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Abstract

Background: Stroke remains a leading cause of death and disability worldwide despite recent treatment breakthroughs.
A primary event in stroke pathogenesis is the development of a potent and deleterious local and peripheral inflammatory
response regulated by the pro-inflammatory cytokine interleukin-1 (IL-1). While the role of IL-1β (main released isoform)
has been well studied in stroke, the role of the IL-1α isoform remains largely unknown. With increasing utilization of
intravenous tissue plasminogen activator (t-PA) or thrombectomy to pharmacologically or mechanically remove ischemic
stroke causing blood clots, respectively, there is interest in pairing successful cerebrovascular recanalization
with neurotherapeutic pharmacological interventions (Fraser et al., J Cereb Blood Flow Metab 37:3531–3543,
2017; Hill et al., Lancet Neurol 11:942–950, 2012; Amaro et al., Stroke 47:2874–2876, 2016).

Methods: Transient stroke was induced in mice via one of two methods. One group of mice were subjected to
tandem ipsilateral common carotid artery and middle cerebral artery occlusion, while another group underwent the
filament-based middle cerebral artery occlusion. We have recently developed an animal model of intra-arterial (IA) drug
administration after recanalization (Maniskas et al., J Neurosci Met 240:22–27, 2015). Sub groups of the mice were
treated with either saline or Il-1α, wherein the drug was administered either acutely (immediately after surgery) or
subacutely (on the third day after stroke). This was followed by behavioral and histological analyses.

Results: We now show in the above-mentioned mouse stroke models (transient tandem ipsilateral common carotid
artery (CCA) and middle cerebral artery occlusion (MCA) occlusion, MCA suture occlusion) that IL-1α is neuroprotective
when acutely given either intravenously (IV) or IA at low sub-pathologic doses. Furthermore, while IV administration
induces transient hemodynamic side effects without affecting systemic markers of inflammation, IA delivery further
improves overall outcomes while eliminating these side effects. Additionally, we show that delayed/subacute IV IL-1α
administration ameliorates functional deficit and promotes neurorepair.

Conclusions: Taken together, our present study suggests for the first time that IL-1α could, unexpectedly, be an
effective ischemic stroke therapy with a broad therapeutic window.
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Background
Ischemic stroke is a leading cause of death and long-
term disability worldwide [28]. While the advent of
intravenous (IV) t-PA and endovascular mechanical
thrombectomy to recanalize intracranial vessel occlu-
sions has had a major impact on outcome, most patients
are left with some significant disability, underscoring the
need for new pharmacotherapies to improve stroke re-
covery [3, 14, 18, 34]. Inflammation is a key contributor
to brain injury following stroke; as such, it has great po-
tential as an area for therapeutic intervention [11, 34].
Generally, post-stroke inflammation is characterized by
the expression of inflammatory mediators via activated
immune cells within the core of the infarct (in the brain
parenchyma), such as microglia and astrocytes [36, 40,
48]. This leads to an activation of surrounding cerebro-
vasculature, and a subsequent opening of the blood-
brain barrier (BBB) resulting in edema and widespread
secondary damage by peripheral immune cells [40].
More recently, this invasion of peripheral cells has been
shown to contribute to long-term neuroinflammation, as
well as to post-stroke cognitive decline [13]. While many
preclinical and clinical trials have examined the use of
anti-inflammatory therapeutics [46], attempts at target-
ing post-stroke inflammation have failed to significantly
improve patient prognosis [12, 15].
The role of inflammation driven by the pro-

inflammatory cytokine interleukin (IL)-1 during post-
stroke injury has been the focus of intense research [16,
33]. Indeed, preclinical studies have demonstrated the
deleterious actions of interleukin-1 (IL-1) after stroke,
while blocking its actions is beneficial in preclinical [35]
and clinical [15] settings. The large majority of studies
have focused on the role of IL-1beta (β) (main released
isoform) and demonstrated that interleukin-1 beta iso-
form (IL-1β) is a primary mediator of central and
peripheral inflammation after stroke [7]. Many preclin-
ical studies have focused on modifying IL-1β levels by
exogenous administration of recombinant IL-1β or
selective anti-IL-1β neutralizing antibodies on experi-
mental ischemia in rodent models [24]. However, the
role of IL-1alpha (α) (main intracellular isoform) during
post-stroke inflammation is largely unknown. Recent
published works have demonstrated marked differences
between mechanisms of expression and action of these
two cytokines, suggesting that interleukin-1 alpha iso-
form (IL-1α) might exert specific actions; while IL-1α
generally remains cytoplasmic, it can be released during
cell death or by mechanisms that are different from that
of IL-1β [7]. Previous studies have demonstrated differ-
ential actions of both cytokines in various paradigms of
inflammation [8]. In stroke, brain IL-1α expression pre-
cedes that of IL-1β and occurs predominantly in micro-
glia localized to focal neuronal and BBB injury in this

acute period [23]. Furthermore, polymorphisms in the
human IL1A gene, as opposed to the IL1B gene, result in
higher incidence of vascular malformation, and/or
higher risk of ischemic stroke [44, 45], further suggesting
that IL-1α may exert different actions than IL-1β in is-
chemic stroke.
We have recently described the angiogenic effects of IL-

1α in post-stroke angiogenesis in vitro [39]. The present
study extends our previous findings and sought to test the
hypothesis that acute or subacute exogenous intravenous
(IV, given acutely or subacutely) or intra-arterial (IA, given
acutely) administration of subpathological doses of IL-1α
could have well-tolerated beneficial neuroprotective or
neuroreparative effects, respectively, and if so, how it
might exert these effects. This study may have vital impli-
cations by proposing for the first time that complete in-
hibition of post-stroke neuroinflammation may have
detrimental effects, while sustaining low-grade chronic in-
flammation (i.e., therapeutic inflammation) might be used
as new effective therapy for brain tissue repair and func-
tional recovery after stroke.

Methods
Recombinant IL-1α protein preparation
Upon arrival, mouse recombinant IL-1α (R&D Systems,
Minneapolis, MN, USA) was diluted in sterile phosphate-
buffered saline containing 0.1% low endotoxin bovine
serum albumin (BSA) (also used as vehicle control). To
avoid freeze thaw cycles, the diluted stock solution (50 μg/
mL) was then aliquoted and frozen for dilution to the
desired dose on the day of surgery or treatment.

Surgical methods
Experimental protocols were approved by the Institutional
Animal Care and Use Committee of the University of
Kentucky (USA), as well as the Home Office (United
Kingdom, UK), and experiments were performed in
accordance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of
Health as well as the ARRIVE guidelines.

