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Abstract 

Background: Translational medicine (TM) is an emerging domain that aims to facilitate medical or biological 
advances efficiently from the scientist to the clinician. Central to the TM vision is to narrow the gap between basic 
science and applied science in terms of time, cost and early diagnosis of the disease state. Biomarker identification is 
one of the main challenges within TM. The identification of disease biomarkers from ‑omics data will not only help the 
stratification of diverse patient cohorts but will also provide early diagnostic information which could improve patient 
management and potentially prevent adverse outcomes. However, biomarker identification needs to be robust and 
reproducible. Hence a robust unbiased computational framework that can help clinicians identify those biomarkers is 
necessary.

Methods: We developed a pipeline (workflow) that includes two different supervised classification techniques based 
on regularization methods to identify biomarkers from ‑omics or other high dimension clinical datasets. The pipeline 
includes several important steps such as quality control and stability of selected biomarkers. The process takes input 
files (outcome and independent variables or ‑omics data) and pre‑processes (normalization, missing values) them. 
After a random division of samples into training and test sets, Least Absolute Shrinkage and Selection Operator and 
Elastic Net feature selection methods are applied to identify the most important features representing potential 
biomarker candidates. The penalization parameters are optimised using 10‑fold cross validation and the process 
undergoes 100 iterations and a combinatorial analysis to select the best performing multivariate model. An empirical 
unbiased assessment of their quality as biomarkers for clinical use is performed through a Receiver Operating Char‑
acteristic curve and its Area Under the Curve analysis on both permuted and real data for 1000 different randomized 
training and test sets. We validated this pipeline against previously published biomarkers.

Results: We applied this pipeline to three different datasets with previously published biomarkers: lipidomics data 
by Acharjee et al. (Metabolomics 13:25, 2017) and transcriptomics data by Rajamani and Bhasin (Genome Med 8:38, 
2016) and Mills et al. (Blood 114:1063–1072, 2009). Our results demonstrate that our method was able to identify both 
previously published biomarkers as well as new variables that add value to the published results.

Conclusions: We developed a robust pipeline to identify clinically relevant biomarkers that can be applied to differ‑
ent ‑omics datasets. Such identification reveals potentially novel drug targets and can be used as a part of a machine‑
learning based patient stratification framework in the translational medicine settings.
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Background
Translational medicine (TM) [1–3] is an emerging and 
fast growing area of research that aims to facilitate medi-
cal or biological advances efficiently from the scientist to 
the clinician. TM approaches uses diagnostic tools and 
treatments by commonly employing interdisciplinary 
frameworks, in a highly collaborative manner to reach 
out to the patient community for disease treatment, strat-
ification and prevention. A notion central to TM is to 
narrow the gap between basic science and applied science 
in terms of time, cost and early diagnosis of the disease 
state. Over the last few decades the influx of untargeted 
-omics (phenomics, transcriptomics, metabolomics, epi-
genomics, lipidomics and others) datasets have enabled 
the identification of biological markers of disease (so-
called biomarkers) [4], and have become one of the main 
avenues towards discovery within TM. The identifica-
tion of the disease biomarkers from -omics data does not 
only facilitate the stratification of patient cohorts but also 
provides early diagnostic information to improve patient 
management and prevent adverse outcomes. However, 
biomarker identification, a task that is commonly com-
prised of biological and computational processes, needs 
to be robust and reproducible if it is to be clinically use-
ful and actionable in patient-care settings or in response 
to new therapies. Therefore, a robust unbiased computa-
tional framework is necessary to identify biological sig-
nals that can reveal potential novel biomarkers.

