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Abstract

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are mammalian-specific cel-
lular deaminases and have a robust ability to restrain lentivirus replication. To antagonize APOBEC3-mediated antiviral
action, lentiviruses have acquired viral infectivity factor (Vif) as an accessory gene. Mammalian APOBEC3 proteins
inhibit lentiviral replication by enzymatically inserting G-to-A hypermutations in the viral genome, whereas lentiviral
Vif proteins degrade host APOBEC3 via the ubiquitin/proteasome-dependent pathway. Recent investigations provide
evidence that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins. In corollary, mammalian APOBEC3
genes are under Darwinian selective pressure to escape from antagonism by Vif. Based on these observations, it is
widely accepted that lentiviral Vif and mammalian APOBEC3 have co-evolved and this concept is called an “evolution-
ary arms race! This review provides a comprehensive summary of current knowledge with respect to the evolutionary

dynamics occurring at this pivotal host-virus interface.
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Overview of lentiviruses and APOBEC3

Classification of lentiviruses

Lentiviruses belong to the family Retroviridae and cause
a variety of disorders in several species of mammals [1,
2]. In principle, exogenous lentiviruses are classified into
five categories based on the host species: (1) primate
lentiviruses (PLVs) in primates, (2) feline immunode-
ficiency viruses (FIVs) in felids, (3) bovine immunode-
ficiency virus (BIV) and Jembrana disease virus (JDV)
in bovids, (4) Maedi—Visna virus (MVV) and caprine
arthritis encephalitis virus (CAEV) in ruminants, and (5)
Equine infectious anemia virus (EIAV) in horses (Fig. 1)
[1, 2]. Human immunodeficiency virus type 1 (HIV-1)
and type 2 (HIV-2) are PLVs and are known as the causa-
tive agents of acquired immunodeficiency syndrome
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(AIDS) in humans (Homo sapiens) (Fig. 1) (http://www.
unaids.org/globalreport/). In addition, simian immu-
nodeficiency viruses (SIVs) infect non-human primates
including chimpanzees (Pan troglodytes), gorillas (Gorilla
gorilla) and more than 40 species of Old World monkeys
(OWMs) (Fig. 1).

Characteristics of APOBEC3 genes

Apolipoprotein B mRNA editing enzyme catalytic poly-
peptide-like 3 (APOBEC3; A3) proteins are cellular cyti-
dine deaminases and are specifically found in mammals
but not in other vertebrates [3, 4]. The A3 proteins of
mammals, particularly those of primates, are considered
to be cell-intrinsic immune factors that combat viruses,
including lentiviruses and retrotransposons. To limit the
replication of lentiviruses, the A3 proteins expressed in
virus-producing cells are packaged into virions released
from the cell. Then, A3 proteins are brought into neigh-
boring cells and halt viral replication via enzymatic
hypermutation of the viral genome and by blocking

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://orcid.org/0000-0003-4431-1380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://www.unaids.org/globalreport/
http://www.unaids.org/globalreport/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12977-017-0355-4&domain=pdf

Nakano et al. Retrovirology (2017) 14:31

Page 2 of 12

Fig.

site

HIV-1M_JRCSF

* Human
CsT
W, Chimpanzee

Human
CSsT

7™ Chimpanzee T=——

7™, Chimpanzee
CsT
Human
* CSsT
h Gorilla
Human
CsT
9%\ Sooty mangabey
> CcsT

SIVrSnI\aIc 23\? G ¥®\ Rhesus macaque
agmVver.
gSIVangab SAB1 o\ Asg\c;n green monkey
SIVdrl rill
SIVsyk_KES51 9%\ Sykes’ monkey
1 9%\ Dent’s mona monkey
SIVrem ozcmsomsw L 9%\ Red-capped mangabey
'sun 7
SIVagmGri_677 9'?\ Sun-tailed monkey
L Sivolc_97CI12 ¥8) Olive colobus
SIVgsn_99CM166 9%\ Greater spot-nosed monkey
[_1 (:SIVmorLQQCMCMU »
SIVmus_CM1239 ) Mona monkey
L sivgsn_gocM71 ¥\ Mustached monkey
Sﬁ%g{;"&ag’lzw ¥®)\ Talapoin monkey
SIVdeb_CM40 9%\ De brazza's monkey
U
Dc
L [— FiVple_1027
FIVple_27B ﬂLion
FIViru_Lrus
FIVpco_Pco2
O Bobcat <«—
FIVpco_Pcot
FIVpco__Pco3
FIVpco_Pco8
FIViru_Lrut1
FIViru_Lru12
FIViru_Lrué
FIVpco_Pco4 Circulating in wild
] FIViru_Lru9
FIViru_Lru13
FIVpco_Pco5
FIViru_Lru7
FIViru_Lru10
FIViru_Lrug8
FIViru_Lrui5
FIViru_Lru14
FIViru_Lru17 Puma <
FIVIru_Lrui8
FIViru_Lru16
FIViru_Lru20
FIVpco_Pco7
FIVpco_Pcc 3 Puma
L | FIVpco_Pcol7
——————BIV.R29 | Cattle
——— !
CAEV 1GA JDYV Tabanan/e7 “ Banteng/Bali cattle
CAEV_FESC-752
CAEV_Clements 'ﬂ Goat
CAEV_gensu
AEV_Shanxi
AT M Circulating in wild as SRLV
CAEV_Seui