Tandem ipsilateral common carotid and middle cerebral
artery occlusion stroke model
Briefly, 3-month-old male C57BL/6 mice (Jackson Labs,
Bar Harbor, Maine, USA) or perlecan hypomorph mice
(expressing 10% of normal total perlecan levels, gener-
ated in a C57BL/J6 background, hereafter referred to as
pln KO mice) were subjected to transient tandem ipsilat-
eral common carotid artery (CCA)/middle cerebral ar-
tery (MCA) occlusion (MCAo) for 60 min [22], followed
by reperfusion of both arteries for up to 7 days. A small
burr hole was made in the skull to expose the MCA and
a metal wire with a diameter of 0.005 in was placed
under the artery. Slight elevation of the metal wire
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causes visible occlusion of the MCA. The CCA was then
isolated and occluded using an aneurysm clip. Dimin-
ished blood flow was confirmed with laser Doppler per-
fusion monitor (Perimed, USA) positioned slightly distal
to the burr hole, and only those animals with a dimin-
ished blood flow of at least 80% and re-establishment of
at least 75% of baseline levels were included in subse-
quent experimentation. For studies involving vital statis-
tics, heart rate, pulse distension, and core temperature
was monitored using MouseOx Small Animal Pulse
Oximeter (Starr Life Sciences Corp., Oakmont, PA,
USA). Heart rate and pulse distension were monitored
via thigh clamp while core temperature was monitored
via rectal probe.

Middle cerebral artery occlusion (filament) model
In experiments involving delayed/subacute IL-1α adminis-
tration, 3-month-old male C57BL/J6 mice underwent
MCAo as previously described [47]. Briefly, a hole was
made into the temporalis muscle (6 mm lateral and 2 mm
posterior from bregma) to allow a 0.5-mm-diameter flex-
ible laser Doppler probe to be fixed onto the skull and
secured in place by tissue adhesive (Vetbond). A midline
incision was made on the ventral surface of the neck and
the right CCA isolated and ligated. Topical anesthetic
(EMLA, 5% prilocaine and lidocaine, AstraZeneca, UK)
was applied to skin incision sites prior to incision. The in-
ternal carotid artery (ICA) and the pterygopalatine artery
were temporarily ligated. A 6-0 monofilament (Doccol,
Sharon, MA, USA) was introduced into the ICA via an
incision in the CCA. The filament was advanced approxi-
mately 10 mm distal to the carotid bifurcation, beyond the
origin of the MCA. After 20 min of occlusion, the filament
was withdrawn back into the CCA to allow reperfusion to
take place. Relative cerebral blood flow (CBF) was
monitored following MCAo, during which time relative
CBF had to reduce by at least 70% of pre-ischemic values
for inclusion. The wound was sutured, and mice received
a subcutaneous bolus dose of saline for hydration (500 μL)
and a general analgesic (Buprenorphine, 0.05 mg/kg
injected subcutaneously). Animals were kept at 37 °C dur-
ing surgery and then at 26–28 °C (room temperature)
while they recovered from anesthesia and surgery, before
being transferred back to ventilated cages suspended over
a heating pad for 24 h post-surgery with free access to
mashed food and water in normal housing conditions.

Intra-arterial drug administration
Animals in the IA drug delivery cohort underwent IA
drug delivery as previously described [25]. Briefly, the
mouse was placed in a supine position with the previ-
ously isolated CCA exposed. Following the CCA super-
iorly to its bifurcation point, the ICA and external
carotid artery (ECA) respectively) were identified and

three lengths of 6-0 suture were placed under the ECA,
ensuring its isolation. In order to create a closed system
to minimize blood loss, one of the sutures was used to
ligate the ECA distally to the bifurcation while a micro-
clamp was placed on the ICA. The ECA was then nicked
just proximally to the ligation point and the drug deliv-
ery tubing was inserted into the nicked vessel. A suture
was used to secure the tubing for the duration of drug
delivery. Once the tubing was successfully placed, the
mouse underwent the reperfusion phase of the tandem
ipsilateral common carotid and middle cerebral artery
occlusion stroke model (as described above), the clamp
on the ICA was removed, and 10–25 μL drug was ad-
ministered at a rate of 10 μL per minute. Following drug
administration, a suture was used to ligate the ECA
proximal to the nick and the tubing was removed. The
mouse was then allowed to recover for the duration of
the study (3 to 7 days).

Treatment with IL-1α
Doses administered exogenously were determined using
our in vitro and in vivo dose-response experiments previ-
ously published [25, 39]. Each mouse received 0.05 μg/kg
IL-1α (approximately 1 ng per 100 μL of PBS) via tail vein
(IV) injection or 0.005 μg/kg via IA injection. Injections
were performed on anesthetized adult mice immediately
following recanalization of occluded vessels. All mice re-
ceived a single dose of IL-1α on the day of surgery (acute),
or on post-stroke day (PSD) 3 (delayed/subacute) and
were allowed to recover up to PSD7 or PSD14 for subse-
quent behavioral and histologic analyses.

Blinding and randomization
In adherence to STAIR criteria, all experiments were
blinded and randomized [1]. For these exploratory studies,
we used young, male mice. Future confirmatory studies
will include female and aged mice. All animals were pre-
assigned to groups using an online randomization gener-
ator. Additionally, other personnel were tasked with
making up the IL-1α fresh on the day of use, and labeling
them with the correct, blinded identifier as described
above. The primary experimenter (KS) was not un-
blinded until after all analyses were completed.

Behavioral assessments
Eleven-point behavioral neurological score
Mice that underwent the transient tandem ipsilateral
CCA/MCA occlusion model underwent behavioral
assessment to assess the following behavioral metrics:
level of consciousness (LOC), gaze (G), visual field (VF),
sensorimotor response (SR), grip strength, and endur-
ance/paralysis paw hang (PPH). LOC was determined
prior to any disturbance of the animal’s cage and was
assessed on a 0–2 severity scale with 0 being alert and
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active without outside stimulus, 1 being responsive to
stimulus, and 2 being huddled, unresponsive, and non-
grooming. Gaze was assessed by passing a visual stimu-
lus in front of each eye in turn without disturbing the
mouse’s whiskers. The subject was given a 0 score if they
looked toward the stimulus, and a 1 if they failed to do
so. VF was assessed by holding the mouse by the tail
near a platform (on its right or left side), and if the
mouse reached for the platform it received a score of 0.
If it did not reach within 5 s, it was given a score of 1
for each side it failed on. SR was scored by pressing each
paw in turn to elicit a reaction. A reaction was defined
as vocalizing pain, retracting the paw, or jumping in re-
sponse to the paw press. A lack of any of these signs re-
sulted in a score of 1 for each paw affected. Finally, PPH
was scored by a typical paw hang test. The mouse uses
its front paws to hang from a rod for a period of 60 s.
The mouse receives a score of 0 if it is able to hang with
both paws without dropping a paw below the level of
the rod for the full 60 s. A score of 1 is earned if the
mouse drops either paw without falling. The time of the
first “partial” paw drop is also recorded. A score of 2 is
earned if the mouse falls, releasing both paws, at any
time during the 60 s time period. The total scores are
tallied at the conclusion of the testing to assess overall
function. Other summary metrics such as “latency to
first paw drop” were also used to help assess fine motor
function.