In -omics literature, there has been a recent trend 
towards the identification of data pre- and post-process-
ing steps. For example, Satagopam et al. [5] developed an 
infrastructure comprised by a combination of web services, 
tranSMART, Galaxy, and MINERVA platforms. Naraya-
nasam et  al. [6] developed an integrated reference-inde-
pendent analysis of metagenomic and metatranscriptomic 
data for the analysis of microbiome derived datasets. Feng 
[7] developed a proteomics pipeline called Firmiana. Fir-
miana is a cloud platform that allows scientists to deposit 
mass spectrometry (MS) raw files online and performs 
automated bioinformatic analyses on the uploaded data. 
Such existing robust pipelines for analysing -omics data 
are often either focused on specific -omics data or can be 
used only for either classification or regression purposes. 
For example, Xia et al. [8] developed a workflow for quan-
titative metabolomics datasets, Acharjee et  al. [9] devel-
oped an -omics fusion tool but focused on metabolomics 
data in regression mode only. Hermida et al. [10] developed 
a pipeline based on transcriptomics data called Confero 
that extracts gene lists from research papers and performs 
automatic extraction and storage of gene sets. While this is 
useful for downstream analysis, there is a need to combine 
these approaches and deal with multiple types of outcome 
data as well as consider their categorical or continuous 

nature. In some cases, the complexity of machine learning 
models associated visualizations used hinder the interpret-
ability of the results and therefore impair their translation 
into clinical science.

In this study, we develop a pipeline that includes two 
machine learning algorithms, inspired by simple linear 
models, coupled with follow-up approaches for systematic 
data analysis. Our systematic analysis includes data qual-
ity checks, identification of important features, as well as 
combinatorial and stability analyses. We applied and vali-
dated our pipeline with three different previously published 
-omics datasets. Our approach successfully identified the 
markers reported in the literature as well as potential novel 
markers.

Materials and methods
Our pipeline is composed of statistical machine learning 
modules whose methods are described below. Additionally, 
we applied and validated our pipeline against three inde-
pendent published datasets; two RNA microarray datasets 
and one lipidomics experiment.

Machine learning methods
We used two feature selection methods, LASSO [11] and 
Elastic Net [12]. These are two forms of regularization 
methods that are able to automatically select the features 
from the dataset and hence provide a sparse solution. 
Regularization works in the following way: Starting from 
simple linear regression models we consider x1 . . . xp as x 
number of predictor variables (features) and y as an out-
come or response variable:

Here, the outcome of model fitting produces the vector of 
estimated regression coefficients through ordinary least 
squares (OLS), with the objective function as the mini-
mum of the residual sum of the squares (RSS) equation 
(Eq. 2). The values minimizing the function are the esti-
mated regression coefficients (β).

In regularization methods, an extra term is added (Eq. 3) 
and so the new objective function to minimize becomes:

Here p is a function to penalize and � forms the penalty/
regularization parameter. The penalty function � controls 
the trade-off between likelihood and penalty and so influ-
ences the variables to be selected. The higher the value 
of � , the fewer number of variables are selected and vice 
versa. The differences between regularization methods 

(1)ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · β̂pxp

(2)

Residualsumofsquares(RSS) =

N
∑

i=1

(

yi − xTi β
)2

(3)RSS(β)+ p�(β)
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lie in the different functions p they penalize. In LASSO, 
the penalty is applied to the sum of the absolute values of 
the regression coefficients (L1 norm). Mathematically, we 
can write this as:

The left part of the equation is the normal least squares 
criterion, whereas the right part is the penalized sum of 
the absolute values of the regression coefficients.

In Ridge regression [13], the precursor of LASSO, the 
penalization p is incurred in the L2 norm of the coeffi-
cients (sum of the squares). In this case, selection is not 
sparse since coefficients are never zero but close and so, 
a rank of features based on the penalised regression coef-
ficients, is produced. Elastic Net [12], on the other hand, 
is a mixed version of both LASSO and Ridge (Eq.  5). It 
allows for the sparse representation, similarly to LASSO, 
and theoretically improves its performance in p ≫ n 
cases with high collinear groups of features by allowing 
grouped selection or de selection of correlated variables. 
LASSO instead tends to select only one “random” varia-
ble from the group of pairwise correlations. EN is created 
through the merging of both Ridge and LASSO penali-
zations (Eq.  5). A different representation of the same 
equation can be seen below (Eq. 6), with a single param-
eter α regulating the relationship between Ridge and 
LASSO. When α is equal or closer to 0 we have a stronger 
penalization and so a solution closer or equal to LASSO 
whereas, when α is equal or closer to 1, the behaviour 
resembles Ridge.

