophils and macrophages azurophilic granules; these
granules have a powerful bactericidal action which is
mediated by the production of hypochlorous acid from
hydrogen peroxide and chloride ions. MPO could be

secreted in the extracellular space; augmented serum
levels of MPO have been described in acute and chronic
inflammatory conditions in cardiovascular patients and
have been implicated in many inflammatory diseases
such as atherosclerosis, neurodegenerative conditions,
and some cancers [16–20]. Due to these data, we de-
cided to search literature trying to delineate a complete
and up to date overview about hypochlorous acid and
chlorinative stress effects in aging and in all the age re-
lated diseases linked. Moreover, potential anti-oxidant
countermeasures were also assessed.

Methods
This literature review was conducted employing MED-
LINE database. On this database, we searched for arti-
cles from inception to march 2017 using key terms
related to aging and chlorinative stress.
It was decided to read the abstract of articles whose ti-

tles indicated that they might have examined HOCl in-
volvement and the role of chlorinative stress in age-
related diseases. The entire article was read if the abstract
indicated that the article potentially met the inclusion cri-
teria. Lastly, we reviewed and searched references of the
selected articles. Articles were included in the present re-
view according to the following inclusion criteria: English
language, publication in peer reviewed journals, research
paper. Articles were excluded by title, abstract or full text
for irrelevance to the topic in question. Two authors (MC,
EDS) performed the initial search and independently
reviewed and selected the references based on the inclu-
sion and exclusion criteria. Principal outcomes of interest
included original studies concerning HOCl involvement
and/or chlorinative stress in age-related diseases.

Chlorinative stress and cardiovascular diseases
Due to well-known HOCl generation by myeloperoxidase,
Daugherty et al. in 1994. studied atherosclerotic lesions
where they detected the enzyme MPO; their data sustained
that MPO induced LDL oxidation by pathways involving
HOCl and promoting atherogenesis [21]. These data were
studied thoroughly by Hazen et al. which demonstrated
that HOCl produced by the system myeloperoxidase-
H2O2-Cl oxidated LDL l-tyrosine. Oxidated LDL were
known to have a main role in converting macrophages into
foam cells and in forming atherosclerotic lesions typical of
aged people [22]. In a successive paper, they also demon-
strated that 3-chlorotyrosine was a marker of chlorination
at sites of inflammation [7]. Also the eosinophil peroxidase
(EPO) was thought being implicated in provoking oxidative
tissue damage in many conditions (i.e. asthma, allergic in-
flammatory disorders, cancer, infections). But Wu et al. re-
ported that EPO generated reactive nitrogen species by
direct oxidation of NO 2 and not by secondary oxidation of
NO 2 by HOCl [23]. Every paper reported seemed to
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address the chlorinating stress as responsible of
cardiovascular-age related damage so next step was demon-
strating if oxidative stress HOCl-related could induce endo-
thelial dysfunction by interfering with the NO synthetic
pathway. Zhang et al. noticed that a treatment with HOCl
caused the inhibition of aortic relaxation correlated to
HOCl concentration. In their experiments, they also dosed
endothelial NO synthase (NOS III) after the administration
of HOCl then supplemented rats with L-arginine and re-
ported a complete inversion of HOCl inhibitory effect ves-
sel relaxation [24]. As Oxidized lipoproteins act a main role
in atherosclerosis and high levels of 3-chlorotyrosine were
demonstrated being in atherosclerotic lesion, Bergt et al.
studied how activated phagocytes chlorinated specific re-
gion in HDL by mass spectrometry. Results obtained dem-
onstrated how HOCl selectively targeted tyrosine residues
nearby primary amino-groups in proteins. This oxidation
process performed by phagocytes lead to damage host tis-
sue during inflammatory diseases (i.e. atherosclerosis) [14].
As demonstrated by Cook et al., SERCA activity is funda-
mental in human homeostasis; it is blocked by oxidant
agents and deregulated in aged tissues and cardiovascular
pathologies. They reported that HOCl targeted thiols and
provoked cellular impairment. They speculated that HOCl
could inhibit SERCA activity by thiol oxidation and gener-
ated cytosolic Ca2+ augmented levels in artery endothelial
cells [17]. Ismael et al. shown that exposure of macrophages
to HOCl and HOSCN or to LDL already modified by these
chlorinative stress agents caused a compromised lysosomal
enzyme function reducing both proteolytic capacity and de-
crease cholesteryl ester hydrolysis; according the authors
these events could conduct to the accumulation of protein
and lipids in the arterial wall fundamental for the develop-
ment of atherosclerosis [25].
Therefore, Wang et al. in vivo studies demonstrated

that damaged LV-tissue by the induction of an acute
myocardial infarction lead to the recruitment and activa-
tion of neutrophils and concomitant increase in MPO-
activity and consequently of the HOCl; the 3-Cl-Tyr
formed by the HOCl modification of the heme protein
Mb impaired the protein’s affinity for binding oxygen in
the myocardium [26].
From other studies emerged that MPO augmented ac-

tivity during inflammatory processes could worsen dis-
eases such as atherosclerosis and reperfusion injury; in
fact, an increased release of hypochlorite contributed to
the damage observed in these pathologies [24, 27–30].
On these basis Sand et al. evaluated the effects of hypo-
chlorite and H2O2 on 1-adrenoceptor, ET-1 receptors
and M2 receptors processes on mice. They concluded
that formation of hypochlorite provoked the amplifica-
tion of the oxidative capabilities of H2O2 enhancing the
damage of endothelial physiology. Hypochlorite also in-
terfered with the normal transduction of the 1-

adrenoceptor by altering the coupling of the muscarinic
M2 receptor to the G-proteins favouring the progression
of inflammation-associated pathologies in the cardiovas-
cular system [31].