Twenty-eight-point neurological score
Mice that underwent the filament MCAo model were
scored neurologically for focal deficits with a 28-point
neurological scoring system as previously reported [10].
The 28-point scale awards a score of 0–4 (0 = normal,
4 =most severely affected) on seven different character-
istics by a variety of assessment methods: (i) body sym-
metry—assessed by observation on open bench, (ii)
gait—assessed by observation on open bench, (iii) climb-
ing—assessed by observing gripping at 45°, (iv) circling
behavior—assessed by observation on open bench, (v)
front limb symmetry—assessed via tail suspension, (vi)
compulsory circling—assessed by allowing front limbs to
be placed on bench during tail suspension, and (vii)
whisker response—assessed via light touch from behind.

Open field behavioral assessment
Each subject was placed in its own 2 × 2 box and tracked
using the EthoVision 12 software (Cincinnati, OH USA)
for 5 min. Animals were assessed on the day prior to
stroke surgery, and then again on PSD 1, 3, and 7. Param-
eters tracked include total distance traveled, average vel-
ocity, turn angle, and time spent in center zone. The
center zone was defined as being all area within the box
that was at least 5 in away from the walls of the box. This

parameter allowed us to track anxiety as a function of
how long the animal ventured into the center of the box.

Histology
Morphological stains
Infarct volume was assessed using cresyl violet staining.
Mounted 20-μm sections were fixed with 10% phosphate-
buffered formalin. They were then stained using standard
cresyl violet staining methods, mounted using DPX
Mounting medium (Sigma-Aldrich, St. Louis, MO, USA),
and were scanned using a HP Scanjet G4050. The scanned
images were analyzed using National Institutes of Health
(NIH) ImageJ software for infarct volume measurement as
previously published [22]. Infarct regions were defined as
regions with hypodense cresyl violet staining reflecting
areas of dead or dying nuclei. Areas were calculated using
the ImageJ free-hand selection tool and summated to cal-
culate final infarct volume.

Immunohistochemistry
Mounted, 20-μm tissue sections were fixed with ice-cold
1:1 acetone:methanol prior to incubating in blocking
buffer (5% BSA in PBS with 0.1% Triton X-100) for 1 h
at room temperature. The sections were then incubated
overnight at 4 °C in primary antibody (in 2% BSA/0.1%
Triton X-100) against PECAM (1:100, Fisher, Cat.
#CBL1337) CD11b (1:200, BioRad, Cat. #MCA711G),
ICAM (1:200, R&D Systems, Cat. #AF796), VEGFR2 (1:
100, Abcam Cat #ab10972), and doublecortin (DCX) (1:
250, Abcam Cat. #ab18723). Sections were washed and
incubated with a fluorescent secondary antibody (1:1000;
AlexaFluor 488 or 568, Life Technologies) for 1 h at
room temperature. Alternatively, Millipore ApopTag
staining kits were used as directed to stain for apoptotic
cells with a terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) marker. Sections were
washed again and then coverslipped with fluorescent
mounting media containing DAPI (H-1200, Vector Labs,
Burlingame, CA, USA) and images were captured using
a Nikon Eclipse Ti microscope and software (Nikon).
Images were analyzed for antibody-specific positive
staining using ImageJ (threshold pixel intensity made
similar across all images to isolate antibody-specific
staining and then recorded the number of stain positive
pixels). Results are from three sections per animal and
the area selected was in the infarct core identified mor-
phologically, or the peri-infarct as defined as a 500-um
boundary extending from the edge of the infarct core,
medial and lateral to the infarct [22].

Cell culture
Primary fetal cortical neuron culture
Brains from E14-18 mouse pups were removed and
placed in ice-cold HBSS solution (Corning 21-022-CV)
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in 100 mm petri dishes (Corning 3296). Next, the men-
inges, midbrain, and hippocampus were removed, leav-
ing only cortical tissue in the dish. Dissected cortical
tissue was then transferred with HBSS to a clean 15 mL
conical tube (Falcon). The tissue was allowed to settle at
the bottom of the tube and the HBSS was removed and
replaced with 5 mL of 1 mg/mL trypsin (Sigma T9201)
solution in cold HBSS. After a 20-min incubation at
room temperature, the trypsin was removed and re-
placed with a non-trypsin neutralizing solution. After a
brief incubation, to ensure deactivation of trypsin, the
trypsin-neutralizing solution was removed. Dissociated
cortices were then resuspended in 5 mL seeding media
(Neurobasal Medium (NBM), Thermo-Fisher Scientific,
UK), 5% plasma-derived serum (PDS) (First Link Ltd.,
UK), 1 U/mL penicillin/100 mg/mL streptomycin (P/S),
1% glutamine (Sigma-Aldrich, UK), 2% B27 supplement
with antioxidants (Thermo-Fisher Scientific, UK)) and
triturated. Cells were then plated at 10,000 cells per well
of a poly-D-lysine coated 12-well plate. Plates were
lightly agitated to ensure even distribution of primary
neurons. Neurons were incubated at 37 °C and 5% CO2

for at least 1 week prior to use.

Endothelial cell culture
Brain microvascular endothelial cells (BECs) from
C57BL/J6 mice maintained as cells lines ([9]; Sapatino
et al. 2013) were used in this study. C57BL/6 BECs were
cultured on porcine gelatin-coated tissue culture plates
in Iscove’s modified Dulbecco’s medium (IMDM) con-
taining 10% fetal bovine serum (FBS), 1% P/S, and 1% L-
glutamine, and were kept at 37 °C and 5% CO2 and cells
were grown to confluence prior to experimental use.

IL-1α treatment of endothelial cells
BECs were treated with IL-1α as indicated and as previ-
ously published [39]. RNA was collected 4 h following
treatment (optimized from previous, unpublished stud-
ies) and purified using pureLink RNA kit (Invitrogen,
Carlsbad, CA USA). RNA was then reverse transcribed
using a high capacity cDNA reverse transcription kit
(Applied Biosystems, Thermo Fisher Scientific) and levels
of cathepsin B, and perlecan were determined using Viia7
software (Thermo Fisher Scientific, USA) and TaqMan
reagents and probes specific for mouse cathepsin B and
perlecan.