This combination of LASSO and EN methods comprise 
the backbone of our pipeline and the construction is 
described below.

Pipeline construction and follow‑up analysis methods
All analyses were performed in the R statistical comput-
ing (R version 3.4.3) environment [14]. All R packages can 
be found in our project’s github repository stated below. 
The necessary software dependencies are described in 
the README file located in the repository. All analyses 
can be performed on a standard PC environment with 
the run time increasing with larger datasets. For exam-
ple, an analysed RNA microarray acute myeloid leukae-
mia (AML) dataset described below took 8 h to complete, 
but at no time did the R environment use more than 1 Gb 
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of RAM. The workflow is embedded in a R Markdown 
file which, when altered with a user’s working and out-
put directories and the name of the input data file, runs 
the analysis in real time. After running, it compiles a PDF 
report of containing both all code generated and figures 
produced. Figures generated include analogues to Figs. 2 
and 3. Additionally, ROC AUC curves are generated via 
stability analyses for individual selected features as well 
as combinations shown to be significant in predicting 
binary outcome. Importantly, a list of significant features 
(genes, metabolites, etc.) is printed in the PDF report. 
These lists can easily be copied so as to be used as input 
for pathway and ontology enrichment analyses. For the 
purposes of our validation studies, pathway analysis and 
ontology enrichment wereperformed with the EnrichR 
tool with default settings (analysed on Sept 7, 2018) [15].

Lipidomics data
To assess the performance of our framework, we 
employed a previously published lipidomics dataset from 
Acharjee et  al. [16]. The lipidomics data was generated 
from The Cambridge Baby Growth Study (CBGS), a pro-
spective observational birth cohort. For details about the 
processes related to the data generation as well as sam-
ple information please check Acharjee et al., and Prentice 
et al. [16, 17].

From the CBGS cohort we used 3 different datasets, 
namely CBGS-1, CBGS-2 and POPS (Pregnancy Out-
come Prediction Study). All data was obtained from dried 
blood spots and generated with direct infusion high-res-
olution mass spectrometry (HRMS).

A summary of the cohort is listed below (Table 1).

Transcriptomic data
A pancreatic ductal adenocarcinoma (PDAC) micro-
array expression dataset (n = 36 control, n = 36 cases) 
GSE15471, [18], as well as microarray expression data 
from a three-cohort study of acute myeloid leukaemia 
(AML) cell lines with n = 404 AML samples and n = 138 
control samples, excluding a third transitional cohort 

Table 1 Cohort statistics of  samples analysed form 
the Cambridge Baby Growth Study (CBGS) and Pregnancy 
Outcome Prediction Study (POPS)

Cohort name Sample information Total 
sample 
number (n)Formula 

milk (FM)
Breast 
milk(HM)

Mixed (FM 
and HM)

CBGS‑1 85 87 67 239

CBGS‑2 43 25 27 95

POPS 16 11 13 40
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of MDS samples GSE15061 [19] was analysed. In each 
case, the Robust Multichip Average standardized Affym-
etrix Human Genome U133 Plus 2.0 data submitted by 
the authors to the Gene Expression Omnibus was taken 
as inputalong with class information indicating case or 
control condition. Pre-processing of microarray data 
included; (a) taking the median of duplicate probes across 
all conditions to yield one unique probe per experiment, 
(b) collapsing rows of probes belonging to identical genes 
and taking maximum expressed probe via the WGCNA 
R package [20], and (c) testing features (samples) for low 
variance via the caret R package and removing those with 
near-zero variance among all genes [21]. The resulting 
numerical matrix of normalized gene expression values 
was used as input for each experiment, yielding 22,880 
genes and 542 samples for the AML dataset, and an equal 
number of genes and 78 samples for the pancreatic can-
cer dataset. Normalized data matrices produced both for 
validating the reproducibility of our pipeline, as well as 
the ones used as example input, are available in our pro-
ject github repository. The different steps comprising our 
pipeline are described in the results section.

