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Abstract

Background: One recent area of cancer research is irreversible electroporation (IRE).
Irreversible electroporation is a minimally invasive procedure where needle electrodes
are inserted into the body to ablate tumor cells with electricity. The aim of this paper is
to propose a mathematical model that incorporates a tissue’s conductivity increasing
more in the direction of the electrical field as this has been shown to occur in
experiments.

Method: It was necessary to mathematically derive a valid form of the conductivity
tensor such that it is dependent on the electrical field direction and can be easily
implemented into numerical software. The derivation of a conductivity tensor that can
take arbitrary functions for the conductivity in the directions tangent and normal to the
electrical field is the main contribution of this paper. Numerical simulations were
performed for isotropic-varying and anisotropic-varying conductivities to evaluate the
importance of including the electrical field’s direction in the formulation for
conductivity.

Results: By starting from previously published experimental results, this paper derived
a general formulation for an anistropic-varying tensor for implementation into
irreversible electroporation modeling software. The anistropic-varying tensor
formulation allows the conductivity to take into consideration both electrical field
direction and magnitude, as opposed to previous published works that only took into
account electrical field magnitude.
The anisotropic formulation predicts roughly a five percent decrease in ablation size for
the monopolar simulation and approximately a ten percent decrease in ablation size
for the bipolar simulations. This is a positive result as previously reported results found
the isotropic formulation to overpredict ablation size for both monopolar and bipolar
simulations. Furthermore, it was also reported that the isotropic formulation
overpredicts the ablation size more for the bipolar case than the monopolar case. Thus,
our results are following the experimental trend by having a larger percentage change
in volume for the bipolar case than the monopolar case.

Conclusions: The predicted volume of ablated cells decreased, and could be a
possible explanation for the slight over-prediction seen by isotropic-varying
formulations.
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Background
Electroporation is an electrically-driven biological process that uses externally applied
electric fields to briefly open the nano-sized pores in a cell’s membrane. On one hand,
electroporation can be used to transport drugs and genetic materials into cells [1]. On the
other hand, a strong enough electrical field can irreversibly damage the cell’s membrane
and cause cell death. This process is called irreversible electroproation (IRE), and has
gained interest as a possible tumor ablation method [2].
A cell’s viability is directly related to the electrical field it is exposed to. Each cell

is characterized by a critical value so that when the cell is exposed to an electri-
cal field above this critical value it loses its ability to reseal the pores in its mem-
brane and eventually dies. Any electrical field below this critical value, either does not
form pores or the pores close when the electrical field is removed. The critical value
depends on various factors such as tissue type, tumor stage, electrode configuration
and size, and the direction of the applied electric field. The success of an IRE-based
therapy for tumors relies on this critical value and thus knowledge about the optimal
configuration and size of the electrodes as well as the applied voltage needed to com-
pletely ablate the tumor while minimizing the damage to healthy tissue is relevant to
clinicians.
Mathematical models of electroporation and corresponding numerical simulations able

to predict the electric field distribution in a tissue of interest for various geometries and
positions of electrodes could play an important, complementary role in the design of indi-
vidual treatment protocols [3, 4]. In particular, it is well established in the literature that
electroporation can affect the conductivity of tissue [5, 6]. The large increase in conduc-
tivity is a result of the membrane’s pores opening during electroporation [7]. Corovic et al.
[8] recommended to incorporate inmathematical models a conductivity that is dependent
on the electrical field strength to increase accuracy. Experiments performed by Mezeme
et al. suggest that electroporation does not always isotropically increase the conductivity
of the tissue, but conductivity is increased more in the direction tangent to the elec-
tric field [9]. Their experiments determined the conductivity of electroporated chicken
livers by using magentic resonance electrical impedance tomography. The result of an
anistropic conductivity tensor can be explained by the pores forming in the cell mem-
brane with a bias towards the direction of the electrical field [10]. This is because the
voltage drop across the cell membrane is not equal around the entire cell, but is largest
where the cell membrane is perpendicular to electrical field [10].
Therefore, in this paper we propose a mathematical model that incorporates a tis-

sue’s conductivity increasing more in the direction of the electrical field. To do so, it was
required for us to derive a formulation for the conductivity tensor such that conductivity
increases by different amounts in the direction tangent and normal to the electrical field
and can be easily implemented in numerical methods such as finite elements. Numer-
ical simulations were performed for isotropic and anisotropic varying conductivities to
evaluate the importance of including the electrical field’s direction in the formulation for
conductivity.