MVV_1514
MVV_kvi772
MVV_697

MVV_P10LV

W sheep

CST
Recombination

0.4

1 A phylogenetic tree of lentiviral Vif. The names of the viral families (e.g., SIVgor, FIVfca and CAEV) and their strains (shown after under the bars;
e.g, CP2135,TM219 and Roccaverano) are labeled on the tips. The hosts of the respective viruses are represented on the right of each branch with
an illustration. The estimated CSTs and a recombination of PLVs are indicated with arrows. The circulations of FIVIru/FIVpco (in bobcats and puma)
and CAEV/MVV (in goat and sheep as SRLV) in the wild are indicated with the double arrows. The scale bar indicates 0.4 amino acid substitutions per
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reverse transcription directly (for more detail, see refer-
ences [5, 6]. As a result, lentiviral virions produced in the
presence of A3 proteins are dramatically less infectious.
The mammalian A3 genes are duplicated in a chro-
mosomal locus flanked by CBX6 and CBX7 [4, 5, 7].
As summarized in Fig. 2, the number of A3 genes and
the history of the A3 duplication process are different
in each mammalian lineage (for more detail, see ref-
erences [4, 5, 7, 8]. For instance, primates, including
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humans (Homo sapiens), have seven A3 genes, while
rodents including mice (Mus musculus) have only one
ortholog. Horse (Equus caballus), pig (Sus scrofa), and
bovids encode six, two and three A3 genes, respectively
(Fig. 2) [7, 8].

Based on the sequence homology of zinc-coordinating
(Z) catalytic domains, mammalian A3 proteins are clas-
sified into three subsets: Z1, Z2 or Z3. Each A3 pro-
tein is composed of single or double Z domains [4]. For
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instance, human A3A, A3C and A3H encode single Z1,
Z2 and Z3 domain proteins, respectively, whereas human
A3B, A3D, A3F and A3G encode double Z domain pro-
teins (Fig. 2) [4]. Previous molecular phylogenetic studies
have indicated that the mammalian A3 genes are evolving
under positive selection [9, 10] and the gene duplications
themselves likely result from selection pressures imposed
by virus infections [11].

An evolutionary arms race between mammals

and lentiviruses

In the field of virology, revealing the co-evolutionary rela-
tionship between viruses and their hosts is intriguing and
is crucial to understanding how viruses can impact the
evolution of their hosts and vice versa. As summarized in
Fig. 1, a hallmark of lentivirus ecology is the emergence
of new lineages via cross-species transmission (CST)
events. Additionally, viral recombination between lentivi-
rus strains occurs frequently. As a result, reconstructing
the dynamic relationship between lentiviruses and their
hosts is complex.

To gain a better understanding of the evolutionary
conflict between lentiviruses and their host species,
cell-based virological experiments with a focus on the
functional relationship between viral and host proteins
have recently been conducted in combination with a
molecular phylogenetic approach. This strategy stems
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from the concept known as the “Red Queen hypothesis
[12]’; which proposes that games of cat-and-mouse occur
between viral and host proteins as they engage with one
another over time [13-15]. Based on this concept, vari-
ous experiments have been conducted using mammalian
A3 proteins and a lentiviral protein, viral infectivity fac-
tor (Vif).

Vif-A3 interplay in terms of the CST events and the
evolutionary arms race of lentiviruses and mammals