Availability of code
All code and functions are available on our hosted 
GitHub repository: https ://githu b.com/jaw-bioin f/Bioma 
rker_Ident ifica tion/.

Results
Pipeline features
A graphical depiction of our workflow can be seen in 
Fig. 1. Our pipeline can be divided in the three modules 
that we describe below with the purple data quality mod-
ule offering different options depending on the type of 
data introduced e.g. microarray and generic/other data.

Data quality module
The data quality module consists of different checks on 
both features and samples to exclude or data based on 
the amount of missingness, and to standardize data to 
make measurements of features in different experiments 
comparable. Missing value imputation and normalisation 
steps can be implemented as needed by end users. Nor-
malization methods can be bypassed if RNA microarray 
datasets are downloaded pre-processed directly from 
repositories. For these and other microarray datasets, 
optional filtering steps to reduce dimensionality include 
many-to-one probe-to-gene mapping. Features may be 
further reduced by using external tools or expert bio-
logical insight to exclude features, but such reduction is 
optional. In all cases, the input for the ‘feature selection’ 
segment of the pipeline is a matrix (file or data frame) of 
features (potential biomarkers) as well as a set of samples 
along with a target or outcome variable.

Fig. 1 Structure of the pipeline and different steps are shown. This consist of the data quality checks (Purple), feature selection with optimised 
parameters (Green), identification of the biomarkers (Green), and finally accessing the clinical relevance of the markers based on the stability 
analysis and data visualization (Brown)

https://github.com/jaw-bioinf/Biomarker_Identification/
https://github.com/jaw-bioinf/Biomarker_Identification/
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Feature selection and parameter optimization
In order to apply the LASSO and EN algorithms for bio-
logically relevant feature selection, we need to optimize 
the penalty parameter associated with each of the meth-
ods in an unbiased way. To achieve this, the pipeline 
divides samples randomly into a training set composed 
of 75% of the total number of the samples and a test set 
consisting of the remaining 25% samples. To ensure opti-
mal training in real-world datasets, all data splits retained 
class balances of the target variable, so each split reflected 
a proportion of the target observed in the underlying 
dataset. We note that class balancing measures, such as 
boosting or under sampling, are not used to artificially 
balance training/testing data in each split (outer loop set). 
Then we apply a 10-fold cross validation on the training 
set (inner loop set) aiming to have an optimised penalty 
parameter that can be plugged into the LASSO and EN 
models. Mathematically, LASSO and EN models can be 
defined by using a single penalty function “ α ” [22] (Eq. 6). 
For example, by using a penalty parameter α = 1 , we are 
applying the LASSO algorithm, whereas α = 0.5 will per-
form Elastic Net. A high value for the penalty parameter 
( α ) will result in a strong penalty and hence fewer vari-
ables will be selected.

Identification of candidate biomarkers
Our pipeline iterates model creation 100 times and 
selects the features that appear more than 90 times in 
the analysis, as these we deem to be the more signifi-
cant for the classification model. Moreover, in order to 
better understand the relationship between the features 
selected and the outcome variable analysed, a display of 
the weight ( β coefficients) distribution per model (see 
Additional file 1) and a box plot of the class differences 
per feature is generated (Fig. 3b). These selected features 
are then considered potential candidate biomarkers. In 
order to ascertain their validity as biomarkers, their per-
formance is evaluated both alone and in combination.