Oxygen-glucose deprivation insult and IL-1α treatment of
primary neurons
After 1 week of incubation at 37 °C and 5% CO2, pri-
mary neuronal cell cultures, prepared from the brains of
mice embryos at 14 to 16 days of gestation, as described
previously [31], were subjected to 30-min oxygen-
glucose deprivation (OGD) and then allowed to re-

perfuse for 24 h in conditioned media containing PBS
vehicle, 0.1, 1, 10, or 100 ng/mL IL-1α. These doses were
chosen based on our previous studies in endothelial cells
[39]. Because this study was done in neurons, we chose
doses on a logarithmic scale (2 logs above and 2 logs
below) in order to obtain a clear dose-response curve
similar to our previous studies [39]. Cells were then
labeled with Hoechst nuclear stain, fixed, visualized on a
Nikon inverted microscope, and quantified for chroma-
tin fragmentation and cellular health. Cells were classi-
fied as being healthy or unhealthy [2]. We quantified five
areas per coverslip or up to 200 healthy cells with nine
coverslips per treatment group.

NMDA insult and IL-1α treatment of primary neurons
Primary neuronal cell cultures, seeded at 1 × 106 cells/
mL into 24-well plates, were treated with vehicle (0.1%
low endotoxin BSA), N-methyl-D-aspartate (NMDA)
(Tocris, UK) (20 μM), IL-1α (10 ng/mL), NMDA
(20 μM), and IL-1α (0.1 or 10 ng/mL) for 24 h. Each
animal used for primary neuron harvest contributed to
one experimental replicate so that neurons from each in-
dividual animal received all treatment groups resulting
in a randomized block study design. The percentage of
neuronal cell death was quantified with lactose dehydro-
genase (LDH) cell death assay, normalized to percent
dead of total cells and then converted to percent viability
for analysis.

Experimental design and statistical analysis
All experiments were performed in duplicated studies,
and each treatment group contained at least four mice.
Data are represented as mean ± standard error of the
mean (SEM). Comparison between two groups was done
using the Student’s t test. Comparison between three or
more independent groups at a single time point was per-
formed using one-way analysis of variance (ANOVA)
followed by a Tukey’s post hoc analysis. NMDA toxicity
analysis was performed using a randomized block design
using SAS software and blocking for each animal. Com-
parison between three or more groups at multiple time
points was performed using two-way RM ANOVA or
ordinal logistic regression dependent on data type (con-
tinuous vs. ordinal). All continuous data were analyzed
using GraphPad Prism Software and ordinal data was
analyzed using IBM SPSS statistics 20. Significance was
determined by a p value of < 0.05.

Results
IL-1α is directly protective of primary cortical neurons
after OGD and NMDA toxicity in vitro
As a proof of concept, we first investigated whether IL-
1α could impart protection to neurons undergoing the
in vitro stroke analogue oxygen glucose deprivation
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(OGD) or using an in vitro model of post-stroke toxicity,
exposure to NMDA. After clearly demonstrating that
OGD decreased cell viability in the absence of IL-1α
(control vehicle: 82.83 ± 0.79% vs. OGD vehicle 57.20 ±
2.05% viable), we found that IL-1α significantly increased
the cell viability after OGD (OGD vehicle: 57.20 ± 2.05%
viability vs. 1 ng/mL IL-1α: 83.45 ± 0.98%, p < 0.0001)
(Fig. 1a). The lowest and highest concentrations of IL-1α
were not as beneficial (0.01 ng/mL: 77.72 ± 1.84%, p <
0.005) and, in fact, the highest doses were detrimental
even under normoxic conditions (100 ng/mL IL-1α
under normoxia: 64.73 ± 2.43% vs. 60.68 ± 1.47% under
OGD). Although the highest dose (100 ng/mL) showed
toxicity, it still prevented further cellular death under
OGD conditions. We also found that IL-1α significantly
increased the cell viability following 20 μM NMDA in-
sult (Fig. 1b) (20 μM NMDA: 55.17 ± 7.54% viable vs.
20 μM NMDA with 0.1 ng/mL IL-1α: 65.36 ± 8.58%
viable; p < 0.01 and vs. 20 μM NMDA with 10 ng/mL
IL-1α: 71.59 ± 6.76% viable; p < 0.0001) Collectively, IL-

1α was directly neuroprotective in vitro in the face of
different noxious conditions, supporting the idea that
IL-1α, despite being an inflammatory cytokine, could
have beneficial neuroprotective effects under appropriate
dosing regimens.

Acute IL-1α administration reduces infarct volume and
apoptotic cell death following stroke
We next investigated the therapeutic potential of acute
IL-1α administration in experimental stroke in vivo, as
well as whether it might also represent an attractive can-
didate for IA drug delivery using our recently developed
IA drug delivery in stroke model [25]. At 3 days after
stroke (PSD3), animals which received IL-1α immedi-
ately after recanalization (acute administration) showed
significantly lower levels of apoptotic cell death on
TUNEL staining (Fig. 1c, d) (vehicle: 14047 ± 1469 vs. IV
IL-1α: 3093 ± 466.2 (p < 0.001) vs. IA IL-1α: 441 ± 152
(p < 0.0001) TUNEL positive pixels) as well as lower
overall infarct volumes on cresyl violet staining (Fig. 1e)
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Fig. 1 IL-1α conveys direct neuroprotection both in vitro (a, b) and in vivo (c–h) when delivered acutely. Primary cortical neurons under two
forms of cytotoxic stress: a OGD or b 20 μM NMDA. Excess IL-1α concentrations are cytotoxic while moderate doses conveyed direct protection
from oxygen-glucose deprivation (OGD) as well as NMDA-based toxicity (n = 9 per group). Mice treated with IA IL-1α have c fewer apoptotic cells
in the infarct and peri-infarct regions than vehicle and IV IL-1α treated mice 3 days following stroke. d Quantification of TUNEL and e cresyl violet
stains (representative images of stained sections depicted above each bar). Mice treated with IA IL-1α have reduced infarct volumes on PSD 3
compared to control mice. c Scale = 200 μm (n = 3 per group). Mice treated with IA IL-1α less microglial activation in the peri-infarct regions than
vehicle or IV IL-1α treated mice on PSD 7 (f, g). Representative images of CD11b (green) staining showing less overall microglial staining in the
peri-infarct region of treated animals on PSD 7 compared to controls; inset showing magnified representing images (f) (n = 4 per group). Scale =
50 μm. Quantification of CD11b stains (g). IL-1α enhances functional recovery following stroke. Mice were evaluated for functional performance
by using total distance traveled in an open field free movement paradigm (h). Mice were evaluated for a baseline measurement the day prior to
stroke surgery and then evaluated for functional recovery on PSD 1 and PSD 7. Mice treated with IA or IV IL-1α show better functional outcome
than control mice (n = 5 per group). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Data are the mean ± SEM
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(vehicle: 21.93 ± 2.75 mm3 vs. IV IL-1α: 3.546 ± 0.72 mm3