Method
This section will discuss the details of the mathematical models used for com-
paring the well established isotropically increasing-conductivity formulation and this
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paper’s anistropically increasing-conductivity formulation. The simulations used for
comparison will be based off the irreversible electroporation experiments and sim-
ulations performed by Castellvi et al. [11]. This work will use their experimen-
tally determined parameters to compare an isotropic formulation to an anisotropic
formulation.

Governing equations

In numerical simulations for treatment planning, it is assumed that the applied direct cur-
rent electric field is at steady state [12]. The electrical potential,U, satisfies the differential
form of Gauss’s law at steady state:

∇ · (σ∇U) = 0 (1)

where σ is the tissue’s conductivity. Then the electric field E is given by: E = −∇U . If
σ is a constant, then Eq. (1) becomes the well-known Laplace equation. However, the
conductivity of tissue is not in general constant but increases during electroporation
[6], and therefore, in this paper, we model the conductivity as a function of the electric
field, σ = σ(E).
We model the isotropic varying conductivity as a sigmoid Gompertz curve [8, 13, 14]:

σ(‖E‖) = σ0 + (σmax − σ0) · exp[−A · exp(−B · ‖E‖)] (2)

where A and B are unitless coefficients, σ0 is the the base conductivity before electropo-
ration, σmax is the maximum conductivity a tissue can achieve after electroporation, and
‖E‖ is the l2− norm of the electrical field. By definition, the l2− norm of the electrical
field is ‖E‖ =

√
E2x + E2y + E2z where Ex, Ey, Ez is the x, y, z component of the electrical

field respectively. The values of A and B are found by fitting the curve for conductivity to
experimental data.
If the conductivity is isotropic, then σ is a scalar. However, the conductivity is

anisotropic when the conductivity increases more in the direction of the electrical field.
This results in the conductivity, σ , being represented by a rank-2 tensor.
We will compare two different cases. The first being when σ does not take into account

the direction of the electrical field (isotropic-varying) and when σ does take into account
the direction of the electrical field (anisotropic-varying). Both cases will solve Eq. 1; the
only difference will be in how σ is defined.

Isotropic-varying formulation

This is the well established model that is often used for IRE simulation predictions. It will
be used for comparison with our anisotropic-varying formulation. The isotropic-varying
formulation has the conductivity increase equally in all directions. Hence, it being ref-
ereed to as the isotropic formulation in this paper. The advantage of using an isotropic
formulation is that the conductivity is represented by a single scalar, and the direction
of the electrical field does not need to be considered. It is also less computationally
intensive.
In the isotropic formulation, the changes in conductivity from electroporation can be

taken into account with a sigmoid Gompertz curve for the conductivity [8, 14, 15]. The
same expression for conductivity as was found in [11] which is
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σ(‖E‖) = 0.03 + 0.35 ∗ exp(−exp(−0.01(‖E‖ − 250)) (3)

will be used for the isotropic formulation.