Performance evaluation and visualization
In order to investigate the performance of the selected 
markers, our pipeline performs stability analysis through 
a permutation test. This consists of the randomization 
of the label features, resulting in incorrect sample labels 
for predictions and generating models with ROC AUC 
values showing a performance subject to the random 
distribution. Both the real model and permutation tests 
are produced by sampling 1000 random training and test 
sets, then using simple machine learning models to con-
sider the fit of data, with ROC AUC performance results 
plotted as density plots alongside their means and stand-
ard deviation. The ROC AUC offers a graphical overview 

of the diagnostic ability of binary classifiers with varying 
thresholds. In addition to this, more information on the 
predictive ability of the model is obtained through the 
calculation of the sensitivity, specificity, precision and 
accuracy values.

Validation of the approach
Lipidomics data
We applied our pipeline in the published lipidomics 
data available from three cohorts: the Cambridge Baby 
Growth Study (CBGS1and CBGS2) and the Pregnancy 
Outcome Prediction Study (POPS). Our objective was 
to identify potentially nutritional lipid biomarkers for 
the classification of babies fed with Formula, Human or 
a mix of Human and Formula milk. In Fig. 2a, we display 
the frequency of appearance of the lipids in 100 differ-
ent Elastic Net models of classification between Formula 
and Human milk nutrition from CBGS2 data. Figure 2b 
shows the same results but for LASSO. It can be seen that 
EN allows for a less stringent solution with more features 
appearing. Additional file  2: Table  2 reveals the high-
ranking lipids identified by our approach as well as their 
associated nutritional outcomes. 

For those selected features, performance evaluation 
was then performed. Results can be seen in Fig. 3a where, 
a combination of the three selected lipids SM(39:1), 
SM(32.1) and SM(36.2) shows a significant improve-
ment in the models ability to classify between Human 
milk and Formula and Human mixed milk (from a 0.5 in 
permuted data to a 0.83 ROC AUC value) in the CBGS1 
data. Moreover, as seen in Fig. 3b direct visualization of 
the selected lipids in a box plot, allows for a clear dis-
play of the differing prevalence of this feature in babies 
fed with these different milk nutrition and so explaining 
its selection and inclusion in the classification model. 
These plots are easy to interpret and hence reach out to 
a non-expert domain. Moreover, our analysis revealed a 
consistent biomarker robustness, between HM and FM 
diets, across three different cohorts, summarised in the 
Additional file 2. For example, SM(39:1) is identified as a 
robust biomarker for segregating infants on HM vs. FM 
diets (Additional file 2: Table 2).

Transcriptomics data
In the pancreatic cancer dataset GSE15471, top fea-
tures selected included the following 20 genes: SULF1, 
COL10A1, MIR34AHG, INHBA, COL8A1, FN1, THBS2, 
NOX4, NTM, RASAL2, ADAMTS12, CAPG, CTHRC1, 
FAP, VCAN, SLPI, WISP1, LTBP1, GPRC5A, TIMP1. 
Our biological pathway analysis revealed a class of bio-
markers enriched in several known cancer pathways. 
After stringent multiple testing correction, the following 
pathways were identified as being enriched:
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• Senescence and Autophagy in Cancer
• Integrated Pancreatic Cancer Pathway
• TGF Beta Signalling Pathway (mouse)
• miRNA targets in ECM and membrane receptors

• TGF Beta Receptor Signalling (human).

The gene set was further enriched in the Human Pro-
teome Map in adult Esophagus, Lung, and Pancreas 
tissues, indicating a potential cross-talk among tissue-
specific cancer pathways. The full results of our pipeline, 
including feature ranking graphs and ROC AUC, sensi-
tivity, specificity, and accuracy scores of each variable, as 
well as all the executed code are included in Additional 
file 1.