Vif is an accessory protein encoded by all lentiviruses
with the exception of EIAV, a lentivirus found in horses
[1, 2]. As described above, the replication of lentiviruses
lacking a functional Vif protein is robustly impaired by
certain A3 proteins in the host. In contrast, lentiviral Vif
degrades the A3 proteins expressed in virus-producing
cells in an ubiquitin/proteasome-dependent manner to
antagonize the A3-mediated antiviral action [5, 6, 16]. As
described in Fig. 3, knowledge regarding the functional
interaction between Vif and A3 can inform the quest to
elucidate the principle of CST events and the subsequent
evolutionary arms race between lentiviruses and their
hosts. In the following sections, we describe our current
understanding of the evolutionary relationships between
lentiviruses and their hosts, which has been informed by
functional interactions between lentiviral Vif and host A3
proteins.
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Fig. 3 CST and the evolutionary arms race between viruses and hosts. a A3 as a barrier restricting CST. The lentivirus X infects the host A, and the
Vif protein of virus X antagonizes the anti-viral A3 protein of host A. a Left When the Vif of virus X antagonizes not only anti-viral A3 of host A but
also that of host B, a candidate for the new host, virus X can be successfully transferred from host A to host B without anti-viral restriction mediated
by A3 of host B. a Right On the other hand, if the Vif protein of virus X is unable to antagonize anti-viral A3 of host C, another candidate for the new
host, the anti-viral A3 of host C plays a role in restricting the CST of virus X from host A to host C. For a successful CST, the virus X evolves to adapt to
host C and its Vif acquires the ability to antagonize host C's anti-viral A3 ("Adaptive evolution”in this panel). As a result, a nascent species virus, the
virus'Y, has emerged and infects host C. b The concept of an evolutionary arms race between lentiviruses (Vif) and hosts (A3). In the past, an ances-
tral host (the host Y) was infected with an ancestral pathogenic virus (the virus X) and an anti-viral A3 protein of host Y was antagonized by the Vif
protein of virus X (7). To escape from the pathogenic infection of virus X, the host A3 acquires certain mutations to be resistant to the degradation
mediated by the virus X Vif, resulting in the emergence of a novel host, the host Y’ (2). Although the anti-viral A3 of the host Y’ is resistant to the
virus X Vif (3), the virus X Vif acquires mutations to adapt to the host Y’ (4). Then, a novel virus, the virus X/, emerges and its Vif is able to antagonize
an anti-viral A3 of the host Y’ (5). Subsequently, similar to the process of (1) to (5), the selective pressure by the virus X’ produces the host Y” of
which A3 is resistant to the virus X’ Vif (6 and 7), while the virus X" evolves to antagonize the host Y” A3 and becomes the virus X” (8 and 9). Such an
“arms race” between lentiviruses and hosts has evolutionarily occurred over a long period of time (10). It is speculated that this process might trigger
the duplication of A3 genes in mammals. After n-times arms races, in the present, the host Y" encodes multiple anti-viral A3 proteins, while the Vif of
the virus X" antagonizes them (77)
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A3 antagonism by lentiviral Vif proteins

Human A3 versus HIV

In 1983 and 1986, HIV-1 [17, 18] and HIV-2 [19] were
isolated as the causative agents of AIDS, respectively.
Both viruses likely emerged following independent CST
events (Fig. 1), and molecular phylogenetic investigations
have indicated that the origin of HIV-1 is SIVcpz (an SIV
infecting chimpanzee [Pan troglodytes]) [20] or SIVgor
(an SIV infecting gorilla [Gorilla gorilla]) [21], while the
origin of HIV-2 is SIVsm (an SIV infecting sooty mang-
abey [Cercocebus atys]) [22]. Molecular clock analyses
have estimated that the CST of SIVcpz (i.e., the birth of
HIV-1) occurred ~100 years ago (around A.D. 1908—
1933) [23], while the CST of SIVsm took place ~200 years
ago (around A.D. 1729-1875) [24]. Moreover, HIV-1 is
classified into 4 groups, M (main or major), N (new or
non-M-non-O), O (outlier), and P, and each group has
emerged following an individual CST event [20, 21, 25,
26] (Fig. 1). It should be noted that the virus causing the
worldwide pandemic is HIV-1 group M [27]. The details
of HIV pathogenesis and the clinical information through
the study of infected individuals are well summarized
elsewhere (e.g., see the following references: [2, 28, 29]).

In 2002, Sheehy et al. [30] identified A3G (this gene
was originally designated CEMI15) as a novel restric-
tion factor against HIV-1 replication. Importantly, the
A3G-mediated antiviral action is antagonized by HIV-1
Vif [30]. This report initiated research interest in Vif-A3
interactions and the impact of this interaction on HIV
replication and pathogenesis (reviewed in references
[5, 6, 16]). Now it is known that human (Homo sapiens)
encodes seven A3 genes on chromosome 22 (Fig. 2). Spe-
cifically, endogenous A3D, A3F, and A3G expressed in
human CD4% T lymphocytes, a major target cell type
for HIV infection, display robust anti-HIV activity in
cell culture-based experiments (in vitro) and humanized
mice (in vivo) [5, 6, 16, 31-34]. Although other human
A3s, such as A3A and A3B, have exhibited anti-HIV-1
activity in overexpression experiments [35, 36], it seems
controversial whether endogenously expressed A3A and
A3B can elicit anti-HIV effects [37, 38]. Human A3C
exhibits weak anti-HIV-1 activity [39, 40], but a recent
paper has demonstrated that a single nucleotide poly-
morphism in human A3C (S188I substitution) results in
enhanced HIV-1 inhibition in cell-based overexpression
experiments [41].

Intriguingly, OhAinle et al. [42] have reported that A3H
is polymorphic in human populations. A follow-up study
showed that there are at least seven haplotypes and that
three of them, called haplotype II, V, and VII, produce
stably expressed proteins and exhibit anti-HIV-1 activ-
ity [43]. In contrast, the other four haplotypes (I, III, IV,
and VI) do not exhibit stable protein expression [43].
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Since chimpanzee A3H appears to be monomorphic,
and the protein encoded is stable [42], it appears that
the human A3H protein has developed reduced stability
since the divergence from chimpanzee. Furthermore, the
frequency of each haplotype is different among human
populations, with a higher frequency of stable A3H in the
African-descendant population and a lower frequency in
other populations such as European, American and Asian
populations [42, 43].