(p < 0.0001) vs. IA IL-1α: 4.664 ± 0.72 mm3 (p < 0.001)).
Interestingly, while IA IL-1α administration did not fur-
ther lessen overall infarct volumes (measured via cresyl
violet stain) compared with IV IL-1α administration
(Fig. 1e), IA IL-1α further decreased apoptotic cell death
compared to IV IL-1α, although this effect was not statisti-
cally significant (Fig. 1d) (IV IL-1α: 3093 ± 466.2 vs.
441.7 ± 152.2 TUNEL positive pixels p < 0.5).

Acute IL-1α administration reduces intra-parenchymal
inflammatory activation after stroke
We next investigated whether IL-1α instigated wide-
spread inflammatory activation within the brain. Unsur-
prisingly, we saw that stroked, vehicle-treated animals
had widespread microglial (CD11b) activation (21,556 ±
3903 positive pixels) (Fig. 1f, g). However, animals
receiving IV IL-1α showed decreased CD11b staining
compared to control (9098 ± 1580 positive pixels; p >
0.02), and animals which received IA IL-1α showed even
less CD11b staining compared to IV IL-1α (1952 ± 611.2
positive pixels; p < 0.005). It is noteworthy that CD11b
staining labels both microglia and infiltrating monocytes,
and therefore, is an indicator of the overall inflammatory
cell load in the brain following stroke. These data
suggest that the administration of low dose IL-1α could
actually decrease the inflammatory response to stroke.

Acute IL-1α administration improves functional outcomes
following stroke
Next, to determine whether neuroprotective effects of
IL-1α might also correlate with functional benefit, mice
underwent a battery of behavioral tests (an 11-point
neurological score, and open field testing). While there
were no significant differences in our compiled behav-
ioral score (data not shown), open field testing demon-
strated that both IV- and IA-treated animals traveled
farther in overall distance than their vehicle control
counterparts on both PSD 1 (two-way ANOVA vehicle:
1762.07 ± 157.86 cm vs. IV IL-1α: 2797.45 ± 318.49 cm;
p < 0.05 vs. IA IL-1α: 2633.04 ± 431.55 cm; p < 0.5) and
PSD 7 (two-way ANOVA vehicle: 1587.41 ± 209.70 cm
vs. IV IL-1α: 2849.18 ± 347.31 cm; p < 0.005 vs. IA IL-1α:
2994.12 ± 248.34 cm; p < 0.005) (Fig. 1h). Additionally,
we noted that animals in both IV- and IA-treated groups
spent more time in the open areas of the arena rather
than staying near the walls (data not shown). This
suggests that these animals are both more mobile and
are not exhibiting elevated anxiety compared to controls.
Even more interestingly, these effects become more
pronounced with IV or IA IL-1α treatment, but not in
vehicle controls, with increased time after stroke. Taken
together, we found that, regardless of treatment

modality, acute IL-1α treatment improves functional
outcomes after stroke.

IL-1α treatment is safe up to 105 times its effective dose
It has long been established that IL-1α is an early medi-
ator of fever and an early signaling molecule in sepsis.
As this could be a potential concern for the therapeutic
use of IL-1α, we wanted to identify the dose at which
IL-1α might become unsafe/poorly tolerated in mice, as
indicated by its ability to cause a fever. We defined a
“mild” fever in mice as a 1 °C sustained increase in core
body temperature and classified 2.5 or more degrees °C
sustained increase in core body temperature as being a
“severe” fever [33]. In animals that underwent MCAo
surgery, we administered 5, 7.5, and 10 mg/kg of IL-1α
via tail vein injection and monitored core body
temperature by rectal probe (along with other vital sta-
tistics such as heart rate, and pulse distension (analogous
to blood pressure)). None of the mice that received
5 mg/kg of IL-1α developed fever, whereas 50% of the
mice that received 7.5 mg/kg developed fever with at
least one of them developing severe fever. Finally, 75% of
the mice receiving 10 mg/kg developed fever, all of
which was sustained severe fever (Fig. 2a). Only the
10 mg/kg dose caused a rapid and sustained elevation of
core temperature following injection (5 min p < 0.005,
10 min p < 0.05, 25 min p < 0.01, and 30 min p > 0.001)
and transiently elevated heart rate compared to vehicle
(10 min p < 0.01, 15 min p < 0.0001, 20 min p < 0.01, and
losing significance at 25 (p < 0.1) and 30 (p < 0.5) mi-
nutes) (Fig. 2b). The 7.5 mg/kg dose slowly elevated
pulse distension (30 min p < 0.05) compared to vehicle
(Fig. 2c). This suggests that the animals tolerate IL-1α
up to 105-fold our chosen IV post-stroke dose.

Intra-arterial IL-1α treatment prevents transient
hemodynamic changes
Having shown that IL-1α is non-lethal and presents
minimal side effects up to 105-fold our chosen IV dose
and having shown the added histological benefit of IA
IL-1α (Fig. 1), we compared the routes of administration
for potential differences in effects on core body
temperature (Fig. 2d), heart rate (Fig. 2e), and pulse dis-
tension (Fig. 2f). The route of administration (IV vs. IA)
did not significantly affect either core temperature
(Fig. 2d) or heart rate (Fig. 2e) at any time following
drug administration. Interestingly, IV, but not IA, IL-1α
caused a significant increase in pulse distension (Fig. 2f)
at 12 (*p < 0.05), 13 (**p < 0.005), and 14 (*p < 0.05) mi-
nutes following reperfusion (7, 8, and 9 min following
drug injection respectively). These findings suggest that
targeted IA treatment with IL-1α could both improve
post-stroke outcomes while minimizing/eliminating
hemodynamic side effects.
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IL-1α treatment does not elevate systemic pro-inflammatory
mediators in serum
In order to determine and compare the potential in-
flammatory systemic effects of IA and IV IL-1α deliv-
ery, we evaluated levels of known pro-inflammatory
cytokines in the serum of mice recovering from
stroke with or without IL-1α treatment. To do this,
animals were stroked and acutely treated with IV or
IA IL-1α. We then collected serum from the same
animals 24 h post-stroke/treatment and then again
upon sacrifice at PSD 7 to evaluate if there were ef-
fects on pro-inflammatory cytokine levels in the
serum in response to not only the stroke but also in
response to IL-1α injection. We found that while nei-
ther IA nor IV IL-1α administration significantly ele-
vated systemic IL-1β, IL-6, or CXCL-1 (at PSD 1, IL-
1β: p < 0.7; IL-6: p < 0.95; and CXCL-1: p < 0.7; n = 4),
they, perhaps surprisingly, decreased (trend) their
levels as compared to their respective vehicle controls
(Fig. 2g–i). Collectively, this and our previous results
(Fig. 2a–f) suggest that post-stroke administration of
both IV and IA IL-α is safe.