Anisotropic-varying tensor derivation

In this paper, we propose a conductivity that takes into account the electrical field’s
direction and magnitude. We wish to formulate the conductivity tensor such that the
conductivity increases more in the direction of the electrical field. Since the electrical
field does not increase equally in all directions, we will refer to this formulation as the
anisotropic formulation in this paper.
We now wish to derive the matrix representation for the conductivity tensor for the

anisotropic-varying case such that it can be implemented into a numerical scheme. This
is the main contribution of the paper.
We begin by assuming the conductivity tensor is a real valued symmetric matrix. This is

common assumption and is justified by assuming conductivity is independent of current
flow being positive or negative. All symmetric matrices are diagnolizable. Therefore, the
conductivity tensor is diagonalizable.
The anisotropic case can have a different conductivity in the direction of the

electrical field than perpendicular to it. If we make the assumption that the
conductivity in the direction of the electrical field is always equal or greater
than any other direction, and that the conductivity in a direction perpendicular
to the electrical field is always equal or less than any non-normal direction
then the directions tangent and normal to the electrical field are principal
directions. These assumptions are justified according to the experimental work
found in [9].
Let σt be an arbitrary function representing the conductivity in the direction tangent to

the electrical field. Also let σn and σb be arbitrary functions representing conductivity in
the direction normal and bi-normal to the electrical field respectively. By treating σt , σn ,
and σb as arbitrary functions, we are providing a derivation that is valid for any expression
for σt , σn , and σb which may someday be ascertained through experiments.
A tensor is diagonal when the principal directions are chosen as the basis rep-

resentation. We will therefore consider a coordinate system comprised of a unit
vector tangent to the electrical field and two unit vectors perpendicular to the
electrical field. A coordinate system consisting of a tangent vector, normal vec-
tor, and bi-normal vector, is sometimes referred to as a Frenet-Serret frame.
These three vectors form an orthonormal basis in which the basis vectors point
in the principal directions of the conductivity. Since the Frenet-Serret basis vec-
tors are aligned with the principal directions then the conductivity tensor matrix
representation is diagonal in the Frenet-Serret coordinate system and can be
represented as

σ f =
⎛
⎜⎝

σt 0 0
0 σn 0
0 0 σb

⎞
⎟⎠ (4)

where σ f is the matrix representation of the conductivity tensor in the Frenet-Serret
coordinate system. It will be assumed that the conductivity is the same for any direction
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normal to the electrical field. This implies that both the normal and bi-normal direction
conductivities are equal,

σb = σn. (5)

Equation 5 simplifies Eq. 4 to

σ f =
⎛
⎜⎝

σt 0 0
0 σn 0
0 0 σn

⎞
⎟⎠ . (6)

where σ f represents a linear transformation that takes a vector from the Frenet-Serret
frame and outputs a vector in the Frenet-Serret frame. This can be restated as

σ f : �3
f → �3

f (7)

where�3
f is the space of three dimensional vectors represented by the Frenet-Serret basis.

However, for calculations, we would like to have the conductivity tensor in the Cartesian
coordinate system as it is often impractical to implement the Frenet-Serret matrix rep-
resentation into a numerical scheme such as finite elements. Thus, we wish to derive

σ c : �3
c → �3

c (8)
where σ c is the matrix representation of the conductivity tensor in the Cartesian coordi-
nate system, and �3

c is the space of three dimensional vectors represented by the standard
Cartesian basis. We will use the known form of the matrix representation of the con-
ductivity tensor in the Frenet-Serret frame to derive the matrix representation of the
conductivity tensor in the Cartesian frame.
Since the Frenet-Serret frame and the Cartesian coordinate system are both orthonor-

mal, a change of basis between the two can be represented by a rotation through an angle
θ about the z-axis and a rotation φ about the y-axis. Note only two rotations instead of
three are necessary because the conductivity has been assumed to be equal in all normal
directions.
The rotation tensor, R(θ ,φ), is a linear transformation such that

R : �3
c → �3

f (9)

A function diagram outlining the relationship between σ c, σ f , and R can be found in
Fig. 1.