In addition to the validation of our method against 
pancreatic cancer, a validation was performed against 
an acute myeloid leukaemia (AML) cohort. This analysis 
revealed sixty genes contributing significantly to AML 
(see Additional file  3). This gene set interacts with sev-
eral AML-associated transcription factors, including 
NKX2-3, HOXA7, and MYB. The analysis of genes active 
in cell lines available in the Cancer Cell Line Encyclope-
dia [23] revealed that our derived gene set is significantly 
enriched in multiple haematopoietic and lymphoid tis-
sue lines. Additionally, investigation of the presence of 
our depicted genes in biological pathways, annotated in 
the KEGG database [24], confirmed their known AML-
gene associations mediated by the ‘Hematopoietic stem 
cell lineage’ and ‘Transcriptional misregulation in cancer’ 
pathways. Further results from these analyses are pre-
sented in Additional file 3.

Discussion
We developed a systematic way of analysing -omics 
datasets to identify potential biomarkers from large-
scale -omics datasets. We used three different datasets 
(two transcriptomics and one lipidomics) to validate our 
approach by identifying potential markers or signatures 

ba

Fig. 2 a The frequency of the lipids (y axis) ranked by their selection out of 100 randomized sampling splits using Elastic Net. b A similar analysis is 
shown using LASSO. Features identified in both analyses are used for further investigation

Fig. 3 a Stability of combination of lipids SM(39:1), SM(32:1) and 
SM(36:2) (blue) versus random sampling‑derived null distribution 
(yellow) in CBGS1, formula milk versus formula milk and human milk 
model prediction. X‑axis is the area under the receiver operating 
characteristic curve (ROC), and dashed lines represent the mean over 
all 1000 sampled trials conducted. b Probability values showing a 
significant difference between the measured levels of selected lipids 
between all the nutritional classes (formula vs. human milk vs. mixed)
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and comparing with existing markers found in the 
literature.

Lipidomics data
Acharjee et  al. [16] investigated and identified relevant 
lipid biomarkers that were able to predict infant feed-
ing patterns. A narrow down list of candidate biomark-
ers was produced based on a combination of supervised 
Random Forests and iterative backward elimination. 
In our analysis, we used two methods, LASSO and EN, 
that perform automatic feature selection. Our analysis 
revealed two types of relevant lipids; four Sphingomyelin 
and two Phosphocholine. Out of these six, three were 
previously reported by Acharjee et al. [16]. For our vali-
dation analysis, selected features were singled out in one 
step, whereas in the previous study a two-step procedure 
was employed. Moreover, to assess the stability of the rel-
evant identified features, we employed multiple sampling 
and permutation testing to test against an empirical null 
distribution based on ROC AUC scores (Fig. 3a).

Transcriptomics data
In order to assess the wider applicability of our approach 
for identifying target molecules in different types of 
-omics data, we also applied it in two transcriptomic 
datasets, one for Acute Myeloid Leukemia and one for 
Pancreatic Ductal AdenoCarcinoma (PDAC). Whereas 
the lipidomic analysis could be validated by expert cura-
tion, our transcriptomic analyses were validated via 
external pathway and ontology gene set enrichment tools.

AML driver gene analysis revealed a set of genes known 
to be enriched for targets of the MYB transcription fac-
tor. MYB is known to play a crucial role in hematopoietic 
stem cell cycles, including proliferation and survival, and 
recent research has shown that AML-specific microR-
NAs target c-MYB [25]. Additionally, a potentially druga-
ble compound targeting MYB was recently discovered 
[26], highlighting the clinical role of MYB targets. By 
highlighting the genes which are both predictors of AML 
and enriched as a set for MYB targeting, we have identi-
fied a set of novel gene targets of the MYB transcription 
factor.