Delayed/subacute IL-1α-treated animals have improved
functional outcomes
We next investigated whether delayed/subacute IL-1α
treatment enhances functional benefit when given 3 days
following stroke. These studies were performed in paral-
lel in both the tandem transient CCA/MCA occlusion
model, and the filament MCAo model. In both stroke
models, both treatment groups showed similar func-
tional deficit in their total scores on the days following
stroke surgery as expected (filament MCAo 28-point
score: vehicle: 10.57 ± 1.39 vs. IL-1α: 10.60 ± 1.24 points,
tandem CCA/MCA model not shown). In the filament
model, the mice treated with IL-1α exhibited consist-
ently declining scores (i.e., improved function, ordinal
logistic regression ***p < 0.005) compared to vehicle.
Similar results were noted with the tandem CCA/MCA
model (data not shown).

Delayed/subacute IL-1α-treated animals have more vascular
density in the peri-infarct region
Because of our previous work demonstrating that IL-1α
could enhance brain angiogenesis in vitro [39], we next
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Fig. 2 Side effects of acute IL-1α treatment following stroke vary depending on dose. a–c Larger doses of IV IL-1α after stroke can cause a fever,
b elevated heart rate, and c elevated pulse distension (two-way ANOVA *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). d–f Doses of IL-1α
administered IV (1 ng = 3.3 × 10−5 mg/kg) or IA (0.1 ng = 3.3 × 10−6 mg/kg) had no effect on d core temperature, or e heart rate. IV administration
of IL-1α caused significant elevation of pulse distension (f) but this effect was lost with IA administration (two-way ANOVA *p < 0.05; **p < 0.005).
Doses of IL-1α administered IV (1 ng = 3.3 × 10−5 mg/kg) or IA (0.1 ng = 3.3 × 10−6 mg/kg) had no effect of systemic (blood) levels of g IL-6, h
TNF-α, and i CXCL1 24 h after MCAo/IL-1α treatment, compared to vehicle-treated and sham control animals. Data are the mean ± SEM (n = 5
per group)
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examined whether delayed/subacute IL-1α treatment
might affect post-stoke angiorepair. We first examined
overall peri-infarct vascular density using PECAM-1
(CD31) and found that IL-1α-treated animals had in-
creased overall vascular density in the peri-infarct region
(Fig. 3a–d) (vehicle: 615106 ± 62,943 positive pixels vs.
IL-1α: 761564 ± 18,901 positive pixels Student’s t test
p < 0.1).

Delayed/subacute IL-1α-treated animals have more
activated endothelial cells in the peri-infarct region
Next, we investigated whether our overall histological
findings as well as the observed functional benefit could
correlate with an augmented angiogenic response. Tissue
sections were stained for ICAM-1 and VEGFR2, two
known markers of endothelial cell activation. We found
that animals treated with IL-1α had significantly more
vascular ICAM-1 staining (Fig. 3a, c) (vehicle: 4317 ±
1247 positive pixels vs. IL-1α: 15,000 ± 2551 positive
pixels Student’s t test p < 0.01) and VEGFR2 (Fig. 3a, d)
(vehicle: 8.94 ± 0.45% area vs. IL-1α: 13.59 ± 1.03%

Student’s t test p < 0.005) positive staining in the peri-
infarct region than did animals receiving vehicle treat-
ment. In contrast, IL-1α had no effect on microglial
activation (mean activation (Iba-1 positive) score vehicle:
1.64 ± 0.08 vs. IL-1α: 1.54 ± 0.09 Student’s t test p < 0.8)
and on astrocyte activation (mean GFAP positive per-
centage area vehicle: 44.58 ± 7.10 vs. IL-1α: 59.15 ± 3.89
Student’s t test p < 0.1, data not shown).

Delayed/subacute IL-1α-treated animals show greater
expression of doublecortin at the subventricular zone
We next investigated whether delayed/subacute IL-1α
could also impact post-stroke neurogenesis, an add-
itional reparative process. To investigate this, we immu-
nostained brains from the above experiments (sacrificed
at PSD 14) for doublecortin (DCX), a marker of imma-
ture neuroblasts. We found that animals receiving
delayed/subacute IL-1α had significantly more DCX-
positive staining at the subventricular zone (SVZ)
(Fig. 3g, h) (vehicle: 9470 ± 2742 positive pixels vs. IL-1α:
36644 ± 11,553 positive pixels Student’s t test p < 0.05).
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Fig. 3 Delayed/subacute treatment with IV IL-1α enhances post-stroke recovery and repair. Delayed/subacute IL-1α treatment increases
expression of markers of vascular activation (a–d) and early neurogenesis (g, h). Representative images of stains for CD31 (PECAM), ICAM-1, and
VEGFR2 (a). Quantification of b PECAM, c ICAM-1, and d VEGFR2 stains. These stains show more vascularization and more EC activation 14 days
following stroke. Delayed, single dose (e) and subacute doses (f) of IL-1α imparts functional benefit after stroke. Graphs showing increased
functional recovery on 28-point neuroscore at 7- and 14-days following stroke in the filament MCAo model. Representative images of brains from
stroked mice stained (g) for doublecortin (DCX) at the subventricular zone (SVZ) 14 days following stroke. Quantification of DCX stains (h) show
more DCX-positive staining at the SVZ with IL-1α treatment compared to vehicle-treated control animals. Student’s t test *p < 0.05; **p < 0.01.
One-way ANOVA **p < 0.01; ***p < 0.001. Two-way RM ANOVA *p < 0.05. Scale = 100 μm. Data are the mean ± SEM (n = 5 per group)
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Perlecan plays an important role in IL-1α-mediated
neuroprotection after stroke
Our previous work suggested that elements of the extra-
cellular matrix, such as the heparan sulfate proteoglycan
perlecan, are proteolyzed into smaller protein fragments
[22, 38] after stroke, and that this process could partially
be driven by IL-1α [37]. Additionally, we determined
that one of these proteolytic fragments, perlecan LG3, is
neuroprotective following OGD [38]. To determine
whether perlecan is required for the acute neuroprotec-
tive effects of IL-1α after stroke, we used a perlecan
hypomorph (pln KO) mouse that expresses 10% of nor-
mal total perlecan levels (and hence 10% of normal total
perlecan LG3; complete perlecan knockout mice are em-
bryonic lethal). Importantly, while WT mice exhibited
neuroprotection on PSD3 following acute post-stroke IV
IL-1α treatment (infarct volume WT vehicle: 18.99 ±
2.50 mm3 vs. WT IL-1α: 3.65 ± 0.8921 mm3 one-way
ANOVA p < 0.001), IL-1α was not neuroprotective in
pln KO mice (infarct volume pln KO vehicle: 23.38 ±
1.99 mm3 vs. pln KO IL-1α: 26.36 ± 3.50 mm3 p < 0.5)
(Fig. 4a, b).