Chlorinative stress and other aging conditions
On the other hand it was also important understanding the
inflammatory mechanisms HOCl - associated, so Raftery
et al. demonstrated that HOCl produced by myeloperoxi-
dase and H2O2 and by phorbol 12-myristate 13-acetate
stimulated and activated neutrophils. HOCl oxidation dur-
ing inflammation caused the formation of sulfamide mono-
mers having chemotactic activity for neutrophils in
inflammation. These changes in human proteins could, ac-
cording Raftery et al. potentially play a critical role in
physiological and pathological processes fundamental in
aging and age-related diseases [32]. In a rat hepatocytes ex-
periment, Mallis et al. reported that HOCl generated in a
non-reversible way oxidized forms of carbonic anhydrase
III in case of low doses or absence of glutathione (GSH). As
it is known that there is a physiological reduction of gluta-
thione in aged animals, these condition may together with
other mechanisms favourite a higher irreversible protein
oxidation [33]. Strosovà et al. 2005., studied the effects of
HOCl in rabbit skeletal sarcoplasmic reticulum (SR) specu-
lating an aging model. It was found that HOCl blocked Ca2
+-ATPase activity. It also oxidated SH groups and formed
protein carbonyls. On the other side they tested and dem-
onstrated the antioxidant effect of stobadine (at least as
much as lipoic acid), trolox and Pycnogenol [34]. Hazell
et al., wanted to determine if HOCl could be involved in
protein modifications associated to age-related eye disease
such as nuclear cataract. In the human lens samples ana-
lysed no chlorotyrosine derivates could be detected and no
myeloperoxidase activity trace could be found either [35].
In the attempt to report the role of neutrophils as source

of oxidative stress in rheumatoid arthritis (RA), Baskol
et al. 2006., described how advanced oxidation protein
products (AOPP) are formed by the interaction of HOCl/
HOCl and proteins. In the samples analysed the protein
oxidative damage corresponded to increased levels of
AOPP and nominated them as marker of oxidative stress.
According their data, neutrophils, which produce great
quantities of chlorinated oxidants by MPO, could augment
serum AOPP levels and play a fundamental role in the
pathogenesis of RA by generating pro-inflammatory media-
tors [36]. Although its known induction of oxidant interme-
diates Leung et Al. decided to study skin and NF-kB effects
of topical application of HOCl. They reported HOCl cap-
acity to block NF-kB signalling and to attenuate NF-kB re-
lated disease as acute radiation dermatitis and skin aging
process [37].As regards the young and the elderly’s immune
system, many years ago it emerged that neutrophil extracel-
lular traps (NETs) are part of the defensive mechanism of
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neutrophils; their formation requires reactive oxygen spe-
cies presence. Hazeldine et al. demonstrated that NET gen-
eration in response to HOCl was lower only in aged
patients. A deficit on NET formation could contribute to a
higher incidence of infection in older adults [38]. Super-
oxide (O2-) and hydrogen peroxide (H2O2) are conse-
quences of hyperglycemia; during last years was clarified
their role in the apoptosis of endothelial cells and in causing
diabetic vascular injury. This damage is the result of endo-
thelial dysfunction and vascular complications. As NADPH
oxidase-derived ROS and vascular-bound MPO are in-
creased in diabetic vessels, MPO/NADPH oxidase/H2O2/
HOCl could constitute a main path in diabetic vascular
damages. According Tian et al. blocking the MPO-NADPH
oxidase-HOCl pathway could be a novel therapeutic
strategy for the prevention and the recovery of vascular
diseases [39].
MPO and its consequent product HOCl resulted in-

volved in the pathophysiology of neurodegenerative dis-
eases. In fact, MPO is expressed with increased levels in
the cerebral tissue of patients affected by Alzheimer dis-
ease (AD) and this enzyme appears being catalytically
active [40]. Not present in normal brains of old patients,
MPO was detectable in amyloid plaques of AD patients.
It was speculated a model where MPO expression in as-
trocytes promoted a HOCl related damage, contributing
to neuronal damage and cognitive impairment [40, 41].