The genes identified by our pipeline are often dis-
cussed in pancreatic cancer literature [27]. Not only did 
we identify gene sets in relevant tissues which are, in 
combination, highly discriminative between pancreatic 
cancer and control, but the in-built multivariate analysis 
revealed interacting networks which model differences 
between cancer and control patient data better than sin-
gle genes alone. Our analysis also highlighted the cross-
talk between autophagy and certain cancer types. Given 
the prevalence of autophagy pathways perturbed in pan-
creatic cancers, this result confirms recent novel studies 

demonstrating autophagic control of pancreatic cancer 
metabolism [28, 29].

Workflow features
In high-dimensional -omics data analysis, we are inter-
ested in finding a relevant smaller subset of variables 
that  are associated with the response (a clinical phe-
notype). Procedures to identify such smaller subsets 
are called variable or feature selection procedures. By 
employing such procedures, it is possible to reduce the 
dimensionality of the data [30]. Moreover, feature selec-
tion can assist in removing noise variables (variables 
which have no predictive power for the response vari-
able) in the dataset. More specifically, typical reasons to 
employ feature selection procedure include: large num-
ber parameters, features or variables (p) compared to the 
number of the samples or individuals (n) and correlated 
features.

One advantage of using feature selection algorithms is 
that the final model is built automatically, including only 
those biomarkers which are useful in predicting patient 
condition. Thus, we do not have to rely on the cut off for 
selection of genes and metabolites upfront. All the esti-
mates are decided based on either biomarkers’ effects. 
However, one of the drawbacks of this method lies with 
the selection of the appropriate penalty parameters. Fail-
ure to decide on appropriate penalty factor will result in 
underfitting or over fitting of the results. To address this, 
we split the data into two subsets, training and testing. 
Within the training subset, we estimated the penalty 
factor by using ten-fold cross validation. The optimized 
model was then fit to the unseen testing subset.

While either LASSO or EN can be used for both clas-
sification and regression tasks, our method focused on 
validation tasks based on binary outcomes (classifica-
tion). In a planned update of the software accompany-
ing our method, we will enable users to switch between 
classification and regression tasks. Users will also be able 
to choose between different feature selection algorithms 
and machine learning models including Random Forests, 
Artificial Neural Networks, and Deep Leaning which can 
capture alternative patterns of interactions in the data 
that we might miss out with regularized linear models 
[31]. We also plan to implement our code in a portable 
Docker environment to eliminate the need for end users 
from dealing with version control and software depend-
encies. Lastly, it should be noted that our model currently 
accepts numerical variables whilst categorical variables 
should be dummy (one-hot) encoded.

A unique strength of our approach lies with the pro-
vision of automated pre-processing and feature selec-
tion. Based on our approach, we were able to reduce the 
number of potential causative genes in each experiment 
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to under 100 (from an input of over 22,000 genes) 
whilst the high confidence selections were reduced to 
less than 15. This robust selection creates a useful fea-
ture for end users, eliminating the need to pre-filter 
data based on perceived biological knowledge thus 
eliminating bias.

Future trends
Multi ‑omics data integration
To completely understand the underlying biologi-
cal mechanisms driving diverse phenotypes, a multi-
omics approach is often necessary. However, this is a 
challenging step due to the data size, measurements, 
and data analysis involved. Different approaches are 
currently suggested in the literature to link or inte-
grate them. For example, Shen et  al. used multi-omics 
datasets which include copy number, gene expression, 
and methylation data from TCGA in an unsupervised 
matrix factorization algorithms using the software 
i-Cluster [32]. Seoane et al. used a pathway-based data 
integration framework for prediction of breast cancer 
progression. They used multiple kernel learning super-
vised learning methods on multi-omics datasets that 
includes clinical data, gene expression and copy num-
ber data [33]. A similar method was further applied by 
Zhu et  al. to integrate somatic mutation, DNA copy 
number, DNA methylation, mRNA and miRNA expres-
sion datasets from TCGA [34]. Acharjee et  al. used 
Random Forests to integrate clinical, lipidomics, and 
metabolomics datasets. They first selected features 
from metabolomics and lipidomicsdataset and linked 
selected features by correlation analysis [35]. Pedersen 
et  al. developed a computational framework to inte-
grate multi-omics datasets that included human phe-
notype, serum metabolome and gut microbiome data. 
This framework allowed for a stepwise flexible choice 
of methods, adaptable to different -omics datasets with 
feature selection as one of the important first step. 
Additional examples of multiomics integration include 
linking genome, metabolome and gut microbiome [36], 
and the linking of somatic mutations, RNA expression, 
DNA methylation and ex vivo drug responses [37].