IL-1α treatment increases mRNA expression of perlecan and
cathepsin B in vitro
Finally, to investigate whether IL-1α could be angiogenic
through fragments of perlecan (LG3 stimulates brain

endothelial cell proliferation in vitro, [9]), we examined
whether IL-1α treatment in vitro could affect brain
endothelial cell transcription of perlecan and cathepsin-
B, a protease that is known to generate LG3 from perle-
can [37, 38], as detailed in our previous work [39]. We
also examined whether any such effect might be IL-1 re-
ceptor type 1 (IL-1R1) mediated by using the IL-1R1 an-
tagonist IL-1 receptor antagonist (IL-1RA). Four hours
after treatment, we found that IL-1α treatment showed
significant increases in cathepsin B transcription (Fig. 4c)
(vehicle: 1.01 ± 0.093-fold increase vs. IL-1α: 2.24 ± 0.45-
fold increase, p < 0.05) and near-significant increases in
perlecan transcription (Fig. 4d) (vehicle: 1.03 ± 0.16-fold
increase vs. IL-1α: 1.909 ± 0.38-fold increase, p < 0.1).
Furthermore, we found that the increase in cathepsin B,
but not in perlecan, was largely abolished in the pres-
ence of IL-1RA (Fig. 4c, d).

Discussion
In the present study, we evaluated whether the pro-
inflammatory cytokine IL-1α could be therapeutic in two
distinct experimental ischemic stroke models. IL-1α is
one of the first cytokines upregulated after stroke [23],
and we recently demonstrated that IL-1α treatment of
brain endothelial cells showed pro-angiogenic effects
in vitro [39]. Thus, IL-1α is present early in stroke patho-
genesis, modulates brain endothelial cell angiogenesis, and

Fig. 4 IL-1α acts through proteolytic processing of perlecan. Mice lacking the LG3 fragment of perlecan do not sustain the same protection
following IV IL-1α treatment showing larger infarct volumes overall than WT controls on PSD 3 (a). Quantification of infarct volumes obtained
from cresyl violet stains (b) one-way ANOVA ####p < 0.0001 WT IL-1α vs. pln KO IL-1α; ****p < 0.0001 WT PBS vs. WT IL-1α (n = 7 per group). IL-1α
treatment increases mRNA expression of cathepsin B and perlecan in vitro. Mouse brain endothelial cells treated with 1 ng/mL IL-1α for 4 h
express more cathepsin B (c) and perlecan (d) mRNA. This effect is abolished for the production of cathepsin B but not perlecan upon treatment
with IL-1RA. One-way ANOVA *p < 0.05 IL-1α vs. Veh conditions. Data are the mean ± SEM
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could, therefore, be a prominent component of the brain’s
response to ischemic injury. We found that IL-1α was
neuroprotective to primary cortical neurons under both
OGD and NMDA exposure at specific doses. The highest
doses and lower doses were not significantly protective
and, in the case of the highest dose (100 ng/mL), IL-1α
was neurotoxic. This indicated to us that it was essential
to determine the proper in vivo dosing of IL-1α that might
impart benefit without significant safety risk.
In order to confirm that the chosen dose of 0.05 μg/kg

(based on our published in vitro studies [38];) was safe,
we attempted to determine the LD50 of IL-1α in mice.
Interestingly, our highest dose, 10 mg/kg, which was
105-fold greater than the established dose, was not lethal.
This shifted our focus toward determining whether any
of the doses tested resulted in negative side effects. As
IL-1α is a known mediator of fever, we chose fever as
our symptom for decreased tolerance [5]. As described
above, we found that 7.5 mg/kg produced fever in 50%
of the mice out to at least 30 min following recanaliza-
tion. While none of these mice died during or after the
injections, these results clearly show that injected IL-1α
was both active and could, at high enough doses, pro-
duce severe fever as well as other hemodynamic changes
such as changes in blood pressure and heart rate. These
results demonstrate that there is a large safe/well-toler-
ated potential dosing range for IL-1α.
After determining that our established dose was safe, we

demonstrated that acute, single-dose IL-1α treatment in
stroked mice is neuroprotective. However, when given IV,
IL-1α results in transient, mild hemodynamic changes in
pulse distension (analogous to blood pressure). Fortu-
nately, post-stroke IA delivery allowed us to both adminis-
ter less IL-1α, and to deliver IL-1α in a stroke-targeted
fashion, collectively reducing hemodynamic side effects.
Additionally, since it is known that IL-1α is readily trans-
ported across the BBB [4], coupled with the well-
documented post-stroke disruption of the BBB, we are
confident that at least some of the administered IL-1α was
taken up into the brain parenchyma.
Acute post-stroke IV or IA IL-1α administration re-

sulted in comparable significant reductions in ischemic
infarct volume, fewer apoptotic cells, improved func-
tional recovery, and decreased neuroinflammatory acti-
vation, the latter with IA treatment being more effective
than IV treatment. There are several potential reasons
for this differential reduction in neuroinflammation. We
administered a much smaller IA versus IV IL-1α dose as
dosing of drugs to the central nervous system (CNS) is
historically far lower than similar effective IV doses of
the same drug; examples of such dose minimization in-
clude IA chemotherapy for retinoblastoma [49], as well
as IA thrombolysis with tissue plasminogen activator
(tPA) for ischemic stroke [19]. In such cases, the IA

doses typically are 1/10 or less of the systemically ad-
ministered dose. The smaller IA dose may simply have
resulted in less induction of inflammation than the lar-
ger IV dose of this inflammatory cytokine. Furthermore,
IL-1α could be working locally through another mechan-
ism of neuroprotection thereby reducing the inflamma-
tory response secondary to smaller overall injury.
Taken together, we were able to use IL-1α in combin-