Although the ability of HIV-1 Vif to antagonize anti-
viral human A3s including A3D, A3F, and A3G is highly
conserved [44], the ability of Vif to degrade stable A3H is
not; the Vif proteins of some HIV-1 isolates (e.g., strains
LAI 93RWO037 and 93BR029) are capable of degrading
stable A3H (e.g., haplotype II), while other isolates (e.g.,
strains NL4-3, 92TH026, AD.MDRO01 and 93TH305) are
not [45]. Mutagenesis experiments determined that the
Vif residues at positions 39 and 48 are closely associated
with the ability to counteract stable human A3H [35, 46,
47]. These observations suggest that the extent of anti-
HIV-1 ability elicited by endogenous A3H varies among
humans, and the gain and loss of the function of HIV-1
Vif to counteract stable A3H has repeatedly occurred
during viral spread in vivo and human population.

Non-human primate A3 versus SIV

The non-human primate hosts that are naturally infected
with PLV in the wild can be divided into two groups: the
OWMs in sub-Saharan Africa and the great apes, includ-
ing chimpanzees (Pan troglodytes) and gorillas (Gorilla
gorilla) (Fig. 1) [1]. Similar to humans, both OWMs and
great apes encode seven A3 genes in their genomes.

As summarized in Fig. 1, a variety of OWM species
reside in Africa, and most of them harbor a species-spe-
cific SIV that is not overtly pathogenic [48-51] suggest-
ing that SIVs have co-existed with their OWM hosts for
a very long time [52]. In contrast, there is also evidence
for more recent CST events that give rise to new lentivi-
rus infections. Bailes et al. [26] have reported that SIVcpz
emerged through the recombination of two SIV lineages:
SIVrcm (an SIV infecting red-capped mangabeys [Cer-
cocebus torquatus]) and SIVgsn/mon/mus (SIVs infecting
greater spot-nosed monkeys [Cercopithecus nictitans),
mona monkeys [Cercopithecus mona] and mustached
monkeys [Cercopithecus cephus]) (Fig. 1), and this recom-
bination event is assumed to have occurred ~500 years
ago (around A.D. 1266-1685) [24]. SIVgor appears to
have emerged through the CST of SIVcpz [21]. In sharp
contrast to SIV infection in OWMs in Africa, exogenous
PLVs have not been found in the New World.

As briefly described in the introduction, Vif-A3 inter-
actions can provide clues to elucidate virus-host (i.e., len-
tivirus-mammal) evolutionary relationships and history.
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Here, we introduce three major examples suggesting that
host A3 proteins may represent a barrier to inhibit CST:
(1) rhesus macaque (Macaca mulatta) A3G is resistant
to degradation mediated by HIV-1 Vif (strain NL4-3)
[53, 54]; (2) rhesus macaque A3G is resistant to degrada-
tion mediated by SIVagm (an SIV infecting African green
monkeys [Chlorocebus aethiops]; strain TAN-1) Vif [53];
and (3) gorilla A3G is resistant to degradation mediated
by the Vif proteins of SIVcpz (e.g., strains LB715, MT145,
EK505 and Gab2), the putative ancestor of SIVgor [25]. In
contrast to example (3), SIVgor Vif is able to degrade and
counteract gorilla A3G [25], suggesting that this virus
has gained the ability to counteract gorilla A3G through
adaptation to gorilla following CST from chimpanzee.
Moreover, Compton and Emerman have recently dem-
onstrated that the Vif proteins of SIVs naturally infecting
OWMs, such as SIVagm, SIVmus, SIVsm, SIVdeb (an SIV
infecting De brazza’s monkeys [Cercopithecus neglectus])
and SIVolc (an SIV infecting colobus monkeys [Procolo-
bus verus]) (Fig. 1), counteract A3G proteins in a species-
specific manner [55]. The species specificity of Vif action
arises because many species encode point mutations in
the region of A3G recognized by Vif [55]. These find-
ings suggest that each SIV Vif has evolutionarily acquired
the ability to overcome the restriction imposed by A3G
of their respective hosts. Furthermore, three codons
have been inserted into the A3G gene of the Colobinae
primate subfamily, rendering it resistant to most SIV Vif
proteins. The recurrent mutation of A3G at sites impor-
tant for sensitivity to Vif suggests that Vif or Vif-like viral
proteins must have applied selective pressure in ances-
tral primates. This implies that these ancient lentiviruses
caused lethal pathogenesis and/or reproductive defects
that drove evolutionary change in primate hosts. By dat-
ing the appearance of adaptive mutations in primate
A3G, it has been inferred that SIV has been infecting
non-human primates for at least 12 million years.