In addition to -omics datasets, there are other unstruc-
tured clinical phenotypic datasets such as medical 
images, electronic health records, and medical question-
naires. These pose new challenges for data integration 
and reproducibility that needs standardization and to put 
into clinical practices [38]. Proposed strategies for inte-
grating these data into our current pipeline include deriv-
ing numerical features from these unstructured data, for 
example by creating vectors of word representations with 
word2vec models [39].

Single cell sequencing
It is worth mentioning that certain areas of precision 
medicine benefit greatly from incorporating single-cell 
sequencing data, especially cancer. While multiple -omics 
approaches can be used with single-cell sequencing [40, 
41], RNA-Sequencing applied to single-cell data has 
been used extensively, and we will focus our discussion 
on this area [42–44]. Single-cell transcriptomics (scRNA-
Seq) have potential for monitoring patient response to 
treatment and characterizing lineage-specific mutations 
which may respond to variable treatment protocols. 
Before incorporating scRNA-Seq data into the pipelines 
described above, experimentalists and analysists must 
be aware of several differences in protocol which affect 
normalization of scRNA-Seq data. Stegele et  al. [45] 
produced a fundamental review of challenges which are 
currently being addressed by the community. In essence, 
data must be carefully curated, select data must be nor-
malized after additional quality controls not applicable 
to bulk RNA-Seq. This may necessitate the inclusion of 
synthetic or alternate species controls (spike-ins) in the 
sequencing experiments not always used in bulk data 
analysis. After normalization, populations of cells may 
be identified by several unsupervised learning methods, 
from clustering to tSNE [46]. Our pipeline may add value 
to single-cell analyses by picking up at this stage and inte-
grating count matrices of cell-types separated by cluster-
ing approaches. With the separation of cell populations, 
dominated by driver genes characterizing cell types or 
disease states as labels, our pipeline can be applied to 
select gene transcripts which act as biomarkers. With 
these biomarkers identified, subsequent patient monitor-
ing may be applied to surveil tissues for tumour progres-
sion and guide the application of treatment or help reveal 
mechanisms in cells which survive treatment after rese-
quencing [44]. Finally, it is worth mentioning too, that 
useful clinical translation will only follow from a better 
understanding of the underlying biological mechanisms 
for the biomarker´s discovered.

The application of single-cell omics to our pipeline may 
be useful in model organism and basic research to guide 
future translational projects or prioritize experiments for 
biomarker validation.

Conclusion
We present a data-driven, generalizable, robust, low-bias 
machine learning workflow that generates easily inter-
pretable outputs and focus on simple visualizations aim-
ing at actionable biomarker discovery. We believe that 
our workflow will help researchers to identify significant 
explanatory features of experimental -omics data, reduc-
ing the search space for good candidates for experimental 
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validation and follow up. Robustly optimizing feature 
selection to changes in data perturbation provides a high 
confidence in the selection of potential novel features, 
which forms a crucial advantage in translational medi-
cine applications.

Additional files

Additional file 1. R Markdown analysis results from the workflow devel‑
oped on GSE15471. 

Additional file 2. Lipids identified in three cohorts are listed with differ‑
ent category. Category A: HM vs. Mixed (FM and HM combined) feeding; 
Category B: FM vs. Mixed (FM and HM combined ) feeding; Category C: 
HM vs. FM. 

Additional file 3. R Markdown analysis results from the workflow devel‑
oped on GSE15061.
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