Fig. 1 Function Diagram for the conductivity tensor
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We can decompose R into two subsequent rotations. The first rotation will be about the
z-axis, Rz(θ), and can be expressed by the matrix,

Rz(θ) =
⎛
⎜⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎞
⎟⎠ (10)

where the angle θ is obtained through the relationship

θ = tan−1
(Ey
Ex

)
. (11)

The quantities Ex and Ey represent the x and y components of the electrical field respec-
tively. Similarly, the second rotation will be about the y-axis, Ry(φ), and is expressed by
the matrix,

Ry(φ) =
⎛
⎜⎝

cos(φ) 0 − sin(φ)

0 1 0
sin(φ) 0 cos(φ)

⎞
⎟⎠ (12)

where φ is the angle described by the function

φ = tan−1
(
Ez
Ex

)
. (13)

The quantity Ez represents the z component of the electrical field. The rotation tensor
can be then be expressed as

R(θ ,φ) = Ry(φ)Rz(θ) (14)

Using properties of rotation matrices, R−1 is

R−1 = (Ry(φ)Rz(θ))−1 = Rz(−θ)Ry(−φ) (15)

We are now able to express the conductivity tensor in matrix form with the domain
and codomain being the Cartesian frame. This is accomplished by applying the rotation
matrices in the following order:

σ c = R−1σ fR (16)

σ c = Rz(−θ)Ry(−φ)σ fRy(θ)Rz(φ) (17)

σ c =
⎛
⎜⎝

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎞
⎟⎠ (18)

where

σ11 = cos2(θ)
(
σn sin2(φ) + σt cos2(φ)

) + σn sin2(θ) (19)

σ22 = sin2(θ)
(
σn sin2(φ) + σt cos2(φ)

) + σn cos2(θ) (20)

σ33 = σn cos2(φ) + σt sin2(φ) (21)
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σ12 = sin(θ) cos(θ)(σn − σt) cos2(φ) (22)

σ13 = cos(θ)(σn − σt) sin(φ) cos(φ) (23)

σ23 = sin(θ)(σn − σt) sin(φ) cos(φ) (24)

The form of an anisotropic varying conductivity tensor has been derived with arbi-
trary functions for the conductivity in the tangent and normal directions. Therefore,
this formulation is valid for any functions of conductivity for σt and σn, including those
dependent on electrical field strength.
For the anisotropic case simulations, the conductivity used for the tangent direction, σt ,

will have the same form as the conductivity for the isotropic case:

σt(‖E‖) = σ(‖E‖) = 0.03 + 0.35 ∗ exp(− exp(−0.01(‖E‖ − 250)) (25)

This was chosen because the measurements used to experimentally determine the form
of the conductivity is often done using electrodes that are aligned with the electrical field.
As shown in [9], the conductivity tensor becomesmore anisotropic as the electrical field

strength increases. This ratio will be modelled using a sigmoid function, σ�, where

σ�(‖E‖) = 0.30 ∗ exp(− exp(−0.01 ∗ (‖E‖ − 250))) (26)

is an adaptation of the data obtained in the experiments reported in [9]. Due to the lim-
ited amount of experimental data, this was the authors’ best guess as to the form for
σ�. But since the derivation was done in a general setting, it will be possible to plug in
different formulations at a later time as they become available from experimental data.
The approximation can be combined with the previous expression for σt to obtain the
following expression for the conductivity in the perpendicular direction:

σn = (1 − σ�)σt . (27)

It is worth noting, that our form for σ� results in σt and σn being equal until the onset
of electroporation. In other words, the conductivity is isotropic until the onset of electro-
poration. During electroproation, the conductivity tensor becomes more anisotropic with
increasing electrical fields up until a value of σt being 30% larger than σn.

Boundary conditions

Boundary conditions need to be specified before Eq. 1 can be solved. It is common for
boundaries of the electrode to be Dirchlet type and the remaining boundaries to be
Neumann type [16]. Specifically, the boundary condition for a charged electrode will be

U = V0 (28)

where V0 is the applied voltage of the electrode. For a grounded electrode, V0 would be
zero and the boundary condition would read
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U = 0. (29)

The boundaries not in contact with an electrode, are often modeled as electrically
insulating,

∂U
∂n

= 0 (30)

where n is the outward pointing normal [16].