Similar to the case of human A3H (described above),
A3G polymorphism has been observed in OWMs and is
believed to affect viral transmission within and between
species [55-58]. Furthermore, the antiviral potency can
be divergent between different A3 proteins in the same
host. For example, human A3F exhibits higher antiviral
activity than human A3D, while chimpanzee A3F exhib-
its lower antiviral activity than chimpanzee A3D [59].
Altogether, the following issues make unraveling the
functional interaction of PLV Vif and primate A3s and
its consequence a challenge: the multiplicity of primate
A3 genes, the difference in anti-viral activity among A3
genes and their hosts, inter- and intra-species heteroge-
neity of A3 gene sequences, and divergence in PLV vif
genes. Therefore, future investigations addressing the Vif-
A3 interaction using experimental and comprehensive
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approaches through the techniques of molecular phylo-
genetic, evolutionary biology and mathematic modeling
will be important to elucidate detail of the evolutionary
arms race between PLVs and mammals.

Carnivore A3 versus FIV

FIV was first isolated in 1987 from domestic cats (Felis
catus) with chronic AIDS-like disorders [60]. Epide-
miological studies by ELISA, immunoblotting, and/or
PCR techniques have revealed that FIV is detectable in
a broad range of wild animals in the family Felidae [61—
63]. FIV has been detected in felids residing in the Old
World, including lions (Panthera leo), cheetahs (Acinonyx
jubatus) and leopards (Panthera pardus), and those in
the New World, including pumas (Puma concolor), jag-
uars (Panthera onca), and ocelots (Leopardus pardalis)
[61]. FIV appears to be distributed worldwide, since a
felid species in Asia, Pallas’ cat (Otocolobus manul), has
been shown to be positive for FIV by PCR [61, 64, 65].
Furthermore, one study has confirmed that a FIV-related
virus is present in spotted hyenas (Crocuta crocuta), a
related carnivore family belonging to Hyaenidae [61]. In
contrast to the disorders seen in FIV-infected domestic
cats, it appears that FIV infections in wild felids are rela-
tively benign and apathogenic because of less divergence
in the viral sequences and no obvious symptoms in the
infected felids [66]. Therefore, it has been assumed that
FIV has co-existed with felids for a long period of time,
as in the case of SIV infection in OWMs (see above). The
higher FIV pathogenicity in domestic cat is reminiscent
of the observation of SIV infection in rhesus macaques
(Macaca mulatta): SIVmac (an SIV infecting rhesus
macaque [Macaca mulatta)) is highly pathogenic in this
monkey and emerged from a CST of SIVsm from sooty
mangabeys in 1985 (Fig. 1) [67]. Therefore, similar to the
situation of SIVmac emergence, FIVfca might also have
emerged from a relatively recent CST event from wild
felids.

Because surveys designed to detect FIV have largely
utilized serological methods (e.g., ELISA and immunob-
lot), FIV vif sequences are only available for the follow-
ing viruses: FIVfca (an FIV infecting domestic cats [Felis
catus]), FIVoma (an FIV infecting Pallas’ cats [Otocolobus
manul]), FIVpco (an FIV infecting pumas [Puma con-
color]), FIVIru (an FIV infecting bobcats [Lynx rufus]),
and FIVple (an FIV infecting lions [Panthera leo]) (Fig. 1).
Although each FIV has adapted to a specific host felid,
recent studies have suggested that FIVIru and a subclass
of FIVpco co-circulate in both puma and lynx in North
America (Fig. 1) [68, 69].

Felids, including domestic cats (Felis catus), pumas
(Puma concolor), bobcats (Lynx rufus) and lions (Pan-
thera leo), encode multiple A3 proteins: three A3Z2
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proteins (A32a, A32b and A32c; the orthologs of pri-
mate A3C) and a single A3Z3 (the ortholog of primate
A3H) (Fig. 2) [70, 71]. In addition, a two-domain A3Z2Z3
hybrid protein is generated through alternative splicing
[70, 71]. Similar to the relationship between primate A3s
and PLVs (see above), previous studies revealed that the
feline A3Z3 and A3Z2Z3 proteins potently suppress the
infectivity of vif-deleted FIVfca [70-75] and that the Vif
proteins of FIVfca (strains Petaluma, C36 and Shizuoka)
counteract the antiviral action of domestic cat A3Z3 and
A37273 [71, 74].

Interestingly, de Castro et al. [76] have reported that
there are at least seven A3Z3 haplotypes in domestic
cats (haplotypes I to VII) containing four nonsynony-
mous polymorphisms at codons 65, 68, 94, and 96, and
a synonymous substitution at codon 100. A follow-up
molecular phylogenetic analysis determined that codon
65 is under positive selection [74]. Intriguingly, cell-based
experiments revealed that domestic cat A3Z3 haplotype
V (A651 substitution compared to haplotype I) is resist-
ant to degradation mediated by the FIVfca Vif proteins
(strains Petaruma, C36 and Shizuoka) [74]. BEAST
(Bayesian evolutionary analysis by sampling trees) anal-
ysis further implied that domestic cat A3Z3 haplotype
V emerged approximately 60,000 years ago [74]. These
observations strongly suggest that domestic cat A3Z3
haplotype V has been naturally selected to escape from
an ancestral FIV and that an evolutionary arms race
between FIVfca (or its ancestor) and domestic cats has
taken place.