Discussion
It has always been known that oxidation of proteins was
a detrimental process leading to the damage of human
tissues. Both inflammation and the consequent cellular
damage are two of the most threatening causes of the
unsuccessful aging process. Oxidative stress has always
been designated as an inflammatory source leading to
many aging diseases and the stress caused by hypochlor-
ous acid is a consistent part of it. Since 1991 with the
first studies involving MPO, it appeared to be quite clear
the importance of one of myeloperoxidase “normal”
products, the HOCl, in the above cited oxidation
process. The word “chlorination” was used to describe
the modification induced in molecules by HOCl inter-
vention; “chlorinative stress” expression was chosen to
define the sum of HOCl pathological interaction in a
physiological organism [14, 21, 42, 43]. Several of the
diseases induced by this stress either favourite or pro-
voke age-related diseases. The generation of HOCl was
demonstrated to interfere with lipoproteins with a con-
sequent oxidation resulting in the conversion of macro-
phages in foam cells and in the acceleration of the
atherosclerotic process [7, 14, 21, 22]. HOCl also in-
duced endothelial dysfunction by interfering with the
NO synthetic pathway. This event blocked vessel relax-
ation and together with the pro-atherosclerotic effect

above described could generate the basis for many heart
diseases [23, 24]. Chlorination could also augment in-
flammation at damage sites by recruiting neutrophils
and induce muscle-associated pathologies by irreversibly
blocking carbonic anhydrase III, creating so a vicious cir-
cle involving also calcium balance and smooth muscle
contraction [17, 32–34]. MPO-dependent chlorinating
stress it was demonstrated to be also related to the pres-
ence of ANCA antibodies; in fact, MPO can be individu-
ated by MPO-ANCA, and in consequence neutrophils
burst and degranulation are enhanced with a subsequent
HOCl MPO-dependent generation [44–47]. It also
emerged that neutrophils recruitment and consequent
HOCl production in myocardium after IMA could mod-
ify heme proteins and compromise the post-infarction
recovery contributing to the progression of heart failure
[26]. By literature analysis other than heart-related dis-
eases, HOCl seemed also to favourite the production of
pro-inflammatory mediators in AR by forming AOPP
agents [36]. Recently hypochlorous acid emerged to be
not so effective in older people in generating neutrophils
inflammatory response as in younger ones [38].
Although HOCl was shown being detrimental, studies

conducted during last years exonerated it from being a
cataract causing-agent and from generating reactive ni-
trogen species via EPO [23, 35]. HOCl topic application
could even prevent skin aging [37]. Novel data sup-
ported outdated results and confirmed the hypothesis of
a serious endothelial damage induced by chlorinative
stress; above all, authors deepened the detrimental ef-
fects induced by hyperglycaemia and by neutrophils
intervention immediately after an acute myocardial in-
jury [26, 39]. During last years, it emerged also the role
of hypoclorous acid produced by MPO in causing neur-
onal apoptosis and damages [40, 41].
These findings associated HOCl generation to aging

processes and confirmed its connection with some dis-
eases such as neurodegenerative and cardiovascular
pathologies, atherosclerosis and cancer (Fig. 1); chlorin-
ation was mainly linked to diseases where molecular al-
terations constituted the major suspected cause: i.e.
inflammation, tissue lesions, DNA damages, apoptosis
and oxidative stress itself [17].
Novel, preventive and, in some cases, therapeutic ap-

proaches should be planned in order to contrast aging
effects and the development of the above cited diseases.
A specific low chlorine diet, rich in natural and en-
dogenous antioxidant foods could favourite this preven-
tion [48]. For example, Taurine was demonstrated to be
a physiological primary scavenger of HOCl; since serum
and urine taurine levels in elderly patients with chronic
inflammatory disorders were found to be reduced, an
adequate level of the amino acid inside the body may be
useful in order to prevent age-related diseases [49].
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Another innovative therapeutic approach could be
provided by the administration natural antioxidants
such as Resveratrol, Green Tea, Curcumin and Feru-
lic Acid; their intervention could be protective ver-
sus several diseases capable of causing tissue damage
and the generation of free radical (i.e. neurodegener-
ation) [50].
Recent advances in the nutraceutical field highlighted

the importance of some dietary integrator in aging-
related pathologies. Some of these integrators such as
ascorbic acid, docosahexaenoic acid (DHA) and in gen-
eral low molecular weight antioxidant, associated with
an adequate diet and sport could efficiently contrast
ROS formation [51].
One of the most interesting molecules observed in the

studies was 3-chlorotyrosine and according us should be
studied in depth. Using 3-chlorotyrosine as serum and
urine chlorination marker could be useful in monitoring
neutrophils and macrophages activity (as major MPO
sources) in some pathological phases; clarifying their in-
volvement and diminishing their activity could finally
lead to the down-regulation of HOCl production.

Conclusion
A healthy lifestyle together with some dietary suggestion
and/or the administration of nutracetical antioxidant in-
tegrators could balance the effects of chlorinative stress
and, in some cases, slow down or prevent the onset of
age-releated diseases.
Once understood that ROS formation is in part re-

sponsible for cell damages and senescence, the next step
will be focusing on studies of neurogenetics, proteomic
and concerning the identification of new biomarkers. In
order to contrast the most severe diseases, probably, the
development of more specific ligands targeting the mole-
cules involved in oxidative stress should have the prior-
ity. In accordance of what described above, one of these
eligible targets could be the leading actor of this review,
the product of MPO: hypoclorous acid [52].
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