Monopolar geometry

The geometry used for the monopolar simulations was the same as used by Castellvi et
al. It consisted of two monopolar electrodes spaced 15 mm apart embedded in a 60 mm
sphere. A schematic of the simulation geometry is shown in Fig. 2. The outer surface
and electrode sleeves were modelled as electrically insulating. That is to say, on those
boundaries the condition

∂U
∂n

= 0 (31)

where n is the outward pointing normal is enforced. The remaining boundary conditions
is to set the active area of one electrode to ground by enforcing the condition

U = 0, (32)

and to enforce the condition that the active area of the other electrode is held at a constant
voltage by enforcing the equation

U = V0. (33)

Bipolar geometry

The domain used for the bipolar simulations was a 60 mm sphere. The electrode has a
diameter of 1.5 mm and a length of 40.5 mm. The last 7 mm of the electrode are set to
the positive voltage. The next 7 mm of the electrode is insulated, and then followed by
7 mm of the electrode set to ground. The remaining portion of the electrode is set to an
insulating boundary condition as is the outer sphere. A schematic of the domain is shown
in Fig. 3.

Finite element solver

All simulations were performed using the commercial finite element software COMSOL.
The meshes used for the simulations consisted of approximately 500,000 cells, and were
run using 2.2 GHz Intel Xeon processors.

Results
Monopolar simulations

Both formulations were run with various voltages. A comparison of the the ablation vol-
ume can be found in Fig. 4. It can be seen that the anistropoic formulation predicts a
slightly smaller ablation zone than the isotropic formulation. For all simulations, a vol-
ume was considered irreversibly electroporated if the magnitude of the electrical field was
184 V/cm or greater. This value was determined experimentally in [11] for the cases this
work recreated for comparison.
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a

b

Fig. 2 Schematic of the simulations performed by Castellvi and used for the monopolar test case

The shape between the anisotropic and the isotropic formulation are similar except for
the anisotropic formulation resulting in a slightly less spherical ablation zone than the
isotropic formulation. Similar results were seen for other voltages.

Bipolar simulations

For the bipolar geometry, the volume predicted to be ablated is much lower for the
anisotropic simulations than for the isotropic simulations. A summary of the results are
displayed in Fig. 5. Notice that there is a larger percentage change between the isotropic
and the anisotropic cases for the bipolar probe than for the monopolar probes. Ablation
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Fig. 3 Schematic for the bipolar test case

zones for the bipolar geometry are displayed in Figs. 5 for an applied voltage of 750 V. This
was done to show that the anistotropic-varying formulation produces an ablation shape
that is qualitatively similar, but quantitatively slightly smaller. Similar ablation shapes were
seen for the other voltages as well.

Discussion and conclusions
This paper derived a general formulation for an anistropic-varying tensor for implemen-
tation into irreversible electroporation modeling software. The anistropic-varying tensor
formulation allows the conductivity to take into consideration both electrical field direc-
tion and magnitude, as opposed to previous published works that only took into account
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Fig. 4 Ablation volumes for the two different formulations with the monopolar geometry

electrical field magnitude. It was derived for arbitrary functions for σt and σn, and is
therefore applicable irregardless of the form chosen for σt and σn. The formulation was
compared to more commonly used isotropically varying formulations, and was found to
decrease the predicted ablation zone for both monopolar and bipolar electrode setups.
Further experimental and numerical work is necessary before any definitive conclu-

sions can be drawn on the importance of including an anisotropic-varying formulation in
ablation zone predictions. The hope of this work is to encourage further research on how
electrical fields can affect the conductivity tensor in different directions because more
experimental data is necessary before any definitive conclusions can be drawn.

Fig. 5 Ablation volumes for the two different formulations with the bipolar geometry. No experimental data
was available
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