In addition to the interaction between FIVfca and
domestic cat A3s, a previous paper has revealed that
FIVfca (strain Petaluma) Vif is able to antagonize A3Z3
and A3Z2Z3 of other felids, including pumas, lions and
tigers [71, 75]. In contrast, FIVpco (strain PLV-1695)
Vif is unable to degrade domestic cat A3Z3 [75]. Most
intriguingly, FIVpco (strain PLV-1695) Vif is incapable of
counteracting A3Z3 of pumas, which are its natural host
[75]. This is the first report demonstrating that a non-pri-
mate lentiviral Vif protein is unable to degrade an antivi-
ral A3 protein of its natural host. Then, how is it possible
that FIVpco Vif does not counteract A3 of its natural
host? One possibility is that this may result in the elimi-
nation of this virus from circulation. However, a recent
study by Lee et al. [77] have demonstrated an on-going
cross-species circulation of FIVpco in puma and bobcat
in North America. Additionally, as a higher viremia has
been detected in the pumas infected with FIVpco [77],
these observations argue against this possibility. Another
possibility is that puma A3Z3 may provide only partial
protection. Since the expression levels of endogenous
A3 genes in puma remain unassessed, it may be plausi-
ble to speculate that the anti-viral effect of endogenous
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puma A3Z3 is negligible. However, endogenous anti-viral
A3 proteins are expressed in domestic cats and exhibit
robust activity against FIVfca [78], Yoshikawa et al. [79]
have recently demonstrated that the Vif proteins of a sub-
type of FIVfca (subtype B) lose their ability to antagonize
domestic cat A3-mediated anti-viral effect despite the
worldwide spread of this subtype. These findings imply
that the Vif-A3 interaction is more complicated than
expected, at least in the interplay between FIV Vif and
feline A3. Therefore, future investigations should focus
on elucidating the role of feline A3 in controlling feline
lentiviruses and their cross-species circulation in the
wild.

As described above, several FIV lineages have been iso-
lated from various felids; however, the molecular inter-
action between their Vif proteins and the A3 proteins of
their hosts remains unclear. Also, the importance of Vif
antagonism of A3 proteins may depend on the host-virus
context, and may suggest differences in lentivirus repli-
cation and pathogenesis in vivo. Therefore, investigation
of the interplay of FIV Vif and the A3 proteins of Felidae
will lead to a better understanding of an intriguing virus-
host co-evolutionary episode.

Artiodactyla A3 versus their lentiviruses

To evaluate the antiviral activity of A3 proteins of Artio-
dactyla such as cattle and sheep, cell-based experiments
have been performed using a viral vector system based
on HIV-1 and murine leukemia virus and expression
plasmids for the A3Z3 and A3Z2Z3 proteins derived
from cattle (Bos taurus) and sheep (Ovis aries) [80-82].
These studies revealed that the A3Z3 and A3Z2Z3 pro-
teins of both cattle and sheep have the ability to suppress
the infectivity of vif-deleted HIV-1 and murine leuke-
mia virus (a prototype retrovirus in mice) [80—82]. Cat-
tle A3Z3 is degraded by the Vif proteins of BIV (strain
BIM127), MVYV (strain Iceland), and SIVmac (strain 239)
but not by those of HIV-1 (strain LAI) and FIV (strain
NCSU) [80, 81]. On the other hand, sheep A3Z3 is
degraded by the Vif proteins of MVV (strain Iceland) and
HIV-1 (strain LAI) but not by those of SIVmac (strain
239), BIV (strain BIM127) and FIV (strain NCSU) [80,
81]. These findings imply that the Vif-A3Z3 interaction
can be promiscuous and that each lentiviral Vif protein
is optimized to antagonize the A3Z3 protein of its mam-
malian host.

Bovine A3 versus BIV and JDV

At least 2 lineages of lentivirus have been isolated in
bovids: BIV and JDV. BIV was isolated in 1972 in the
United States from cattle (Bos taurus) displaying persis-
tent lymphocytosis [83]. However, subsequent studies
reported that the disorders caused by BIV infection in
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cattle seem relatively mild compared to those that occur
in humans as a result of HIV-1 infection [1, 84, 85]. In
contrast, sporadic outbreaks of JDV infection that result
in severe disorders and high mortality have occurred in
Bali cattle and domesticated banteng (Bos javanicus), in
certain islands of Indonesia since 1964 [86]. JDV was sub-
sequently identified as the causative agent of severe dis-
orders in Bali cattle in 1993 [87]. Serosurveillance studies
reported that BIV infection appears worldwide in cat-
tle [88—94], while JDV infection is endemic in Bali cat-
tle, banteng, and cattle of the islands of Southeast Asia
including Indonesia and Malaysia [86, 87, 95, 96].