ation with our recently developed IA drug delivery and
stroke model as a proof of concept for giving potentially
life-saving drugs with a safer drug delivery mechanism.
Endovascular thrombectomy gives clinicians a great op-
portunity to deliver drugs in a targeted fashion immedi-
ately following vessel recanalization [25]. Our stroke
model and combined IA drug delivery method model’s
clinical large vessel occlusion and this targeted drug de-
livery very closely [22, 25]. Our current and previous re-
sults suggest that stroke therapeutics that have been
previously discarded on the basis of producing side ef-
fects, or minimal efficacy upon peripheral administration
might merit re-examination as IA therapy [26, 27].
As our previous work suggested that IL-1α could pro-

mote brain angiogenesis in vitro [39], we also investi-
gated the potential reparative effects of IL-1α in the
context of stroke in vivo. In an attempt to separate the
neuroprotective effects of IL-1α from its neuroreparative
effects, in these experiments we delayed IL-1α adminis-
tration until PSD3, a time point at which the ischemic
infarct is maximally evolved in our stroke model [22].
Furthermore, such delayed treatment was IV adminis-
tered, as delayed IA administration would have involved
a second surgery to again isolate the carotid artery circu-
lation, etc. Our previous research demonstrated that
overall expression of IL-1α in the brain remained ele-
vated up to a week after stroke [39]. However, others
have more recently discovered that IL-1α is elevated out
to at least 7 weeks following ischemic injury [13]. These
observations suggest that endogenous IL-1α could play a
chronic role in the brain’s response to injury that might
be augmented by delayed exogenous administration as
done in the current study. Indeed, we also saw that de-
layed/subacute IL-1α-treated mice showed less overall
damage, more overall vascularization and brain endothe-
lial cell activation within the peri-infarct area, more
DCX-positive cells in the SVZ, and functional improve-
ment. Importantly, the delayed IL-1α treatment para-
digm was validated in two different stroke models in two
different labs, meeting an important criterion for the
STAIR recommendations for the testing on experimental
stroke treatments [1]. An important future direction for
this study would be to investigate the role of stem cells
derived from other brain areas, as there is increasing evi-
dence showing the limited migration and neuron-
generating abilities of SVZ-derived stem cells [20, 32].
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Regionally derived stem cells such as reactive astrocytes
[17, 42], oligodendrocyte precursor cells [21], radial glia-
like cells [6], and reactive pericytes [29, 30] may also be
functioning as endogenous stem cells that differentiate
into neurons. Therefore, although we observed neuro-
genesis in the SVZ, other brain region-derived stem cells
and their roles in the post-stroke brain, especially follow-
ing IL1α treatment needs to be explored.
It has been reported that polymorphisms in the IL1A

gene are linked to higher incidences of vascular malfor-
mation and possibly ischemic stroke [44, 45]. Based on
our findings, it seems likely that these polymorphisms
(− 889 and + 4845 bp positions from the transcription
start site) lead to reduced IL-1a activity via release of a
less active form, which would in turn, impair blood-
brain barrier integrity and function. This is consistent
with our results suggesting that IL-1α used in this study
has neuroprotective effects.
Our results demonstrating increased peri-infarct

vascularization and vascular activation are consistent with
our previous in vitro observations that demonstrated that
IL-1α stimulates brain endothelial cell activation, prolifer-
ation, migration, and capillary morphogenesis in vitro
[39]. Furthermore, our doublecortin result, while suggest-
ive of increased post-IL-1α treatment-mediated neurogen-
esis, requires further investigation to determine whether
such an increase in neuroblasts might translate into more
functioning neurons in the site of injury. Additionally,
more studies (potentially in animals with impaired post-
stroke angiogenesis or neurogenesis capabilities) are ne-
cessary to determine whether both of these observations
are merely correlative with- or also contribute to IL-1α’s
therapeutic benefits. Furthermore, since C57Bl/J6 mice
have a considerable degree of variability in their vascular
architecture [43], between individual mice, it would be
insightful to conduct these experiments in mice that ex-
hibit somewhat more consistent vasculature, such as the
CB17 strain or SCID mice.
Finally, our previous studies demonstrating that IL-1α

could drive the production of the neuroprotective and
angiogenic and neurogenic LG3 perlecan protein frag-
ment from brain endothelial cells in vitro led us to
hypothesize that IL-1α could be neuroprotective and
neuroreparative in vivo via perlecan LG3 [37, 38]. To
test this hypothesis, we used perlecan hypomorph (pln
KO, expressing approximately 10% of normal physio-
logical levels of perlecan) mice in post-stroke IL1α ad-
ministration experiments. This was done because
complete perlecan knockout animals were embryonically
lethal, making the hypomorph animals were the only vi-
able alternative. In support of the hypothesis, we demon-
strated that IL-1α lost its neuroprotective effects in
stroked pln KO mice, strongly suggesting that perlecan,
and potentially its LG3 fragment, are both required and

an important component for IL-1α’s neuroprotective ac-
tivity. Additional in vitro studies with brain endothelial
cells further demonstrated that IL-1α could also drive
the production of both perlecan and the LG3-generating
protease cathepsin B, further supporting the potential in-
volvement of perlecan LG3 in IL-1α’s therapeutic effects.
Interestingly, our IL-1RA results suggest that IL-1α ex-
erts IL-1R receptor dependent and independent effects
on cathepsin-B and perlecan transcription in brain endo-
thelial cells, respectively. While the potential involve-
ment of IL-1R in IL-1α’s therapeutic effects remains to
be confirmed in vivo, our in vitro results suggest a com-
plex mechanism of action that could shed light on why
IL-RA stroke therapy has met with mixed success. Fur-
thermore, we expect to confirm in future studies that
blockade of cathepsin B (which would decrease LG3
levels, [37, 38]) would mitigate or prevent IL-1α neuro-
protection in vitro, and that post-stroke administration
of IL-1α also increases brain LG3 levels in wild-type
mice in vivo which would further support the import-
ance of LG3 in the therapeutic mechanism of action of
IL-1α.

Conclusions
Taken together, our results show that IL-1α significantly
increases neuroprotection when administered acutely,
and enhances peri-infarct brain vascular density, and po-
tentially neurogenesis, with delayed administration. We
have also established the safe and effective dosing range
and routes of IL-1α administration in mice and, in so
doing, have identified an attractive target for future drug
discovery studies. Finally, we have provided evidence of
the potential therapeutic mechanism of action of IL-1α
(perlecan LG3), which will be explored further in subse-
quent studies.
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