To address the co-evolutionary dynamics of bovine A3
and the two bovine lentiviruses, BIV and JDV, a recent
study determined the sequences of three A3 genes (i.e.,
A3Z1, A3Z2, and A3Z3) of various bovids belonging
to the tribe Bovini, which includes the genera Bos and
Bison: cattle (Bos taurus), zebu (Bos indicus), banteng
(Bos javanicus), gaur (Bos gaurus), yak (Bos grunniens),
European bison (Bison bonasus) and American bison
(Bison bison), as well as the genus Bubalus (water buffalo
[Bubalus bubalis]) [97]. Molecular phylogenetic analyses
inferred that bovine A3Z3 is under strong positive selec-
tion and that the amino acids at positions 32, 62, and 92
have been positively selected [97]. Intriguingly, cell-based
assays using a vif-deleted HIV-1-based reporter system,
BIV Vif (strain R27) and JDV Vif (strain Tabanan/87)
expression plasmids and respective bovine A3Z3 proteins
revealed that gaur A3Z3 is specifically resistant to JDV-
mediated degradation [97]. The resistance of gaur A3Z3
to JDV Vif is attributed to 3 codons at position 32, 62, and
92, all of which show evidence of positive selection [97].
As the A3Z3 protein of the MRCA (most recent common
ancestor) of cattle, banteng, zebu and gaur, which has
been estimated using a molecular phylogenetic method,
is sensitive to JDV Vif-mediated degradation [97], the
resistance of gaur A3Z3 was found to be acquired after
diverging from the other bovids approximately 2.6 mil-
lion years ago [98]. Investigations on paleontology [99]
and molecular phylogenetic [98] have suggested that
the tribe Bovini originated in Asia. Because JDV is an
endemic lentivirus in Southeastern Asia [86, 87, 95, 96],
these findings provide the first evidence suggesting that
an evolutionary arms race between lentivirus (JDV or its
ancestral virus) and mammals (bovids) occurred in Asia
in the past.

Ovine and caprine A3 versus SRLV

During the 1930s through the 1950s, a pathogenic agent
was identified in sheep (Ovis aries) in Iceland [100], and
subsequent investigations in the early 1970s led to the
isolation of MVV as the first lentivirus [101, 102]. CAEV
was isolated from goats (Capra hircus) [1, 103, 104].
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Despite their initial classification as distinct viruses sub-
sequent genetic analyses of MVV and CAEV indicated
that these viruses cluster closely [1, 105-107]. Therefore,
MVYV and CAEV have recently been classified into a sin-
gle group called SRLV.

Sheep A3Z3 and A3Z2Z3 have the ability to impair
vif-deleted HIV-1 infection, and these proteins are
degraded by MVV Vif (Icelandic strain 1514) [80, 81]. In
addition, both the sheep and goat A3Z2Z3 proteins are
degraded by the Vif proteins of MVV (strain 1514) and
CAEV (strains Cork, 1GA, and Roccaverano) [108]. Both
sheep and goats are ruminants that belong to the subfam-
ily Caprinae, and current evidence indicates that sheep
split from goats approximately 4 million years ago [109].
Therefore, in contrast to felids and bovids, SRLV may
have co-evolved with ruminants.

Vif co-factors

Throughout lentiviral lineages, the vif gene serves the
same functional purpose of degrading antiviral A3 pro-
teins. However, there is only ~25% conservation of its
genetic sequence [81]. Despite the significant divergence
of this genetic sequence, all lentiviral Vifs are capable of
hijacking the cullin-RING ubiquitin ligase (CRL) com-
plex, which consists of cullin E3 ubiquitin ligase (CUL;
CUL2 or CULS5), ring box protein 2 (RBX2) and elongin
B/C (ELOB/C) [81, 110, 111]. Although the vif sequence
is highly divergent, the S/TLQ motif is highly conserved
in all lentiviral Vif proteins, and Vif interacts with the
CRL complex in an S/TLQ motif-dependent manner
[81].

In 2012, two groups identified core binding factor sub-
unit p (CBFB) as the co-factor necessary for PLV Vif to
degrade host A3 proteins [110, 111]. PLV Vif, CBFB and
ELOB/C form a substrate adaptor for CUL5 and RBX2,
which allows the Vif interaction with suitable and suscep-
tible A3 proteins [110]. Vif is the adaptor between the A3
proteins and the CRL complex [111]. CBFB is required
for PLV Vif to degrade host A3s but is dispensable for
other lentiviral Vif proteins [81, 110-112].

A comparative approach combining proteomic, bio-
chemical, structural, and virological techniques con-
ducted by Kane et al. [81] identified cyclophilin A (CYPA;
also known as peptidylprolyl isomerase A) as the co-fac-
tor for MV'V Vif. The requirement of CYPA is specific for
MVYV Vif (strain Iceland) [81], and a subsequent study
has recently revealed that CAEV (strains Cork, 1GA,
and Roccaverano), in addition to MVV Vif (strain 1514),
also bind to CYPA [108]. These observations indicate
that the CYPA requirement for host A3 degradation is a
common feature of SRLV Vif proteins, although PLV Vif
does not appear to need CYPA. Moreover, a combina-
tion approach of molecular phylogenetic and structural
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techniques has suggested that mammalian CBFB and
CYPA are evolutionarily and structurally conserved
[108]. Therefore, lentiviral Vif may have evolved to utilize
evolutionarily and structurally stable proteins to degrade
host A3 proteins [108]. In contrast to PLV and SRLYV, it
is intriguing that BIV Vif activity does not appear to be
reliant on any co-factors, and no co-factors have yet been
identified for FIV Vif activity [81]. These insights further
suggest that each lentiviral Vif has evolved an individual
strategy to adapt to each host mammal.

Future perspective: when and how did the A3
and vif genes emerge?
Here, we described the co-evolutionary relationship
between mammalian A3 genes and exogenous lentivi-
ruses. However, many intriguing questions remain: when
and how was the A3 gene acquired in mammals? When
and how did lentiviruses acquire the vif gene? Was vif
gene acquired for the purpose of combating host A3s? Or
did Vif perform other functions in lentivirus replication
that were supplanted? Why is vif gene lacking in EIAV?
Regarding the origin of A3 genes; A3 is known as a
component of AID/APOBEC family. AID (activation-
induced cytidine deaminase) is a nucleotide mutator
contributing to the somatic hypermutation of immu-
noglobulin genes in B cells, while APOBECI1 edits the
mRNA encoding apolipoprotein B that is expressed in
small intestine (reviewed in [113, 114]). Since both AID
and APOBEC]1 are commonly encoded in all mammals as
well as birds and reptiles [5], it is plausible to speculate
that these genes can be the origin of A3 genes in mam-
mals. On the other hand, it is known that A3 genes are
not present in opossums (Fig. 2) [115], suggesting that
A3 genes were acquired after (in which family/order of
mammals?) divergence with Marsupialia. However, it
is unclear whether A3 gene acquisition occurred in the
common ancestor of Eutheria or Boreoeutheria (see
Fig. 2). Moreover, we still do not know how many A3
genes are encoded in the other mammals such as bats and
elephants (Fig. 2). Particularly, the mammals belonging to
the order Chiroptera (e.g., microbats and megabats) are
highly divergent [116]. Therefore, it is plausible to assume
that Chiroptera A3 genes exhibit a high level of diversity.
This information will be useful for considering the evolu-
tionary scenario of A3 acquisition/duplication, which is
likely to depend on the evolutionary relationship between
lentiviruses and these hosts. Furthermore, Ikeda et al.
[117] have recently demonstrated that opossum A1l pos-
sesses the activity to impair the replication of lentiviruses
and retroelements, suggesting that certain marsupial
AID/APOBEC family proteins potently exhibit compen-
satory activity to limit lentiviral replication instead of A3.
Nevertheless, it is still intriguing that the duplications of
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AID and A1 genes have not been found and that the gene
duplication of AID/APOBEC family in mammals is spe-
cifically occurred in A3 genes.

The driving force and moment of A3 duplication are
still both unclear. In contrast to the ZI and Z2 domains,
it is intriguing that the duplication of Z3 domain has not
been observed in any mammals (Fig. 2). This is remi-
niscent of the “Kondrashov hypothesis” (also known as
“deterministic mutation hypothesis”), which assumes
that the majority of deleterious mutations are of small
effect and that each subsequent mutation has an increas-
ingly large effect on host fitness [118]. According to this
concept, duplication of the A3Z3 gene may be evolution-
arily constrained due to deleterious effects for the host
organism. The possibility of host A3Z3 toxicity is further
supported by findings related to the A3H (the ortholog
to A3Z3 in primates) gene of human and chimpanzee.
Human has seven A3H haplotypes, but four are not
expressed at the protein level [42]. In contrast, chimpan-
zee A3H is monomorphic, and this protein is expressed
[42], suggesting that there is a cost to maintain multi-
ple copies of functional A3H. In fact, a recent paper has
revealed that human A3H likely contributes to cancer
mutagenesis [119]. Therefore, functional A3H has been
evolutionarily lost in humans after the divergence from
chimpanzees due to its toxicity.

Similar to mammalian A3 genes, the origin of lentivi-
ral vif genes is also unclear. In this regard, endogenous
lentiviruses have been detected in the genomes of vari-
ous mammals, including European rabbits (Oryctolagus
cuniculus) [120], lemurs belonging to two different gen-
era (Microcebus and Cheirogaleus) [121, 122], and ferrets
(Mustela putorius furo) [123, 124]. More intriguingly, all
endogenous lentiviruses ever detected appear to encode
putative vif sequences [121-123]. Considering that all
exogenous lentiviruses, with the exception of EIAV in
horses, also possess this accessory gene, vif gene is an
ancient lentiviral component with crucial importance to
maintaining lentivirus infections worldwide.
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